
Reconciling Task Assignment and Scheduling in

Mobile Edge Clouds

Lin Wang∗, Lei Jiao§, Dzmitry Kliazovich‡, Pascal Bouvry‡

∗Technische Universität Darmstadt, Germany
§Nokia Bell Labs, Ireland

‡SnT, University of Luxembourg, Luxembourg

Abstract—The prosperous growth of the Internet-of-Things
industry attracts numerous interests in employing edge clouds
(a.k.a. cloudlets) to enhance the performance of mobile services
and applications. Most existing research has been focused on
offloading computational tasks from mobile devices to a single
cloudlet or a central location, yet overlooked the issue of jointly
coordinating the offloaded tasks in a system of multiple cloudlets.
In this paper, we fill this gap by investigating the assign-
ment and the scheduling of mobile computational tasks over
multiple cloudlets, while optimizing the overall cost efficiency
by leveraging the heterogeneity of cloudlets. We model both
data transfer and computation in terms of monetary and time
costs, with task deadlines guaranteed. We formulate the problem
as a mixed integer program and prove its NP-hardness. By
introducing admission control for the cloudlet provider to shape
the system workload, we transform our problem into maximizing
the task admission rate over the two coupled phases: data transfer
and computation. We propose an efficient two-phase scheduling
algorithm, and demonstrate that, compared with the conventional
approach of always selecting the closest cloudlet, our approach
achieves significantly higher admission rate with up to 20%
reduction in the average cost of all offloaded tasks.

I. INTRODUCTION

The last decade has witnessed a tremendous proliferation of

mobile devices. While providing more sophisticated function-

alities, the mobile applications are becoming more and more

resource-hungry. Today, mobile devices are often drained of

computing and storage capacities, leading to reduced battery

lifetime and deteriorated user experience. To alleviate this

situation, several cloud-based solutions (e.g., [1], [2], [3]) have

been proposed to offload some of the computation-intensive

tasks from mobile devices to a distant cloud. Although it

bypasses the resource limitation at mobile devices, the execu-

tion of the mobile applications, especially those that are more

interactive, can be highly interrupted due to the high latency

between the mobile device and the remote cloud [4].

The ideas of edge computing and fog computing delegate

data-related operations including storage and analytics from

mobile devices to surrogates at the network edge, instead of a

distant cloud, to enhance the capabilities of mobile devices. By

placing a cluster of servers (a.k.a. cloudlets) close to mobile

devices, task offloading can be achieved without introduc-

ing intolerable delay as in the cloud-based solution. Given

the explosive adoption of mobile devices and users’ heavy

dependence on mobile applications in the era of Internet-of-

Everything, cloudlets would be widely implemented and fore-

WAN

Cloudlet A

Cloudlet B Cloudlet C

computation

offloading

Fig. 1. System model for mobile edge computing with multiple cloudlets.

seen to serve as an indispensable infrastructure for the future

Internet. A basic system model for mobile edge computing

with multiple cloudlets is illustrated in Figure 1.

To achieve the lowest latency for every offloaded task, the

current practice always allocates mobile tasks to the closest

cloudlet, which, from the viewpoint of the cloudlet provider

that provides and operates multiple cloudlets, can be far from

optimal in terms of the overall system-wise cost efficiency. For

instance, let’s consider load distribution and cost optimization:

i) some cloudlets may suffer from overloading when the

nearby user population becomes dense at some time of the

day, while other cloudlets may be idle in most of the time,

leading to unbalanced resource utilization [5]; ii) the unit

operational cost of each cloudlet can be different due to the

heterogeneous energy prices or hardware specifications [6]

so that the total operational cost of all cloudlets may be

suboptimal if the closest cloudlet is always chosen. We argue

that it is unnecessary to always use the closest cloudlet, as

long as a certain service quality is guaranteed. The decisions

on assigning and scheduling offloaded mobile tasks over a

network of cloudlets become fundamental towards realizing

the optimal cost efficiency in the edge cloud operations.

