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AbstractÐTo make edge AI inference carbon-neutral, we per-
form a comprehensive mathematical and algorithmic study on the
complex online management of AI model selection and placement
with carbon allowance trading. This work is non-trivial due to the
critical challenges such as the unknown stochastic distributions
and arrivals of inference data, the exploration-exploitation trade-
off with model switching cost, and the uncertain, time-varying
allowance prices and system environments. We first model a long-
term stochastic cost optimization problem to capture these chal-
lenges. Then, we design a novel learning-centric decomposition-
based online algorithmic framework which, on the one hand,
samples and places the models repeatedly to minimize the
expected inference loss with bounded model switches, and on
the other hand, buys and sells carbon allowances cost-efficiently
in real time toward carbon neutrality without relying on future
allowance prices and system emissions. We further formally prove
multiple performance guarantees of our algorithms in terms
of sub-linear regret and fit. Finally, we conduct trace-driven
evaluations to confirm the substantial advantages of our approach
compared to baselines and state-of-the-arts in practice.

I. INTRODUCTION

Edge AI inference [1], [2] often entails the deployment of AI

models across edge computing infrastructures, such as micro

data centers or server clusters co-located with cellular base

stations or WiFi access points. Strategically positioned in prox-

imity to end users, these infrastructures enable localized execu-

tion of inference tasks on user-submitted requests. This highly

decentralized edge-based approach marks a transformative

shift in AI service delivery, offering distinct advantages over

traditional cloud-hosted solutions such as ultra-low network

latency, traffic localization, and enhanced privacy preservation

by confining user data within local access networks.

Achieving carbon neutrality in edge AI inference has be-

come imperative, as these systems incur significant environ-

mental costs [3] due to their substantial energy consumption.

Within an AI model’s lifecycle, the inference phase dominates

the total carbon footprint, often surpassing training emissions.

Recent studies indicate that inference processes contribute

to 80%∼90% of a model’s total energy consumption and

associated emissions [4]. Consequently, decarbonizing edge

AI inference is critical, necessitating innovations that offset

operational emissions while maintaining system efficiency.

One widely-adopted approach to realizing carbon neutrality

is leveraging cap and trade programs [5], [6]. That is, the

carbon source, e.g., an AI service, firstly obtains an initial cap

in terms of carbon allowances from the government for its

carbon emission. Then, the carbon source can join the carbon

market to sell spare allowances to the market if its carbon
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Fig. 1: System scenario

emission remains below the cap, and purchase additional

allowances from the market if its carbon emission exceeds the

allowances being held. Similar policies or mechanisms have

been established in many jurisdictions across the world, e.g.,

China, European Union, and California in the U.S. [7]±[9].

In fact, achieving carbon neutrality in this manner entails

the complex management of both edge AI inference itself and

carbon allowance trading, as in Fig. 1, which is non-trivial due

to multiple fundamental and unique challenges as follows.

First, edge AI inference often needs to handle data streams,

where the data samples themselves and the quantity of such

dynamic data samples inherently follow unknown stochastic

distributions [10]. To produce high-quality inference results,

selecting the best models to deploy on the edges is a stochastic

optimization problem that optimizes inference loss and compu-

tation overhead over the entire distributions in expectation. Yet,

we only observe samples of the loss by conducting inference

via the selected models upon concrete dataÐusing samples to

optimize unknown expectations is not straightforward.

Second, the lack of knowledge about model quality, data

distributions, and edge platform performance requires continu-

ous exploration and exploitation of different models, incurring

model switching cost such as the communication delay in

transferring the new models [11], [12]. Selecting the same

model consistently avoids model switching cost, but may fail

to explore other potentially better models; conversely, frequent

model-selection decision changes may lead to the faster arrival

at the optimum, but can cause excessive switching cost. We

need to dynamically strike the balance between exploiting the

best model so far and exploring a new model whose perfor-

mance we do not know yet. Heterogeneous and uncertain time-

varying system environments further complicate this issue.

Third, buying and selling carbon allowances cost-efficiently

to maintain the long-term carbon neutrality requires cautious

online decision-making repeatedly. As time goes, the carbon



allowance prices in the market typically fluctuate [8], [13],

[14], and the carbon footprint to offset for the edge AI infer-

ence also changes. Then, the dilemma is that purchasing vast

carbon allowances now could be unnecessary if future prices

drop or system emissions decrease, but buying inadequate

allowances now could force the system to buy more later, even

if prices then become higher. Because future allowance prices

and system emissions are unknown in prior, it is never easy

to trade carbon allowances on the fly for long-term benefit.

Existing research falls insufficient in addressing the afore-

mentioned challenges. Those works on model selection and in-

ference in typical cloud-edge settings [15]±[20] often overlook

carbon footprint and data stochasticity. Those about carbon

and energy of AI services [21]±[25] either focus on reducing

carbon emissions without carbon neutrality, or never consider

dynamic carbon markets and online allowance trading. Finally,

research on switching cost for cloud and edge systems [11],

[12], [26]±[28] has not investigated our complicated stochastic

optimization with long-term constraints, as described next. See

Section VI for our detailed discussions on the related work.

In this paper, we present a rigorous modeling and algorith-

mic study on operating and carbon-neutralizing a distributed

edge AI inference service. We make multiple contributions:

We first model a long-term stochastic optimization problem

to optimize the total cost of the edge AI inference service, fea-

turing the expected inference loss over dynamic data streams,

the model hosting and switching cost over time, and the

cumulative expense of buying and selling carbon allowances,

while enforcing carbon neutrality. Our formulation controls AI

model placements in the edge network and carbon allowance

trading with the carbon market, and captures arbitrarily un-

known stochastic distributions of data samples and arrivals

and arbitrarily time-varying carbon allowance prices.

We then propose our algorithmic insights based on which

we design a novel ªlearning-centricº polynomial-time solution

framework to solve this problem online. Our approach decom-

poses the original problem into two subproblems and solves

them respectively at each individual time slot. For the first

subproblem of model selection and placement, we design a

switching-aware bandit learning algorithm [29], [30]. Unlike

conventional bandits, our algorithm controls the switching cost

by dividing the time horizon into blocks of increasing length

and changing model selections only at block boundaries, and

overcomes the stochastic uncertainty by repeatedly sampling

the models based on the unbiased estimations of the infer-

ence loss to balance exploration and exploitation. For the

second subproblem of carbon allowance trading, we devise

an online learning algorithm [31], [32] via a convex-concave

reformulation with rectified online primal-dual steps, which

decides carbon allowances to purchase and sell in real time for

the long-term carbon neutralization without relying on future

carbon allowance price and carbon emission information.

We further perform rigorous theoretical analysis for our pro-

posed algorithms. For the first subproblem, we prove that the

regret [33]±[35] on each edge, i.e., the difference between the

expectation of inference loss and model hosting cost incurred

by our approach and that incurred by the single best model

at hindsight, plus model switching cost over time, only grows

sub-linearly along with time. For the second subproblem, we

also prove the sub-linear growth of regret and fit [36]±[38].

