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Abstract—Hybrid cloud computing paradigm has recently be
widely advocated, where Software-as-a-Service (SaaS) providers
can extend their local services into the public clouds seamlessly.
In this way, dynamic user request workload to a SaaS can be
elegantly handled with the rented computing capacity in public
cloud. However, although a hybrid cloud may save cost compared
with the private cloud, it still introduces considerable renting cost
and communication cost. How to optimize such an operational
cost becomes one major concern for the SaaS providers to
adopt such a hybrid cloud computing paradigm. However, this
critical problem remains unanswered in the current state of
the art. In this paper, we focus on optimizing the operational
cost for the hybrid cloud model by theoretically analyzing
the problem with a Lyapunov optimization framework, and
accordingly providing an online dynamic provision algorithm.
In this way, our approach can address the real-world challenges
where no a priori information of public cloud renting prices is
available and the future probability distribution of user requests
is unknown. We then conduct experimental study based on a set
of real-world data, and the results confirm that our algorithm
can work well in reducing the cost.

I. INTRODUCTION

Cloud computing has surged into popularity in the IT

industry as it can provide a cost-effective elastic solution to

computing resource provisioning. Recently, a hybrid cloud

paradigm is widely advocated by the industry practitioners,

where a Software-as-a-Service (SaaS) provider, although own-

ing a small local data center, can extend its services into

a public Infrastructure-as-a-Service (IaaS) cloud. With such

a paradigm, a SaaS provider can scale up and down its

computing capacity by renting different numbers of virtual

machines (VMs) in the public cloud according to the dynamic

user demand instead of relying only on the fixed capacity

of local data center. This can handle the dynamics of user

requests elegantly and cost-effectively.

More and more leading IaaS cloud solutions (e.g., Amazon

EC2[1] and VMWare vCloud [2]) are now aiming at such a

hybrid cloud paradigm. A SaaS provider can now quickly and

seamlessly adopt such a computing paradigm with a set of

handy tools from the IaaS providers.

But charming as it looks, the cost-effectiveness of such a

paradigm highly depends on how well the SaaS provider can

optimize the cost caused by renting VMs from the public IaaS

cloud. Acquiring public IaaS computing capacity may actually

cause a considerable cost. Recent years have also witnessed

a lot of cases where many enterprises (e.g. Zynga and Uber)

even consider to shift much of their operations off from the

IaaS clouds back to their own data centers, because of the high

expenditure of renting VMs [3][4]. Unfortunately, we still lack

a good understanding of such a cost optimization problem,

not to mention that there are no tools available for the cost-

down task. This is an urgent call for attention to the research

community.

Minimizing the cost of hybrid cloud operation is actually a

daunting task. Most importantly, the end users will be driven

away if a SaaS cannot meet the Service Level Agreement

(SLA). In other words, a SaaS provider has to maintain its

computing capacity while limiting the number of the VMs

to reduce the renting cost at the same time. But the user

requests are highly dynamic in nature, which cannot be known

and predicted in advance. Moreover, the communication cost

between the local servers and the public IaaS cloud cannot

be ignored, which unfortunately inherits the dynamics if the

number of the renting VMs are dynamically tuned. Finally, the

prices of VMs in the public IaaS cloud are typically varying

and unpredictable [1]. All these dynamic factors can have a

great impact on the cost, and hence bring great challenges to

cost minimization.

However, existing approaches (e.g., [5] and [6]) on deciding

the cost-efficient computing capacity of the cloud generally

requires a priori knowledge of the user demand and the VM

prices, or an accurate prediction. They also do not consider the

dynamics of user requests. As a result, they are not specifically

tailored for optimizing the cost of hybrid cloud operation.

This work, in contrast, aims at solving the above real-

world challenges. Via a comprehensive theoretical analysis,

we tackle the cost minimization problem with a fast online

algorithm for dynamic cloud resource provisioning in hybrid

clouds. Our analysis assumes no a priori knowledge on the

future user requests and the VM prices, and also takes the

communication cost into considerations. Via modeling the

problem with Lyapunov optimization framework [7], we can

approach the minimum time average cost by anatomizing

it into three sub-problems, each of which can be solved

efficiently. We further show that the cost can be minimized

by exploiting the trade-off between the delay of handling a

request and the cost. We conduct our experimental study with

real-world data from Amazon EC2. The results verify that we

can achieve a satisfactory optimization results in real-world

scenarios.
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The rest of this paper is organized as follows. Section II

introduces the system model and formulate the cost mini-

mization problem. Section III analyzes problem and models

it with the Lyapunov optimization framework which care-

fully addresses the real-world challenges. An Online Dynamic

Provision Algorithm (ODPA) is then proposed to solve the

problem. We examine the theoretical properties of the ODPA

in Section IV and provide our our experimental results with

real-world data sets in Section V. Section VI discusses the

related work and the paper is concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider an SaaS provider operates with a small local

data center (or local servers in our following discussions) and

it can extend its service capacity via renting VMs of a public

IaaS cloud. The public IaaS cloud will in general provision

three types of VM services for the SaaS provider. The first

is the reserved VM service, which is long-term service with

a fixed VM numbers. We let T denote the minimum allowed

renting period of such services. T is typically several days

or months [1][8]. The second is the on-demand VM service,

where the number of VMs can be set instantaneously by the

SaaS provider. The last is the on-spot VM services, which the

SaaS provider can bid for. The price of the reserved service per

unit is typically the lowest. The on-demand one is often the

most expensive but it is charged in a pay-as-you-go fashion.