In this paper, we investigate the problem of optimizing the

cost efficiency in mobile edge clouds through task assignment

and scheduling, by taking advantage of the heterogeneity

of cloudlets in terms of capability and cost. To ensure the

quality of experience for mobile applications, we associate

hard deadlines to offloaded tasks. Upon the arrival of an

offloaded task, we determine to which cloudlet this task will

be assigned and in which execution sequence the tasks that

have been assigned to the same cloudlet will follow. If a task is

assigned to a cloudlet other than the closest one, a bulk of data

(e.g., a virtual machine containing the snapshot of the current

running application) has to be firstly transferred to the target

2

cloudlet, incurring an inevitable delay and network overhead.

The task will eventually be executed in the assigned cloudlet

with its associated deadline respected. Despite few very recent

attempts on multi-cloudlet coordination [5], [6], our model is

more comprehensive and realistic by taking into account both

data transfer and task execution, with respect to both time and

monetary aspects. To the best of our knowledge, this has not

been covered in the existing literature.

We first represent the problem by a formal model and

then formulate it as a mixed integer program. Unsurprisingly,

the problem can be proved to be NP-hard. Moreover, we

show by analysis that regardless of optimality, even deciding

whether the problem has a feasible solution is already NP-

complete. Following this result, we observe the necessity

of introducing admission control1 to our problem, based on

which the cloudlet provider would be able to shape system

workload and pursue the optimal resource utilization or cost

reduction [7]. The problem is transformed into maximizing

the admission rate by task scheduling while maintaining the

best cost efficiency by assigning tasks to “cheaper” cloudlets.

While the optimal task assignment can be achieved more

straightforwardly, our target will be the problem of scheduling

to achieve the maximized admission rate, which is non-trivial.

The remainder of this paper is organized as follows. Sec-

tion II provides the system model, the problem formulation

and its complexity analysis. Section III presents our algorithm

design. Section IV validates the performance of our proposed

algorithm by simulations. Section V summarizes related work

and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we present the system model, formulate the

problem, and carry out complexity analysis for the problem.

A. System Model

We consider a mobile edge cloud system which consists

of a set of m cloudlets denoted by S = {S1, S2, ..., Sm}.
Each of the cloudlet Si ∈ S is equipped with a certain

number of servers and its maximum computing capacity is

captured by Ci. All the cloudlets are connected by a Wide

Area Network (WAN) as depicted in Figure 1. We assume no

bottleneck in the network core, i.e., the only bottleneck exists

in the connection between each cloudlet and the core. For

simplicity we abstract the network as one non-blocking switch

with heterogeneous transmission rates on ports and thus, the

downlinks and uplinks are the only sources of contention. Note

that the heterogeneity on network bandwidth brings novelty,

as well as new challenges, to the problem. The download

and upload network bandwidth of each cloudlet Si is upper-

bounded by Bin
i and Bout

i , respectively.

Our goal is to design an optimizer that takes task requests

as input and determines the combination of choices for the

following factors: the cloudlet each task is assigned to and the

1Admission control is used to block tasks out if there is not enough resource
for those tasks in order to avoid performance compromise. If blocked, a task
can remain at the mobile device or be offloaded to a remote cloud.

order in which tasks are scheduled for both cross-cloudlet data

transfer and computation at each cloudlet. We call this problem

ASCO – Assigning and Scheduling for Cost Optimization.

B. Task Characterization

We are given a set of n tasks J = {J1, J2, ..., Jn} that are

offloaded from mobile devices and need to be executed in the

aforementioned set of cloudlets. Each task is associated with

a piece of data that has already been stored in the closest

cloudlet. The parameters for describing each task Jj ∈ J are

given by a five-tuple 〈aj , bj , lj , dj , Sd,j〉, where aj , bj are the

arriving time and deadline, respectively, lj is the computation

workload, dj is the volume of input data, and Sd,j is the

cloudlet that currently stores the associated data. Each task

has to be completed before its deadline for guaranteed user

experience. Note that in order to achieve resource efficiency

and to reduce operational cost, it is not necessary to have a

task to be executed in the closest cloudlet where the data for

the task resides. As a result, if a task is assigned to a cloudlet

that fortunately stores its associated data, it will be scheduled

and executed directly; otherwise, the data for the task has to be

first transferred to the assigned cloudlet and then, the execution

of the task is carried out.