That is, both the time-averaged optimality gap between the

cumulative carbon allowance trading expense of our approach

and that of a sequence of instantaneous optimizations and the

time-averaged long-term carbon neutrality violation incurred

by our approach vanish progressively as time elapses. Based on

these, we also derive the regret for our whole original problem

via constructed redundant but useful intermediate terms.

Finally, we conduct experiments using MNIST and CIFAR-

10 inference data [39], [40], London Underground user work-

load [41], EU Carbon Permit prices [8], and real-world data of

edge server locations [42], inference latency [43], carbon rates

[44] and energy consumption [45], with real-world deep neural

networks [46], [47]. We compare our approach to different

combinations of baselines such as random and greedy methods

and state-of-the-arts such as Tsallis-INF [29] and UCB2 [48]

for model selection and Lyapunov [24] for carbon trading.

Our evaluations reveal the following results: (i) Compared to

alternatives, our approach reduces the cumulative total cost

on average by 21%∼55%; (ii) Our approach performs the

best consistently as the importance of the model switching

cost, the carbon emission rate, or the initial carbon cap varies;

(iii) Our approach incurs the lowest regret and the lowest fit

for total cost minimization; (iv) Our approach achieves the

highest inference accuracy using the selected models; (v) Our

approach can execute effectively and finish within seconds.

II. MODEL AND PROBLEM FORMULATION

A. System Modeling

Cloud-Edge Inference System: We consider an AI service

provider that owns and operates a cloud-edge system con-

sisting of a cloud data center and a group of distributed and

potentially heterogeneous ªedgesº. Each edge is a micro data

center or server cluster co-located with a cellular base station

or WiFi access point in close proximity to the users. The users

often connect to the edges via wireless networks, and the edges

connect to the cloud via wired networks. We denote the set of

edges as I = {1, 2, . . . , I}. We consider the system operating

over a series of consecutive time slots T = {1, 2, . . . , T}.

This service provider has a set of machine learning models in

the cloud, and sends such models to the edges dynamically to

conduct machine learning inference, as elaborated next.

Machine Learning Models: We denote the set of machine

learning models hosted in the cloud as N = {1, 2, . . . , N}.

For each model n ∈ N , we use Wn to refer to its size, and use

vi,n to refer to the computation cost of running this model on

the edge i, e.g., computation latency, to conduct inference on a

single ªdata sampleº which will be defined next. We note that

vi,n is posterior, i.e., it can only be observed after the model

n is actually downloaded to the edge i and used to complete

the inference. We denote the the communication cost, e.g.,

network delay, of downloading a model from the cloud to the

edge i as ui. For each model n, we also use hn(·) to represent



its decision function, and without loss of generality, consider

the squared loss as the inference loss function.

Stochastic Data Streams: Without loss of generality, all the

data samples from the users can be considered as drawn from

an unknown time-invariant stochastic distribution [49], [50].

That is, we have (a, b) ∼ D , where a is a random variable that

represents the feature; b is a random variable that represents

the ground-truth label; and D refers to the distribution. Thus,

every single data sample in the system is a sample of (a, b).
Accordingly, the loss incurred by using the model n to conduct

the inference also follows some distribution Dn, denoted as

ln(a, b) = (hn (a)− b)
2 ∼ Dn. Hereafter, we simply write

ln(a, b) as ln when it is clear from the context.

Each edge receives a stream of data samples that dynam-

ically arrive from the users. Equivalently, this can be seen

as an Independent and Identically Distributed (IID) stochastic

process for each edge, where a data sample corresponds to a

random variable that follows D . We envisage that the number

of the data samples or such random variables, which arrive at

each edge i, denoted as Mi, follows another unknown time-

invariant stochastic distribution. The average loss incurred on

the edge i by using the model n to conduct the inference is

Li,n = 1
Mi

∑Mi

υ=1 (hn (aυ)− bυ)
2
, where Mi and {aυ, bυ, ∀υ}

are all random variables and (aυ, bυ) ∼ D , ∀υ.

Machine Learning Inference: At each time slot t, on each

edge i, the machine learning inference workflow is illustrated

in Fig. 2, also described as follows:

• Step 1: The system selects and downloads one and only

one (replica of) a model from the cloud to the edge. The

download operation occurs if the model selected for t
is different from that for t − 1; no download operation

occurs if the model selected for t is the same as that

for t− 1, because the model already on the edge can be

reused. Suppose the model ni is selected for t.
• Step 2: M t

i data samples arrive sequentially, where M t
i

is a sample of the random variable Mi. Then, repeat the

following Steps 2.1∼2.3 for each mi ∈ {1, 2, ...,M t
i }:

± Step 2.1: The edge receives the feature ami
.

± Step 2.2: The edge uses the model ni to conduct

the inference to obtain the inferred label hni
(ami

),
which is sent back to the corresponding user.

± Step 2.3: The edge receives the ground-truth label

bmi
from the same user.

• Step 3: The edge then computes the incurred loss Lt
i,ni

=
1

Mt
i

∑Mt
i

mi=1 (hni
(ami

)− bmi
)
2

as a sample of the ran-

dom variable Li,ni
, and finds the computation cost vi,ni

if such cost has not been observed for the model ni.

• Step 4: Lt
i,ni

and vi,ni
are collected by the system to

potentially improve the model selection decision for the

edge i at the next time slot, i.e., t+ 1.

Note that for each single data sample, the order of firstly

receiving the feature, afterward conducting the inference, and

finally receiving the ground-truth label is a general working

pattern of lots of streamed AI inference systems such as phone

soft keyboards [51] and ads recommendation systems [52].

Users for each edge

Edge1 Edge2 Edge3 EdgeN Cloud
Step 1

Step 2.1

Step 2.2

Step 2.3

Step 3

Step 4

Fig. 2: Inference in a single time slot t

Carbon Allowance Trading: We consider the cap-and-trade

program. That is, the cloud-edge system is pre-allocated a

certain number of carbon allowances R, which are used as

permits to cover carbon emissions; also, the cloud-edge system

is engaged in the allowance trading with a carbon trading mar-

ket to purchase allowances to offset excess carbon emissions

or to sell surplus allowances. We use ct and rt to denote the

buying price and the selling price of the carbon allowances at

the time slot t, respectively. To quantify the carbon emission of

the cloud-edge inference system, we multiply the total energy

consumption of the inference process by the carbon emission

rate ρ which is the amount of carbon emitted per unit energy

consumption. We represent the energy consumption at the edge

i at the time slot t when using the model n to conduct the

inference as Et
i,n = φnM

t
i , where φn denotes the energy for

inferring one single data sample by the model n, and represent

the energy consumption for transferring the model n from the

cloud to the edge i as Fi,n = ϑiWn, where ϑi is the energy

for transferring one unit size of the model to the edge i.

Control Decisions: The system makes the following control

decisions dynamically at each time slot t: xt
i,n ∈ {1, 0},

denoting whether or not to place the model n on the the edge

i at the time slot t; zt ≥ 0, denoting the quantity of carbon

allowances purchased by the system at the time slot t; and

wt ≥ 0, denoting the quantity of carbon allowances sold by

the system at the time slot t. We also introduce the auxiliary

control variable yti ≜ 1{∑n nx
t
i,n ̸= ∑

n nx
t−1
i,n } to denote

whether or not the model hosted on the edge i at the time slot

t is different from that placed on the same edge at the time

slot t − 1, where 1{·} is the indicator function equal to 1 if

the specified condition holds and 0 otherwise.