The optimizer will first need to make decisions on which

cloudlet to assign each task to. We denote by xi,j ∈ {0, 1}
the decision variable indicating whether task Jj is assigned to

cloudlet Si, where

xi,j =

{
1 if Jj is assigned to Si,
0 otherwise.

(1)

We also denote by yj ∈ {0, 1} the indicator for whether the

assigned cloudlet Si for task Jj is the same as the one Sd,j

that stores the data for this task, i.e., yj = 1 if Si = Sd,j ;

yj = 0 otherwise.

C. Total Cost

We denote by H the combined cost for executing a set

of tasks J. The cost Hi we consider here for each cloudlet

Si consists in two parts: energy cost Ei and network cost

Ni. We assume that the energy cost is linearly related to

the computation workload, which is a fair approximation in

reality, and the energy price is given by Pi (i.e., energy

cost per unit of computation) at cloudlet Si. The electricity

cost varies in different cloudlets as in different geographical

locations the electricity generation cost can be different [8].

The network cost Ni is proportional to the volume of data

being transferred across cloudlets which covers both upload

and download traffic. To stay generic we assume that the prices

for sending and receiving unit of data at the same cloudlet

are not identical and both prices can also be heterogeneous

among all cloudlets. Denote by Qin
i and Qout

i the download

and upload network price at cloudlet Si, respectively.

For a given task Jj being processed in cloudlet Si, the

energy cost can be expressed simply by Pi · lj , while the

network cost is captured by yj · dj · (Q
out
d,j + Qin

i). Denoting

by Ji the set of tasks that are assigned to cloudlet Si, i.e.,

3

Ji = {Jj | Jj ∈ J ∧ xi,j = 1}, the total cost Hi at cloudlet

Si is given by

Hi =
∑

Jj∈Ji

(
Pi · lj + yj · dj · (Q

out
d,j +Qin

i)
)
. (2)

Note that both the computation and network costs will be

obtained in the monetary form so we omit the scaling factor.

The total cost H of the system is given by the sum of the costs

at all cloudlets in the system, i.e., H =
∑

Si∈S
Hi, which we

aim to minimize.

D. Problem Formulation and Complexity

The goal of the ASCO problem is to assign tasks to proper

cloudlets such that the total cost H is minimized, while the

deadlines of all the tasks can be respected. We denote by t0
and t1 the earliest arriving time and the latest deadline of the

tasks in set Ji, respectively, i.e., tai = min{aj | Jj ∈ Ji} and

tbi = max{bj | Jj ∈ Ji}. Given an arbitrary non-empty subset

Ĵi of Ji, we denote by t̂ai and t̂bi the corresponding earliest

arriving time and the latest deadline for the tasks in Ĵi. The

minimum total computation time for all the tasks in Ĵi is given

by ∑

Jj∈Ĵi

lj
Ci

, (3)

while the minimum total communication time2 taken by trans-

ferring the data for the tasks in Ĵi can be represented by

∑

Jj∈Ĵi

yj ·
dj

min(Bout
d,j , B

in
i)

. (4)

Putting everything together, the optimization problem ASCO

can be further formulated as the following mixed integer

program.

(P1) minH

subject to

(3) + (4) ≤ t̂bi − t̂ai ∀Ĵi ⊆ Ji∑

Si∈S

xi,j = 1 ∀Jj ∈ J

xi,j ∈ {0, 1} ∀Si ∈ S, ∀Ji ∈ J

The first inequality ensures that all the tasks can be completed

before their deadlines at the assigned cloudlet. The second

constraint forces that every task is assigned to one and only

one cloudlet, while the last constraint is the binary constraint

for the decision variable xi,j .