Cost of Machine Learning Inference: The cost incurred

by conducting the inference at the time slot t refers to the

expected inference loss over the entire data distribution, the

computation cost of running the models, and the communi-

cation cost of downloading the models from the cloud to the

edges:
∑

i

∑
n x

t
i,n(Eln∼Dn

(ln) + vi,n) +
∑

i y
t
iui.

Cost of Carbon Allowance Trading: The cost incurred

by the carbon allowance trading for the cloud-edge inference

system at the time slot t refers to the expense of purchasing

carbon allowances minus the revenue obtained from selling

carbon allowances: ztct − wtrt.

B. Problem Formulation and Algorithmic Challenges

Total Cost Minimization: The total cost refers to the sum

of the cost of machine learning inference and the cost of



carbon allowance trading over time. We formulate the total

cost minimization problem P0 as follows:

P0 : min P =
∑

t

∑
i

∑
n x

t
i,n(Eln∼Dn

(ln) + vi,n)

+
∑

t

∑
i y

t
iui +

∑
t z

tct −∑
t w

trt, (1)

s.t.
∑

n x
t
i,n = 1, ∀i, ∀t, (1a)

yti = 1{∑n nx
t
i,n ̸= ∑

n nx
t−1
i,n }, ∀i, ∀t, (1b)

∑
t

∑
i

∑
n x

t
i,nρ(E

t
i,n + ytiFi,n)

≤ R+
∑

t z
t −∑

t w
t, (1c)

var. xt
i,n, y

t
i ∈ {0, 1} , zt ≥ 0, wt ≥ 0, ∀i, ∀n, ∀t.

The objective (1) minimizes the total cost over time. Constraint

(1a) ensures that each edge hosts one and only one model at

each time slot. Constraint (1b) captures the definition of the

auxiliary variable. Constraint (1c) ensures the carbon neutrality

in the long term, i.e., the cumulative carbon emission is fully

covered by the cumulatively possessed carbon allowances.

Algorithmic Goal: Our goal is to design an algorithmic ap-

proach to solve the problem P0 online to produce the solution

{{x̄t
i,n, ∀i, ∀n}, {ȳti , ∀i}, z̄t, w̄t, ∀t}1, while provably bound-

ing the ªregretº as P({{x̄t
i,n, ∀i, ∀n}, {ȳti , ∀i}, z̄t, w̄t, ∀t}) −

P∗ ≤ C. P is the objective function of P0. P∗ refers to the

offline optimal objective value of P0. C is generally expected

to be a parameterized constant, which further needs to be sub-

linear with respect to the length of the time horizon T .

Algorithmic Challenges: Solving P0 in an online manner

to achieve our algorithmic goal in the above is non-trivial.

Stochastic Uncertainty: Dn is unknown and thus the expec-

tation is not calculable. Also, at each t, we are not observing

the sample of ln, but the sample of Li,n for each i which

involves another random variable Mi. Leveraging the latter to

minimize the expectation of the former is challenging.

Switching Cost: The existence of
∑

t

∑
i y

t
iui couples every

pair of adjacent time slots, and restricts the choices for xt
i,n

at each t. Whatever value xt
i,n takes, it impacts the switching

cost between t and t+ 1; yet, when deciding xt
i,n, what will

occur at t+1 is unknown as the time slot t+1 has not arrived.

Long-Term Constraint: Constraint (1c) entails deciding zt

and wt at each t to make the constraint hold in the long term.

Any values that zt and wt take at t without considering ct and

rt for future time slots beyond t can lead to suboptimum of∑
t (z

tct − wtrt). But ct and rt beyond t are unknown at t.
This constraint is also nonconvex due to the multiplication of

xt
i,n and yti .

III. ONLINE ALGORITHM DESIGN

A. Algorithm Rationale with Problem Decomposition

To address the aforementioned algorithmic challenges and

achieve our algorithmic goal, we propose to firstly decompose

the original problem P0 into two subproblems P1 and P2.

Problem P1: We present the problem P1 as follows.

P1 : min
∑

t

∑
i

∑
n x

t
i,n(Eln∼Dn

(ln) + vi,n)

1In this paper, we use notations like x
t
i,n

to represent the decision variables

and notations like x̄
t
i,n

to represent the values of the corresponding variables.

+
∑

t

∑
i y

t
iui, (2)

s.t.
∑

n x
t
i,n = 1, ∀i, ∀t, (2a)

yti = 1{∑n nx
t
i,n ̸= ∑

n nx
t−1
i,n }, ∀i, ∀t, (2b)

xt
i,n, y

t
i ∈ {0, 1} , ∀i, ∀n, ∀t.

P1 involves the control variables {{xt
i,n, ∀i, ∀n}, {yti , ∀i}, ∀t}

only. Constraints (2a) and (2b) are from Constraints (1a) and

(1b) of P0, respectively.

Problem P2: We present the problem P2 as follows. We

introduce some additional notations to facilitate the design of

our algorithms later. We denote f t(Zt) = ztct − wtrt, and

also gt(Zt) =
∑

i

∑
n(x̄

t
i,nρ(E

t
i,n + ȳtiFi,n)) − R

T
− zt + wt,

where Zt represents zt and wt collectively, and the values

{{x̄t
i,n, ∀i, ∀n}, {ȳti , ∀i}} are solved from P1 at t.

P2 : min
∑

t f
t(Zt), (3)

s.t.
∑

t g
t(Zt) ≤ 0, (3a)

Zt ∈ X = {zt, wt|zt ≥ 0, wt ≥ 0, ∀t}.

P2 involves the control variables {zt, wt, ∀t} only, which takes

{{x̄t
i,n, ∀i, ∀n}, {ȳti , ∀i}} as the input at each t. Constraint

(3a) is from Constraint (1c) of P0. Note that in this case (3a)

becomes a linear constraint.

Algorithm Rationale: Our decomposition is motivated by

our idea of containing the algorithmic challenges in different

subproblems and overcoming them separately.

• For P1, we note Eln∼Dn
(ln) + vi,n = El′

i,n
∼D′

i,n
(l′i,n),

where l′i,n ≜ ln+vi,n is a new random variable for each i
and n and informally, the corresponding new distribution

can be written as D ′
i,n = Dn + vi,n. Therefore, we can

actually treat P1 through bandit learning for each single

i, respectively, as Constraints (2a) and (2b) can be readily

further decomposed for each i. What is needed here is to

cautiously leverage the sample of Li,n at each time slot

for l′i,n, while taking care of the switching cost.

• For P2, note that, if the values {{x̄t
i,n, ∀i, ∀n}, {ȳti , ∀i}}

are obtained from P1 at each t, we can then focus on

obtaining {z̄t, w̄t, ∀t} by decomposing P2 into a series

of one-shot problems, denoted as {Pt
2, ∀t}, and treating

them through online learning to overcome the long-term

constraint (3a).

Our algorithms, with their design insights and time complexity

analysis, are elaborated in the next two sections for P1 and P2,

respectively.

B. Model Selection via Switching-Aware Bandit Learning

Unfortunately, P1 for each edge i is not a standard Multi-

Armed Bandit (MAB) problem with the models as the ªarmsº.

Solving it is not straightforward. Yet, we have two insights:

• Insight 1: Unlike exploration vs. exploitation in conven-

tional MAB, switching cost is now embedded whenever

we change from one model to another. To prevent excess

switching cost, we need to explicitly restrict the model-

selection decision changes.



• Insight 2: Even though l′i,n = ln + vi,n and the random

variable ln differs from the random variable Li,n, ∀i as

the latter depends on Mi, we can actually use Lt
i,n+vi,n

as a sample at the time slot t for l′i,n. That is, the random

variable of the arriving data samples, i.e., Mi, does not

matter here, as formally shown in Appendix A.

Simultaneously motivated by our two insights as the above,

for each edge i, we divide the time horizon T into a sequence

of blocks {Bi,k}, where k ≥ 1, with the block length |Bi,k|
representing the number of time slots contained. The key is

that we keep choosing the same model for all the time slots

within each block, and only allow model changes across block

boundaries. We now define Ki as the smallest integer which

satisfies
∑Ki

k=1 |Bi,k| ≥ T , and truncate the last block so that

the cumulative lengths of the first Ki blocks sum up to T
exactly. Then, the total number of model switches on the edge

i can be bounded by Ki, i.e.,
∑

t y
t
i ≤ Ki. By appropriately

setting the block lengths, together with other parameters such

as learning rates, we will be able to upper-bound the regret.

Our Algorithm 1, for each block at each edge, samples a

model at the beginning of the block and maintains this decision

within the block. Line 3 calculates the probabilities to be used

for sampling, which is based on online mirror descent with

Tsallis entropy regularization [29]. ∆ = {pi,k,n, ∀n|pi,k,n ≥
0 and

∑
n pi,k,n = 1} is the probability simplex. Line 4 is the

actual sampling step. We define J t
i as the model selected for

the edge i at the time slot t, and Ji,k as the model selected for

the edge i in the block k. Thus, we have J t
i = Ji,k, ∀t ∈ Bi,k.

Based on this, Lines 5 and 6 update the control decisions.

In Line 7, we observe ci,k,Ji,k
=

∑
t∈Bi,k

(Lt
i,Ji,k

+ vi,Ji,k
),

which is the cumulative inference loss incurred by the se-

lected model Ji,k in the block k. In Line 8, as we do not

observe the complete loss vector ci,k in the bandit setting, we

construct an unbiased estimator ĉi,k via importance sampling

[29]. It is unbiased, due to E[ĉi,k] =
∑

n ĉi,k,npi,k,n =∑
n

1(Ji,k=n)ci,k,n

pi,k,n
pi,k,n =

∑
n 1(Ji,k = n)ci,k,n = E[ci,k].

Finally, the cumulative total loss suffered by each model n
over the blocks is updated in Line 9.

Complexity Analysis: Algorithm 1 takes O(Ki ·(log(1/ϵ)+
4N + logN) + 3T ). In each of the Ki iterations, Line 3

is solvable by existing optimization solvers. For example, it

takes O(log(1/ϵ) + N) to firstly find an ϵ-accurate solution

via the Brent method [53] and then obtain the values of pi,k,n,

∀n ∈ N . Line 4 can be implemented as weighted sampling via

binary search, which takes O(N + logN). It is then obvious

to count in the complexities of Lines 5∼9 to obtain the overall

complexity of Algorithm 1.

C. Carbon Trading via Long-Term-Aware Online Learning

• Insight 3: Our insight for addressing the long-term con-

straint in P2 is to remove that long-term constraint by

absorbing it into the objective via Lagrange relaxation

and then design an online learning (a.k.a. online convex

optimization) algorithm to solve the transformed problem

while upper-bounding the cumulative violation of the

original long-term constraint.

Algorithm 1: Online Model Selection Algorithm, ∀i
Input: Learning rates ηi,1 ≥ ηi,2 ≥ · · · ≥ ηi,Ki

> 0;

block lengths |Bi,1| , |Bi,2| , . . . , |Bi,Ki
|.

1 initialize Ĉi,0(n) = 0, ∀n; x̄t
i,n = 0, ∀n, ∀t;

2 for k = 1, 2, . . . ,Ki do

3 {pi,k,n, ∀n} =

argmin
{pi,k,n,∀n}∈∆

{∑
n

pi,k,nĈi,k−1(n)−
∑
n

4
√
pi,k,n−2pi,k,n

ηi,k
};

4 Select a model as Ji,k using probabilities pi,k,n,∀n;

5 x̄t
i,Ji,k

= 1, J t
i = Ji,k, ∀t ∈ Bi,k;

6 ȳti =

{
1, if J t

i ̸= J t−1
i

0, if J t
i = J t−1

i

, ∀t ∈ Bi,k;

7 Observe ci,k,Ji,k
=

∑
t∈Bi,k

(Lt
i,Ji,k

+ vi,Ji,k
);

8 ĉi,k,n =

{ ci,k,n

pi,k,n
, if Ji,k = n

0, if Ji,k ̸= n
, ∀n;

9 Ĉi,k(n) = Ĉi,k−1(n) + ĉi,k,n, ∀n;

Algorithm 2: Online Carbon Trading Algorithm

Input: Initial decision Z̄
0
; λ1 = 0; step sizes γ1, γ2.

1 for t = 1, 2, . . . , T do

2 Obtain x̄
t, ȳt produced by Algorithm 1;

3 Update Z̄
t

according to (4);

4 Given x̄
t, ȳt, observe f t(Z̄

t
) and gt(Z̄

t
);

5 Update λt+1 according to (5);

Our Algorithm 2 proceeds as follows. We firstly note that

solving P2 is equivalent to solving its convex-concave version:

min
Zt∈X

max
λ

∑
tLt(Zt, λ) =

∑
t(f

t(Zt) + λgt(Zt)),

where λ is the Lagrange multiplier. Using this, we can solve

P2 in an online primal-dual manner. That is, at each time slot

t, we obtain Z̄
t

as the minimizer of the following problem.

P
t
2 : min

Zt∈X̄
∇f t−1(Z̄

t−1
)(Zt − Z̄

t−1
) + λtgt−1(Zt)

+ ∥Zt−Z̄
t−1∥2

2γ2
, (4)

Given Z̄
t
, we prepare the dual variable for the next time slot

t+ 1:

λt+1 = [λt + γ1∇λLt(Z̄
t
, λt)]+ = [λt + γ1g

t(Z̄
t
)]+. (5)

γ1 > 0 and γ2 > 0 are predefined step sizes; ∇f t−1(Z̄
t−1

) is

the gradient of f t−1(·) at Z̄
t−1

; ∇λLt(Z̄
t
, λt) is the gradient

of Lt(Z̄
t
, λ) at λt; and [·]+ = max {·, 0}.

We highlight that, to obtain Z̄
t

at each t, we only need the

inputs until (and even excluding) t, which is advantageous as

no future information beyond t is required. In fact, in such

alternate descent-ascent steps, while the dual ascent step is

standard, the primal descent step is not; in contrast, the primal

descent step directly uses and thus penalizes the constraint

function, rather than its first-order approximation, while also

adopting a regularization and proximal term. We will show

later that we obtain provable performance using this approach.