Non-surprisingly, the ASCO problem can be proven to be

NP-hard. Moreover, we observe that even deciding whether

there exists a feasible solution to the ASCO problem, regard-

less of the total cost, is already NP-complete.

Theorem 1: Deciding whether there is a feasible solution

for ASCO is NP-complete.

2For the sake of tractability, this minimum time is computed based on the
assumption that cloudlets can only serve one data transfer at a time.

Proof: The goal is deciding whether there is an as-

signment of tasks to cloudlets, together with a schedule of

the tasks at all cloudlets, such that the deadlines of all the

tasks are respected in the ASCO problem, regardless of the

total cost. We call this problem F-ASCO. The proof can be

conducted by a polynomial time reduction from the classical

Minimum Makespan Scheduling (MMS) problem, the decision

version of which is NP-complete even if there are only two

identical machines [9]. We start from an MMS instance where

we are given a set of identical machines indexed by the

set M = {1, ...,m} and a set of jobs indexed by the set

J = {1, ..., n} to be assigned to the machines. Each job

contains a certain workload wj (j ∈ [1, n]) to be processed.

The goal is to assign and process the jobs on the machines and

the objective is to minimize the makespan, i.e., the maximum

completion time of the machines. We denote by OPT0 the

minimum makespan that can be achieved.

From the above MMS instance we now construct an instance

for the F-ASCO problem. We assume each machine in M
represents a cloudlet Si and we have in total n cloudlets given

by the set S. Each job j in J represents a task Jj ∈ J where

J denotes the set of tasks for the F-ASCO instance. For all the

tasks in J, we assume they arrive at the same time and have

the same deadline as OPT0. We also assume that the network

bandwidths at every cloudlet are infinite and the time used

for data transmission is thus negligible. The question we need

to answer in the F-ASCO problem instance then becomes to

correctly decide whether there exists a schedule for the tasks

to cloudlets such that all the tasks can be completed within

OPT0. It is easy to confirm that our answer to the F-ASCO

instance is YES if, and only if, we solve the MMS instance

and find its optimal solution. This completes the proof.

III. THE ALGORITHM

Since we cannot efficiently have any guarantee on the exis-

tence of feasible solutions, we introduce admission control to

block some task requests when there is no enough computation

or network resource to serve them. This is a typical approach

used for cloudlet operators to shape the system workload and

make optimal decisions on resource utilizing [7]. The problem

is then relaxed and the optimal cost can be achieved at the risk

that there might be tasks that cannot be accommodated by any

cloudlet. In the following, we will show how to achieve the

best cost efficiency by cloudlet selection for tasks and how

to improve admission rate by carrying out a well-designed

scheduling algorithm for joint cross-cloudlet data transfer and

computation.

A. Cloudlet Selection

The incentive to transfer the data for a task from one

cloudlet to another is to reduce the total cost for processing

the task. As a result, the following two necessary (yet not

sufficient) conditions have to be met: i) Data transfer is

possible subject to time limit; ii) The total cost for processing

the task is reduced as a result of the data transfer.

4

Assume there is a task Jj ∈ J and the data for this task is

stored at cloudlet Sd,j . According to the above two conditions,

a candidate cloudlet Sc ∈ S\Sd,j that can host task Jj has to

satisfy the following inequalities.

lj
Cc

+
dj

min(Bout
d,j , B

in
c)
≤ bj − aj (5)

lj · Pc + dj · (Q
out
d,j +Qin

c) < lj · Pi (6)

Based on the above two conditions, for each task Jj we carry

out a screening process, which aims at removing the cloudlets

that cannot host the task. We denote by Sj the set of the

valid candidate cloudlets for task Jj . If Sj = ∅, the task

will be by default assigned to cloudlet Sd,j ; otherwise we

choose the cloudlet from all the candidate cloudlets Sj that

gives the minimized cost for executing the task (including the

cost for data transfer). We denote the chosen cloudlet by Sp,j .

The assignment of tasks will be completed when we finish

repeating the above process for every task.

B. Two-phase Task Scheduling

Once we have decided the cloudlet that each task will be

preferably assigned, the problem becomes how to schedule the

data transfer and computation for the tasks at each cloudlet.

Having in mind that there might be tasks that are not admitted

into the cloudlet system, our implicit objective for the schedul-

ing would be to accommodate as many tasks as possible in

order to maintain higher user satisfaction.

We first describe a similar problem that has been widely

studied in traditional scheduling literature: We are given three

sets of parallel machines, denoted by A,B and C, respec-

tively. Note that the machines in each set can be heterogeneous

with non-uniform processing capabilities. We are also given a

set of jobs, each of which consists of three operations that have

to be carried out on the three sets of machines stage by stage,

respectively. The objective of the problem is to minimize the

total completion time of all the jobs. If the operations of each

job can be flexibly assigned to any of the machines in the

corresponding class, the problem is called Flexible Flow Shop

Scheduling with Parallel Machines and it has been shown to be

strongly NP-hard even when the machines are uniform [10].

Our problem inherits the same problem structure but differs

in the following two aspects: (1) The machine for carrying

out the operation of each task in every stage is fixed. (2) The

machines for carrying out the first two operations of each task

are coupled, i.e., they will be occupied at the same time. The

problem under the two constraints is still NP-hard. The proof

can be straightforwardly conducted by a reduction from the

traditional flow shop scheduling problem, which is known to

be NP-hard with at least two machines (three machine sets in

our case). Our objective, however, instead of minimizing the

total task completion time, is to maximize the number of tasks

that could be completed before given deadlines. We call this

problem Flow Shop Scheduling with Coupled Resources (FSS-

CR). The term coupled resources implies that the scheduling

decisions for the first two operations of each task have to be

done simultaneously.

C. FSS-CR

The high complexity of the problem implies a vast searching

space and thus, we seek for efficient heuristics that could

generate comparably good results within very short time.

Under the objective of accommodating as more tasks as

possible, our algorithm aims at reducing the time wasted at

every stage due to resource contention.

While sharing a common deadline, the decision making

process for scheduling each task can be divided into two

independent phases: dtrans (data transfer, the first two stages)

and comp (computation, the third stage). We notice that once

we fix the scheduling for the tasks in phase comp, the deadlines

for phase dtrans of tasks can be accordingly determined. This

is achievable as the set of tasks that will be processed at each

cloudlet is already known after the cloudlet selection process

described before. The problem is then decomposed into two

sub-problems, i.e., scheduling for comp and scheduling for

dtrans.
1) Scheduling for Computation: As in phase comp tasks

will be processed independently at each cloudlet, we focus on

an arbitrary cloudlet Si ∈ S. The main idea behind this is

to ensure that all the tasks at this cloudlet can be completed

before their deadlines and every task starts its computation

phase as late as possible to make time for the data transfer

phase as resource contention is more severe in data transfer

due to resource coupling. To this end, we define an auxiliary

problem called Reverse-Task Scheduling (RTS). Given a set

of tasks with deadline constraints to be processed on a single

machine, the goal of the RTS problem is to decide the order

of tasks to be processed such that the average starting time of

all the tasks is maximized.