Complexity Analysis: Algorithm 2 takes O(TA2 log (1/ϵ)+
T ). The key is to solve P

t
2 at each t ∈ T , which can be done

through any standard convex optimization solver. For instance,

the interior-point method obtains an ϵ-accurate solution in

O(A2 log (1/ϵ)), where A = 2 is the number of the decision

variables in our case [54].

IV. THEORETICAL ANALYSIS

By Theorem 1, we define and characterize the regret plus

the cumulative switching cost for each edge in the problem

P1, where the regret refers to the gap between the expectation

of the inference loss and the model hosting cost incurred by

our approach and that incurred by the single best model at

hindsight. The regret turns out to be sub-linear, i.e., its growth

is even slower than the progression of time. This is a good

result in general. Our analysis aligns with lots of existing work

in the sense that the switching cost is not placed into the

regret; having it in the regret for further analysis could be of

independent interest.

Theorem 1 Define the regret for P1 with regard to the single

best model n∗
i for the edge i as RegT1,i = E[

∑
t(lJt

i
+ vi,Jt

i
)]−

E[
∑

t(ln∗
i
+ vi,n∗

i
)], where n∗

i ∈ argminn E[
∑

t(ln + vi,n)].

Then, with ηi,k = 2
di,k+1

√
2
k

as the learning rates and

|Bi,k| = max {⌈di,k⌉ , 1} as the block lengths, where di,k =
3ui

2

√
k
N

, and also ∆i,n = E[ln + vi,n]−minn E[ln + vi,n] as

the suboptimality gap of the model n for the edge i, we have

the following result from Algorithm 1:

RegT1,i +
∑

t uiȳ
t
i ≤ O((uiN)

2
3T

1
3 + u2

i + lnT ) · ∑
n ̸=n∗

i

1
∆i,n

Proof. See Appendix A. □

By Theorem 2, we define and characterize the regret and the

fit for the problem P2. While the regret captures the difference

between the objective value incurred by our approach and the

sum of the series of one-shot optimums, the fit reflects the

violation of Constraint (3a). Recall that (3a) has been absorbed

into the objective in our approach, so it is important to quantify

the violation of this constraint. Our analysis demonstrates that

both the regret and the fit grow only sub-linearly.

Theorem 2 The regret and the fit for P2 satisfy

RegT2 :=
∑T

t=1f
t(Z̄

t
)−∑T

t=1f
t(Z̄

t∗
) ≤ O(T

2
3 ),

FitT := ∥[∑T

t=1g
t(Z̄

t
)]+∥ ≤ O(T

2
3 ),

where for each t, Z̄
t

represents the output of Algorithm 2;

Z̄
t∗ ∈ argminZ∈X tf t(Z); and X t := {Z|gt(Z) ≤ 0; zt ≥

0, wt ≥ 0}, ∀t.
Proof. See Appendix B. □

By Theorem 3, we analyze the regret for the original

problem P0. We note that the proof here is also non-trivial.

Directly adding up the results of Theorems 1 and 2 is incorrect,

as their corresponding optimums are in different senses. In

fact, proving Theorem 3 requires the careful decomposition

of the total regret into multiple components, with constructed

intermediate terms to assist and complete the derivations.

Theorem 3 The regret for P0 with respect to T via jointly

using Algorithms 1 and 2 is

P − P∗ ≤ O(T
1
3 + lnT ) +O(T

2
3 ) + Ω1,

where Ω1 is a constant independent of T .

Proof. See Appendix C. □

V. EXPERIMENTAL STUDY

A. Experimental Settings

Datasets and Models: We adopt the MNIST [39] and the

CIFAR-10 [40] datasets. We consider three types of models

for MNIST: (i) the Convolutional Neural Network (CNN) with

two 3×3 convolutional layers (32 or 64 channels) with ReLU

activation, each of them followed by a 2×2 max pooling layer,

a fully-connected layer, and a softmax output layer; (ii) the

LeNet-5 [46]; and (iii) the Multilayer Perceptron (MLP) with

two fully-connected layers. We consider three types of models

for CIFAR-10: (i) the CNN with two 3×3 convolutional layers

(64 or 128 channels), with other settings the same as that for

the MNIST data; (ii) the LeNet-5; and (iii) the MobileNet V1

[47]. We consider 2 models for each type and thus 6 models for

each dataset. We easily obtain the actual size of each model.

Cloud, Edge, and Inference Workload: We envisage that

the cloud and the edges are deployed at the real-world cellular

base stations in Australia [42]. We choose the first site in this

dataset, i.e., a base station in Northern Territory, as the cloud

location, and choose 10∼50 other sites as the edge locations.

We use the real-world geographical distance to estimate the

network delay. We select the top 10∼50 stations with the high-

est passenger counts of London’s 268 underground stations

[41], and use such dynamic passenger counts to represent the

inference workload fluctuations for each edge. The passenger

data are measured for every 15 minutes on a Thursday and a

Friday in 2020. Thus, we consider a two-day period of 160

time slots in our experiments. For each edge, we randomly

sample 8000 data points from the test data of our two datasets

and use those as the incoming data streams, respectively.

Carbon and Energy: We use the computation latency in

[25, 150] ms [43], [55]. The buying price of carbon allowances

is randomly taken from the prices of the EU Carbon Permits

[8] from March 2023 to March 2024, i.e., [5.9, 10.9] cent/kg,

and the selling price of carbon allowances is set to 90% of the

buying price [56]. The initial cap of carbon emissions is set

to 500. The carbon emission rate per unit energy consumption

is 500 g/kWh [44]. The energy consumed for conducting the

inference on a single data sample is [6, 10]×10−8 kWh [45],

[55]. The energy consumed for sending one unit size of the

model from the cloud to the edge is 1.02× 10−16 kWh [57].

Algorithms: We compare our proposed approach in this pa-

per to multiple combinations of different existing algorithms.

For model selection, we consider the following methods:

(i) Random, where each edge selects a model randomly at
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each time slot; (ii) Greedy, where each edge selects the

model with the lowest energy consumption at each time slot;

(iii) Tsallis-INF, a state-of-the-art bandit algorithm [29],

which does not consider switching cost; and (iv) UCB2, a state-

of-the-art bandit algorithm [30], [48], which upper-bounds the

switching cost.

For carbon trading, we consider the following methods: (i)

Random, where the quantity of carbon allowances bought and

sold at each time slot is random; (ii) Threshold, where, at

each t, a fixed quantity is bought when ct is below some value

and a fixed quantity is sold when rt is above some value; and

(iii) Lyapunov, a state-of-the-art method that solves time-

averaged stochastic optimizations using virtual queues and

drift-plus-penalty mechanisms [22]±[24].

We combine these algorithms for model selection and for

carbon trading, and denote all the combined approaches as

Ran-Ran, Ran-TH, Ran-LY, Greedy-Ran, Greedy-TH,

Greedy-LY, TINF-Ran, TINF-TH, TINF-LY, UCB-Ran,

UCB-TH, and UCB-LY, respectively. For visualization clarity,

we may not show all these algorithms in the result figures.

We also consider the offline optimum, written as Offline.

Offline chooses the model with the minimum expectation

of the inference loss in terms of the posterior average for each

edge, where we use the sample mean of the inference loss

obtained from the entire test dataset as an approximation to the

expectation of the unknown underlying distribution. Keeping

using the best model on each edge, Offline solves carbon

trading by the Gurobi [58] solver, assuming that all the inputs

in the entire time horizon are known in advance beforehand.

B. Experimental Results

All our experimental results represent the average of 10 runs

due to the randomness in our algorithms.

Fig. 3 illustrates the normalized cumulative total cost in

real time for different algorithms with 10 edges. Our proposed

approach exhibits a slower trend compared to all others, and

is the closest to the offline optimum.

Fig. 4 presents the normalized total cost of the different

algorithms. As the system scales up in terms of the number of

the edges, our approach always incurs the lowest cost. Com-

pared to Ran-Ran, Ran-LY, Greedy-Ran, Greedy-LY,

TINF-Ran, TINF-LY, UCB-Ran, and UCB-LY, our ap-

proach reduces the total cost on average by 55%, 46%, 41%,

21%, 55%, 45%, 45% and 30%, respectively.

Fig. 5 visualizes the total cost as the weight associated to

switching cost increases. While the total cost of the other al-

gorithms increases significantly, the total cost of our approach

remains almost unchanged. This is because as the weight of

switching cost grows, the block length of our algorithm also

increases, reducing the number of switches. Greedy ranks

just below ours, because it consistently selects the model

with the lowest energy consumption, resulting in minimal

switching. On each edge, Offline incurs switching cost at

the initial time slot and no switching cost thereafter.

Fig. 6 depicts the impact of the carbon emission rate on the

total cost. As such rate increases, the carbon emission rises,

leading to the purchase of more carbon allowances to achieve

carbon neutrality and thus increasing the total cost. Compared

to the other algorithms except Offline, our approach still

has the minimum total cost. As the carbon emission rate grows,

the total cost of our algorithm is lower than that of Offline.

This is because Offline fully satisfies the carbon neutrality

constraint without any violation, while our algorithm allows

instantaneous violations and tries to satisfy it in the long run.

Fig. 7 demonstrates the impact of the initial carbon cap on

the total cost. As the cap increases, the quantity of carbon

allowances that need to be purchased decreases, leading to

a reduction in the total cost of our approach, Offline, and

UCB-LY, while the total cost of ours remains the lowest except

for Offline. The total costs of UCB-Ran and UCB-TH do

not decrease with the increasing cap as their carbon trading

decisions are not related to the cap.

Fig. 8 shows the relationship between the number of model

selections and the corresponding expected loss. This figure

uses only one edge randomly, and records the number of times

each model is selected for it. Offline selects the model with

the minimum loss, while Greedy selects the model with the

lowest energy. In our approach, as the expected loss decreases,
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the frequency of selecting the corresponding model increases.

Fig. 9 shows the relationship between the carbon allowance

trading volume and the inference workload of data streams.

The former refers to the normalized net value of purchase.

The net purchase of our approach varies with the workload,

because as workload increases, the carbon emissions incurred

by inference increase, resulting in the purchase of more

allowances. Yet, the net purchase of UCB-Ran and UCB-TH

is only related to the trading price and does not consider

workload. This figure also compares the normalized unit cost

of carbon purchase, and our approach outperforms all others.

Fig. 10 and 11 exhibit the regret and the fit for P0 incurred

by different algorithms as the length of the time horizon varies.

Our approach outperforms others in regret. Although the fit of

ours starts with a non-zero value initially, it quickly decreases

to zero. This figure also confirms our theoretical results that

the regret and the fit grow only sub-linearly with time.

Fig. 12 and 13 evaluate the inference accuracy at each time

slot over the entire streams of the MNIST and the CIFAR-

10 data, respectively. The accuracy of Greedy-Ran is the

worst, because it only considers the energy consumption of

models, without other factors, when making control decisions.

UCB-Ran and TINF-Ran perform similarly to our approach,

while ours is closer to Offline.

Fig. 14 depicts the execution time per time slot for each

of our proposed algorithms on a commodity computer with a

3.2-GHz AMD Ryzen 7 5800H CPU and 16-GB memory. As

the number of edges reaches 50, Algorithm 1 finishes in 61.32

seconds, and Algorithm 2 finishes in 0.21 seconds, performing

very well compared to the single time slot of 15 minutes.

VI. RELATED WORK

We discuss related work in different categories, and for each

category, we collectively highlight the shortcomings.

Cloud/Edge Model Selection and Inference: Bai et. al.

[15] constructed a Deep Neural Network (DNN) model en-

sembles based on the features of inference tasks. Zhao et.

al. [16] jointly considered configuration adaptation, model

selection, and resource provisioning to achieve scalable edge

DNN inference serving. Lu et. al. [17] utilized end users’

quality of experience feedback to guide DNN selections. Li et.

al. [18] and Lim et. al. [19] studied DNN model partitioning

and collaborative inference in mobile networks. Jin et. al. [20]

minimized the model accuracy loss at the edge via appropriate

model placements considering inference query queues.

These works explore model selection and inference in cloud-

edge scenarios, but only consider inference loss or system cost

often upon concrete data samples, neglecting carbon emissions

generated during the inference processes. None of them have

considered the stochasticity of online data streams.

AI/ML Carbon Footprint: Su et. al. [21] minimized the

inference accuracy loss under the long-term carbon emission

cap. Ma et. al. [22] considered the carbon emissions gener-

ated by cloud-edge inference and achieved carbon neutrality

through purchasing carbon credits. Bian et. al. [23] considered

the carbon footprint generated by training AI models and

made data center selection decisions within a carbon footprint

budget. Yang et. al. [24] proposed a carbon-intensity-based

scheduling policy, which reduced the cumulative carbon emis-

sions of AI model training tasks. Zhang et. al. [25] utilized

multi-agent reinforcement learning to reduce carbon emissions

from AI-Generated Content model training.

This group of research either focuses on reducing carbon

footprint or emissions of AI/ML services without considering

carbon neutrality, or neglects the carbon market with dynamic

carbon allowance prices and online carbon trading decisions.

Data stochasticity is not typically incorporated, either.

Bandit Learning with Switching Cost: Steiger et. al.

[11] introduced a block-based algorithm to address the bandit

problem with arm selection constraints and switching costs in

the cloud-edge scenario. Shi et. al. [12] considered a bandit

learning problem regarding model selection with the switching

cost of model downloading in an edge AI setting. Huang et.

al. [26] solved an adversarial bandit problem with switching

cost via a block-based algorithm. Appavoo et. al. [27] utilized

the bandit techniques to solve the wireless network selection

problem with network switching costs. Zhu et. al. [28] formu-

lated the task offloading problem as a delayed bandit feedback

problem with the cost of switching the offloading target.

None of these studies have modeled the specific multi-model

edge AI inference scenario upon stochastic data streams, not

to mention the carbon footprint or neutrality. Bandit learning

has not been employed with online learning to jointly solve

long-term stochastic optimization as in our work.