The RTS problem can be transformed into a single-machine

task scheduling problem by treating task deadlines as arriving

times and reversing the task execution from the end to the

beginning. As a result, the problem becomes that given a

set of tasks that arrive at a single machine, we design a

schedule for the tasks such that the average completion time is

minimized. We observe that the preemptive scheduling policy

Shortest Remaining Time First (SRTF) gives the minimal

average completion time compared to non-preemptive policies

First Come First Serve (FCFS) and Earliest Deadline First

(EDF). Consequently, the total time saved in the comp phase

would be maximized.
2) Scheduling for Data Transfer: The starting time de-

termined for each task in phase comp will provide a strict

deadline for each task in phase dtrans. Given this deadline,

the problem of scheduling for data transfer becomes a network

flow scheduling problem: each task Jj ∈ J represents a flow

Fj with size of dj from cloudlet Sd,j to cloudlet Sp,j , with

arriving time aj and deadline bj . Our goal is to schedule the

flow transmissions (i.e., sending or receiving) on a semi-clos

network while guaranteeing flow deadlines. Our solution to

this problem is based on two iterative processes where the

first process is admission control based on pruning, while the

second one is scheduling. Before presenting the algorithm, we

first carry out a flow size normalization process.

5

Flow Size Normalization. Normalization is necessary for

computing the most intensive time interval, as the maximal

transmission rate for each flow can be different due to the

fact that network nodes (i.e., cloudlets) we assumed here

can have different capacities. The normalization process is

straightforward, i.e., assuming the capacity of each network

port as one. To this end, for each flow we divide its size

by the maximal transmission rate it can achieve when being

transmitted on the network. More formally, the normalized size

of flow Fj is given by

|Fj | =
dj

min(Bout
d,j , B

in
p,j)

(7)

where Bout
d,j and Bin

p,j are the egress bandwidth of cloudlet Sd,j

and the ingress bandwidth of cloudlet Sp,j , respectively.

Admission Control. The admission control process is de-

signed to prune the flow set by removing the flows that will

not be able to be completed, such that the feasibility of the

transmissions of the residual flows can be guaranteed. Denote

by Fi the set of flows that will be routed through cloudlet Si.

We first provide the following definition.

Definition 1: The intensity of a cloudlet Si in a given time

interval I = [a, b] is defined as the average normalized amount

of data to be transmitted by Si in this interval, i.e.,

δ(Si, I) =

∑
[aj ,bj]⊆[a,b]∧Fj∈Fi

|Fj |

a ∼ b
(8)

where a ∼ b denotes the total time in which cloudlet Si is

free.

It is intuitive that δ(Si, I) has to satisfy δ(Si, I) ≤ 1, mean-

ing that the maximal intensity is constrained by the normalized

capacity of each cloudlet; otherwise, there will be flows that

cannot meet their deadlines. Our design for admission control

is based on the inequality max{δ(Si, I)} ≤ 1.

Definition 2: For a given cloudlet Si, a time interval I =
[a, b] is defined as a critical interval if it maximizes δ(Si, I).

Definition 3: The most critical time interval I∗ = [a∗, b∗] is

defined as the time interval that maximizes δ(S∗
i , I

∗) among

all cloudlets. Cloudlet S∗
i is the corresponding most critical

cloudlet and flow set F∗
i = {Fj ∈ Fi ∧ [aj , bj] ⊆ I} is the

corresponding critical flow set.

Based on the above definitions, the pruning process works

iteratively as follows: in each iteration we search for the most

critical time interval I∗. Once this interval has been found, we

check if feasibility can be satisfied in this interval, i.e., whether

or not δ(S∗
i , I

∗) ≤ 1. If not, we remove the flow Fj ∈ F
∗
i

which has the maximized dj/(aj ∼ bj), meaning it contributes

the most to the intensity of interval I∗. By removing this flow,

the intensity of this interval will be reduced. We repeat the

above process until δ(S∗
i , I

∗) ≤ 1 is satisfied.

Most Critical First with EDF. We now discuss how to decide

the schedule for the rest flows. We design an algorithm MCF-

EDF (Most Critical First with EDF) for flow scheduling, which

is listed in Algorithm 1. The algorithm is conducted on an

iterative process: in each iteration, MCF-EDF first finds the

most critical interval I∗ and its corresponding most critical

Algorithm 1 MCF-EDF

1: while ∃Si ∈ S,Fi 6= ∅ do

2: (S∗
i , I

∗)← argmax(Si,[a,b]) {δ(Si, [a, b])}
3: F

∗
i = {Fj | Fj ∈ Fi ∧ [aj , bj] ⊆ [a, b]}

4: for Fj ∈ F
∗
i do

5: a′j =
∑

Fk∈F∗

i
∧bk<bj

|Fk|

6: b′j =
∑

Fk∈F∗

i
∧bk<bj

|Fk|+ |Fj |
7: end for

8: for Fj ∈ Fi do

9: Fi ← Fi\Fj for Fj ∈ Si

10: Mark [a′j , b
′
j] as unavailable on cloudlet Si if Fj ∈ Fi

11: end for

12: end while

cloudlet S∗
i . The flows that fall into interval I∗ is denoted

by set F
∗
i = {Fj | Fj ∈ Fi ∧ [aj , bj] ⊆ [a, b]}. After

that, we schedule the flows in the interval I∗ using the EDF

policy, from which the spanning time [a′j , b
′
j] of each flow

Fj ∈ F
∗
i will be determined. Finally, we update the available

time intervals on all the cloudlets that have been affected, i.e.,

cloudlets that contain flows from set F∗
i that have just been

scheduled in this iteration. The algorithm terminates when all

the flows have been scheduled.

IV. PERFORMANCE EVALUATION

We developed a discrete-time multi-cloudlet simulator in

Python, with the proposed assignment and scheduling al-

gorithms implemented. The simulator exposes interfaces for

various parameters in our model for both the cloudlet and

the task. Serving as a primitive evaluation, the simulations

use values for the parameters that were generated following

random distributions. For cloudlets, the processing capacity,

as well as the upload and download network bandwidths,

follows uniform distributions, while the prices for computation

and communication follow normal distributions. For tasks, the

arrival time and deadline follow a uniform distribution while

the volume of input data as well as the computation workload

follow normal distributions.

We compare the proposed algorithm with a baseline ap-

proach where tasks are assigned to the closest cloudlets and

the scheduling of tasks is done following an FCFS manner

complemented with EDF for tasks that arrive simultaneously.

This baseline is considered to be the de facto approach used in

current cloudlet systems. We focus on two aspects of interest:

admission rate and average per-task cost. The experimental

results are shown in Fig 2. All the values are normalized

by the ones we obtained from the baseline approach and the

values are averaged over five independent runnings. We tested

with both a small scale (with 20 cloudlets) and a large scale

(with 100 cloudlets) scenarios. Experiments in both scenarios

confirm that (i) the admission rate is significantly improved

(up to 30%) in our approach and (ii) the proposed assignment

and scheduling algorithm together can help reduce largely the

average per-task cost (up to 20%). This is mainly due to the

fact that the assignment and scheduling algorithm expand the

solution space by enabling data transfer between cloudlet pairs

6

0.5 1.0 1.5 2.0 2.5 3.0
Number of tasks (K)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

R
a
ti

o
 t

o
 b

a
se

lin
e

Task Admission Rate

0.5 1.0 1.5 2.0 2.5 3.0
Number of tasks (K)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
a
ti

o
 t

o
 b

a
se

lin
e

Average Per-Task Cost

(a) Small scale with 20 cloudlets

2 4 6 8 10 12
Number of tasks (K)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

R
a
ti

o
 t

o
 b

a
se

lin
e

Task Admission Rate

2 4 6 8 10 12
Number of tasks (K)

0.70

0.75

0.80

0.85

0.90

0.95
R

a
ti

o
 t

o
 b

a
se

lin
e

Average Per-Task Cost

(b) Large scale with 100 cloudlets

Fig. 2. Comparisons on task admission rate and average per-task cost in the
cloudlet system in different scales.

and by introducing elaborate scheduling mechanisms for joint

data transfer and task execution.