VII. CONCLUSION AND FUTURE WORK

Edge AI inference is an indispensable component of edge

AI and also a significant contributor to the carbon footprint

of the latter. While it is undoubtedly crucial to make edge

AI inference carbon-neutral, the data stochasticity, intertwined

with the model switching cost, and the interaction with the

carbon market through dynamic trading of carbon allowances

have been unfortunately overlooked so far. This paper bridges

the gap. We have conducted a novel modeling and algorithmic



study of this problem, featuring the fusion of bandit learning

and online learning techniques for long-term stochastic opti-

mization, and have covered all aspects of the algorithm design,

the formal analysis, and the empirical experiments.

Several exciting future directions could emerge from this

work. First, while our current approach treats carbon allowance

prices as exogenous, integrating price prediction models could

further optimize trading strategies. Second, we plan to extend

our framework to support Large Language Models (LLMs) at

the edge, addressing their high computational demands and

memory footprint via quantization-aware carbon or energy

control. Finally, deploying our system in real-world cloud-edge

environments would validate its robustness and scalability.
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APPENDIX

A. Proof of Theorem 1

We structure this proof into three steps as follows.

Step I: We first define

Φk(C)=max
p∈∆

{⟨p, C⟩+∑
n

4
√
pi,k,n−2pi,k,n

ηi,k
}.

Note that the probabilities pi,k that are used to draw the model

Ji,k for the block Bk satisfy pi,k = ∇Φk(−C̃i,k−1). Thus, the

block-based regret regarding Li,n when Lt
i,n is observed can

be written as

RT
i = E[

∑Ki

k=1 ci,k,Ji,k
]−minn E[

∑Ki

k=1 ci,k,n]

= E[
∑Ki

k=1 ci,k,Ji,k
+Φk(−C̃i,k)− Φk(−C̃i,k−1)]

+E[
∑Ki

k=1 Φk(−C̃i,k−1)− Φk(−C̃i,k)− ci,k,n∗
i
],

where the first term is the stability term; the second term is

the penalty term; and n∗
i is the best arm for the edge i.

Then, we introduce a bound of the cumulative switching

cost for any fixed n∗
i . There is always a switch at the round

1. For subsequent rounds, when there is a switch at round k,

at least one of Ji,k−1 or Ji,k is not equal to n∗
i , where Ji,k is

the index of the model downloaded by the edge i at the block

k. We have

P(Ji,k−1 ̸= Ji,k) ≤
∑

n ̸=n∗
i
P(Ji,k−1 = n) + P(Ji,k = n),

and the cumulative switching cost for the edge i satisfies

∑
t uiȳ

t
i = ui +

∑Ki

k=2 uiP(Ji,k−1 ̸= Ji,k)

≤ ui +
∑Ki

k=2 ui(
∑

n ̸=n∗
i
P(Ji,k−1 = n) + P(Ji,k = n))

≤ ui +
∑Ki

k=1

∑
n ̸=n∗

i
2uiP(Ji,k = n)

= ui +
∑Ki

k=1

∑
n ̸=n∗

i
2uiE[pi,k,n].

Combining the results mentioned above, we can apply such

results to blocks. We first calculate an upper bound on the

number of blocks Ki. Let K∗
i = N

1
3 (T/ui)

2
3 . Observe that

∑⌊K∗
i ⌋+1

k=1 |Bi,k| ≥
∑⌊K∗

i ⌋+1
k=1

3ui

√
k

2
√
N

≥
∫ ⌊K∗

i ⌋+1

0
3ui

√
k

2
√
N

≥
∫K∗

i

0
3ui

√
k

2
√
N

= ui√
N
(K∗

i )
3
2 ≥ T.

Thus, we can upper-bound Ki by N
1
3 (T/ui)

2
3 + 1. Then we

bound ηi,k|Bi,k|2 for all k ≤ Ki as

ηi,k

2 |Bi,k|2 ≤
√
2√
k
( 3ui

√
k

2
√
N

+ 1) ≤ 3ui√
2N

+
√
2√
k
.

Regarding the stability term, we use Lemma 1 in [59] and

the previous result to bound
ηi,k

2 |Bi,k|2. Then we see that the

stability term is upper-bounded by

∑Ki

k=1 (
3
√
2ui

2
√
N

+
√
2√
k
)
∑

n ̸=n∗
i
(
√
E[pi,k,n] + 2.5E[pi,k,n])

+
∑Ki,0

k=1 ( 3
√
2ui

2
√
N

+
√
2√
k
),

where Ki,0 = 128 for k ≥ Ki,0, ηi,k |Bi,k| ≤ 1
4 .

Regarding the penalty term, we first bound the difference

between the inverses of two consecutive learning rates as

η−1
i,k − η−1

i,k−1

= ( 3ui

√
k

2
√
N

+ 1)
√
k

2
√
2
− ( 3ui

√
k−1

2
√
N

+ 1)
√
k−1

2
√
2

= 3
√
2ui

8
√
N

+
√
k−

√
k−1

2
√
2

≤ 3
√
2ui

8
√
N

+
√
2

4
√
k
.

Then we use Lemma 2 in [59] to bound the penalty term as

∑Ki

k=1 (
3
√
2ui

2
√
N

+
√
2√
k
)
∑

n ̸=n∗
i
(
√

E[pi,k,n]− 1
2E[pi,k,n]) + 1.

Summing up these two bounds of the stability term and

the penalty term, and noting that for all i, k, n, E[pi,k,n] ≤√
E[pi,k,n], we have

RT
i ≤ ∑Ki

k=1 ((
6
√
2u√
N

+ 4
√
2√
k
)
∑

n ̸=n∗
i
(
√
E[pi,k,n]))

+ 3
√
2ui

2
√
N

Ki,0 + 2
√
2Ki,0 + 1.

Then we use the self-bounding technique [29], which states

that if L ≤ R ≤ U , then R ≤ 2U − L. For the lower bound

L, we use the following identity for the regret as

RT
i =

∑Ki

k=1 |Bi,k|
∑

n ̸=n∗
i
∆i,nE [pi,k,n],

where Bi,K is truncated, so that |B1| + . . . + |Bi,K | = T .

Using the previous expression for the upper bound U , we get

RT
i ≤ ∑Ki

k=1 (
12

√
2ui√
N

+ 8
√
2√
k
)
∑

n ̸=n∗
i
(
√

E[pi,k,n])

−∑Ki

k=1 |Bi,k|
∑

n ̸=n∗
i
∆i,nE[pi,k,n] +

544ui√
N

+ 66 = C1.

Step II: With previous results, we know RT
i ≤ C1. Since

the first term of
∑

t E[L
t
i,Jt

i

+ vi,Jt
i
]− T · E[Lt

i,n∗
i
+ vi,n∗

i
]

and RT
i are both solved by our Algorithm 1 and the second

term selects the best arm n∗
i for all time slots, we have

∑
t E[L

t
i,Jt

i

+ vi,Jt
i
]− T · E[Lt

i,n∗
i
+ vi,n∗

i
] = RT

i ≤ C1.