V. RELATED WORK

The concept of cloudlet was introduced by Satyanarayanan

et al. [4] where they discussed the possibility of exploiting

virtual machine (VM) technology to rapidly instantiate cus-

tomized services on a nearly by cloudlet for mobile users.

The VM-based idea was then extended to multiple mobile task

offloading proposals including ThinkAir [3], Virtual Smart-

phone [11], and CloneCloud [1]. The generality of offloading

was further improved by allowing runtime dynamic decision

making [12] and support multi-threaded and user-interactive

applications [13], [14]. Most recently, Chen et al. [15] explored

efficient wireless access coordination among multiple mobile

device users. Tong et al. [16] studied the tradeoff between

energy efficiency and responsiveness of mobile applications by

traffic scheduling for single cloudlets. Jia et al. [5] investigated

the problem of balancing the load of multiple cloudlets to

optimize mobile application performance. A novel hierarchical

architecture design with multiple cloudlets for mobile edge

clouds was also proposed in [6].

In contrast, we study the impact of both task assignment

and scheduling on the overall operational cost of multi-

cloudlet based mobile edge clouds. We aim to optimize per-

task cost and to ensure quality of experience by enforcing hard

deadlines for offloaded tasks through joint task assignment and

scheduling in multi-cloudlet environments. This consequently

leads to the best operation of cloudlets in terms of both load

distribution and cost optimization for mobile edge cloud oper-

ators (i.e., cloudlet operators) as we claimed at the beginning

of this paper.

VI. CONCLUSION

This paper studied the problem of cost reduction in mobile

edge clouds through assignment and scheduling for mobile

offloaded tasks. We provided the formulation of the problem

as well as thorough analysis on its computational complexity.

By introducing admission control, we simplified the problem

and proposed efficient algorithm for scheduling tasks for

maximized admission rate. The task scheduling consists of

two coupled phases namely data transfer and computation,

thus the proposed algorithm first decouples the two phases

and then, it generates efficient scheduling for each of the

phases. Simulations in both small and large scales confirmed

the hypothesis that considerable reduction on average per-

task cost can be achieved by reconciling task assignment and

scheduling in mobile edge clouds. It is also of interest to

explore the possibility of partitioning tasks and assigning each

partition to one of the cloudlets. We leave it as future work.

ACKNOWLEDGMENT

This research was partially supported by the German Re-

search Foundation (DFG) within the Collaborative Research

Center (CRC) 1053 – MAKI and by the National Science

Foundation of China (NSFC) Key Program 61520106005.

REFERENCES

[1] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in EuroSys, 2011.

[2] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in INFOCOM, 2013.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012.

[4] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[5] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in INFOCOM, 2016.

[6] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in INFOCOM, 2016.

[7] L. Zheng, C. Joe-Wong, C. Tan, M. Chiang, and X. Wang, “How to bid
the cloud,” in SIGCOMM, 2015, pp. 71–84.

[8] H. Xu, C. Feng, and B. Li, “Temperature aware workload managementin
geo-distributed data centers,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 6, pp. 1743–1753, 2015.

[9] R. G. Michael and S. J. David, “Computers and intractability: a guide
to the theory of np-completeness,” WH Free. Co., 1979.

[10] G. J. Kyparisis and C. Koulamas, “Flexible flow shop scheduling with
uniform parallel machines,” European Journal of Operational Research,
vol. 168, no. 3, pp. 985–997, 2006.

[11] E. Y. Chen and M. Itoh, “Virtual smartphone over IP,” in WOWMOM,
2010.

[12] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in MobiSys, 2010.

[13] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X. Chen,
“COMET: code offload by migrating execution transparently,” in OSDI,
2012.

[14] M. Ra, A. Sheth, L. B. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in MobiSys, 2011.

[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions

on Networking, 2016.
[16] L. Tong and W. Gao, “Application-aware traffic scheduling for workload

offloading in mobile clouds,” in INFOCOM, 2016.