Step III: Note that

E( 1
D

∑D

i=1 Xi |D = d ) = E( 1
d

∑d

i=1 Xi) =
1
d

∑d

i=1 E(Xi) = µ



E( 1
D

∑D

i=1 Xi) = E(E( 1
D

∑D

i=1 Xi |D )) = E(µ) = E(X),

where Xi, ∀i all have the mean µ, and D is a random integer,

with D independent of Xi. We know Li,Jt
i
= 1

Mi

∑Mi

ν=1 lJt
i
,ν ,

and then we have

E[Li,Jt
i
] = E[ 1

Mi

∑Mi

ν=1 lJt
i
,ν ] = E[lJt

i
],

E[Li,n∗
i
] = E[ 1

Mi

∑Mi

ν=1 ln∗
i
,ν ] = E[ln∗

i
].

The regret of P1 for the edge i can be obtained as

RegT1,i =
∑

t E[lJt
i
+ vi,Jt

i
]− T · E[ln∗

i
+ vi,n∗

i
]

=
∑

t E[Li,Jt
i
+ vi,Jt

i
]− T · E[Li,n∗

i
+ vi,n∗

i
] ≤ C1.

Considering
∑

t uiȳ
t
i and using the techniques in [59], we can

optimize the bound and obtain the result in Theorem 1.

B. Proof of Theorem 2

Our theorem relies on a group of common assumptions [32],

[33] that are widely adopted and easily satisfied: (1) The func-

tion f t(Z) has bounded gradients on X , i.e., ∥∇f t(Z)∥ ≤ F ,

∀Z ∈ X ; and gt(Z) is bounded on X , i.e., ∥gt(Z)∥ ≤ G, ∀Z ∈
X , ∀t; (2) The radius of the convex feasible set X̄ is bounded,

i.e., ∥Z1 − Z2∥ ≤ R, ∀Z1,Z2 ∈ X ; (3) There exists a constant

δ > 0 and an interior point Ẑ ∈ X , such that gt(Ẑ
t
) ≤

−δ1, ∀t; (4) The slack constant δ satisfies δ > V (g), where

the point-wise maximal variation of the consecutive constraints

is denoted as V (g) = maxtmaxZ∈X ∥[gt+1(Z)− gt(Z)]
+∥.

We bound the regret and the fit of P2 [32]. By setting proper

step sizes, we express these bounds as sub-linear functions of

T . Setting γ = η = max{
√

V ({x̃t∗}T
t=1)

T
,
√

V ({gt}T
t=1)

T
}, we have

RegT = O(max{√V ({x̃t∗}T
t=1)T ,

√
V ({gt}T

t=1)T),

FitT ≤ ∥λ∥
η

= O(max{ T
V ({x̃t∗}T

t=1)
, T
V ({gt}T

t=1)
}).

Afterwards, if we further set γ = η = O(T− 1
3 ), we have

RegT = O(max{V ({x̃t∗}Tt=1)T
1
3 , V ({gt}Tt=1)T

1
3 , T

2
3 }) and

FitT=O(T
2
3 ). The sub-linear regret and the sub-linear fit of

O(T
2
3 ) can be achieved if we have V ({x̃t∗}Tt=1) ∈ o(T

2
3 )

and V ({gt}Tt=1) ∈ o(T
2
3 ).

C. Proof of Theorem 3

The regret of P0 is regret = P−P∗ = P(x̄t
i,n, ȳ

t
i , z̄

t, w̄t)−
P(xt∗

i,n, y
t∗
i , zt∗, wt∗), where x̄t

i,n, ȳ
t
i , z̄

t, w̄t are decisions ob-

tained from our proposed algorithms and xt∗
i,n, y

t∗
i , zt∗, wt∗ are

the optimal decisions of P0. The regret can be split as

regret = P(x̄t
i,n, ȳ

t
i , z̄

t, w̄t)− P(x̄t
i,n, ȳ

t
i , ẑ

t∗, ŵt∗)

+ P(x̄t
i,n, ȳ

t
i , ẑ

t∗, ŵt∗)− P(xt∗
i,n, y

t∗
i , ẑt∗, ŵt∗)

+ P(xt∗
i,n, y

t∗
i , ẑt∗, ŵt∗)− P(xt∗

i,n, y
t∗
i , zt∗, wt∗),

where ẑt∗, ŵt∗ are the optimums given x̄t
i,n, ȳ

t
i as inputs.

The first two terms in regret imply the difference on the

objective under various zt, wt, which is exactly the objective

of our subproblem P2, i.e.,
∑

t f
t(zt, wt)−∑

t f
t∗ ≤ O(T

2
3 ).

Then, we have

P(x̄t
i,n, ȳ

t
i , z̄

t, w̄t)− P(x̄t
i,n, ȳ

t
i , ẑ

t∗, ŵt∗) ≤ O(T
2
3 ).

According to Theorem 1, we have

RegT1 +
∑

t

∑
i uiȳ

t
i

=
∑
t,i,n

(x̄t
i,n − x̃t∗

i,n)(Eln∼Dn
(ln) + vi,n) +

∑
t,i

ui(ȳ
t
i − ỹt∗i )

= P(x̄t
i,n, ȳ

t
i)− P(x̃t∗

i,n, ỹ
t∗
i ) ≤ O(T

1
3 + lnT ),

where x̃t∗
i,n, ỹ

t∗
i are the optimal decisions of P1. We know

x̃t∗
i,n = x̃∗

i,n and yt∗i = ỹt∗i = 0 for all t. Further, we know xt∗
i,n

is the optimum of P0, which is the decision made subject to

Constraint (1c), while x̃t∗
i,n is the decision made in the entire

feasible region. Thus, it is possible to find x̃t∗
i,n such that

∑
t,i,n

x̃t∗
i,n(Eln∼Dn

(ln) + vi,n) ≤
∑
t,i,n

xt∗
i,n(Eln∼Dn

(ln) + vi,n),

and thus make P(x̄t
i,n, ȳ

t
i) − P(xt∗

i,n, y
t∗
i ) ≤ P(x̄t

i,n, ȳ
t
i) −

P(x̃t∗
i,n, ỹ

t∗
i ) hold. Then, the next two terms in regret satisfy

P(x̄t
i,n, ȳ

t
i , ẑ

t∗, ŵt∗)− P(xt∗
i,n, y

t∗
i , ẑt∗, ŵt∗)

≤ P(x̄t
i,n, ȳ

t
i , ẑ

t∗, ŵt∗)− P(x̃t∗
i,n, ỹ

t∗
i , ẑt∗, ŵt∗)

≤ O(T
1
3 + lnT ).

For the last two terms in regret, we highlight that we denote

P(xt∗
i,n, y

t∗
i , ẑt∗, ŵt∗) − P(xt∗

i,n, y
t∗
i , zt∗, wt∗) = Ω1, where

Ω1 is a constant. When the input data are given, i.e., for a

specific instance of our problem, x̄t
i,n and ȳti are fixed values,

which leads to ẑt∗ and ŵt∗ being fixed values. The difference

between P(ẑt∗, ŵt∗) and P(zt∗, wt∗) is thus a constant. If we

take the expectation over multiple repetitions, the result will

still be a constant. Combining all of the above, we have

regret ≤ O(T
2
3 ) +O(T

1
3 + lnT ) + Ω1.
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