The price of the on-spot one is dynamic according to the

user bid (reflecting the user demand). The above is a typical

IaaS provision scheme for current public IaaS cloud (e.g., the

Amazon EC2).

We use the symbols R, D, and S to denote the numbers of

VMs of the above three services an SaaS provider will rent

respectively. Also let L denote the numbers of the VMs in the

local servers the SaaS provider owns.

Since the allowed minimum renting period of reserved VMs

is T , we consider the SaaS provider will divide its operation

period into a sequence of time intervals with length T and

determine the number of the reserved VMs at the beginning

of each interval. We name such a decision interval with length

T a coarse-grained decision interval. Each coarse-grained

interval can be further divided into many small decision slots

with length T ′, where the numbers of on-demand VMs and

on-spot VMs can be reset at the beginning of each T ′ interval

(without loss of generality, T=mT ′ where m is a natural

number. We name such a decision slots with length T ′ a fine-
grained decision time slot. In this way, how to determine the

numbers of the above four types of VMs for the SaaS provider

can be divided into a two-scale decision process.

B. User requests and SaaS service model

Consider the users access the SaaS provider with an arrival

rate λ(τ), where τ is a natural number denoting each of the

fine-grained decision time slot. Note that λ(τ) can bear an

arbitrary distribution in realistic scenarios.

The user requests to the SaaS provider usually have dead-

lines, allowing the request to wait for a maximum period of

time dmax before it is scheduled. Consider the requests can

be stored in a queue denoted by Q(τ) in each fine-grained

decision time slot. In each find-grained interval, the user

requests in the queue are served with the rate μ(τ). Therefore,

the queue has the following update equation:

Q(τ + 1) = max{Q(τ)− μ(τ), 0}+ λ(τ). (1)

To serve the user requests, the SaaS provider allocates each

request a certain number of VMs according to the request

requirement, consisting of those in the local servers and those

in the public IaaS cloud. The service rate in each time slot τ
in a coarse-grained decision interval is :

μ(τ) = (L(τ) +R(τ) +D(τ) + S(τ)) · c, (2)

where L(τ), R(τ), D(τ), and S(τ) denote the number of the

local server VMs, reserved VMs, on-demand VMs, and on-

spot VMs in time slot τ , respectively. c is the service capacity

of a single VM, i.e., the number of requests that can be served

by a VM per time slot. Without loss of generality, we assume

that VMs are homogenous in terms of service capacity.

C. Cost model

We consider that the cost of the SaaS provider includes

running the local servers, purchasing three types of VMs, and

the communication cost between the VMs across the cloud

and local servers, as follows.

Cost(τ) = φ+
R(t)

T
Pr(t)+D(τ)Pd(τ)+S(τ)Ps(τ)+M(τ),

(3)

where φ is the cost of running the local servers, which is

a constant without loss of generality, and M(τ) denotes the

communication cost between the VMs in the local servers and

those in the cloud. We consider the real-world case that the

allocated VMs may communicate with each other. In practice,

the communications among the local servers or in the cloud per

se are free, while communications between the local servers

and the IaaS cloud will be charged. R(t), D(τ), and S(τ) are

the numbers of the reserved, on-demand, and on-spot VMs in

time slot τ respectively, and Pr(t), Pd(τ), and Ps(τ) are their

prices respectively. t denotes the first fine-grained time slot

of a coarse-grained time interval. Note that the number of the

reserved VMs R(t) and the price Pr(t) are decided at t and

are not variable during the entire coarse-grained interval.

D. Problem formulation

The SaaS provider can optimize its cost via a two-scale

decision process: decide the reserved VM number in each

coarse-grained decision interval with length T and decide the

numbers of the on-demand and on-spot VMs in each fine-

grained decision time slot τ in the interval, such that the time-

average expecting cost is minimized. Formally,

min limt→∞
1

t

t−1∑

τ=0

E[Cost(τ)] (4)
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s.t.

0 ≤ L(τ) ≤ Lmax, 0 ≤ R(τ) ≤ Rmax,

0 ≤ D(τ) ≤ Dmax, 0 ≤ S(τ) ≤ Smax.
(5)

L(τ) +R(τ) +D(τ) + S(τ) ≥W (τ) (6)

∀τ,Q(τ) < Qmax, Q̄ <∞ (7)

0 ≤ β(τ) ≤ βmax (8)

The symbol E denotes the statistical expectation. The de-

tailed descriptions of Equations (5)-(8) are as follows.

Equation (5): The SaaS provider can bound the numbers

of VMs of the four types by Lmax, Rmax, Dmax, and Smax

respectively. For instance, the number of reserved VMs can be

bounded if the provider just want to purchase a small number

of reserved VMs.

Equation (6): In each time slot τ , the provisioned VMs

must satisfy the capability requirement W (τ) ensuring that

the requests can be served.

Equation (7): Each request in the queue has a maximum

delay, i.e., the request should be served before the deadline. To

guarantee this, the backlog of queue Q(τ) should satisfy this

equation, where Qmax is the maximum backlog. The section

III.B will show more details on this technique.

Equation (8): An SLA contract is established between the

SaaS provider and the its users, specifying a given response

time requirement βmax. Thus, to ensure that the SLA contract

is not violated, the response time β(τ) should be bounded.

III. ONLINE DYNAMIC ALLOCATION ALGORITHM

To achieve the minimum time-averaged cost in Equation

(4) is a huge challenge, since the SaaS provider cannot have

the knowledge of the future user requests and VM prices in

advance in the real practice.

In this section, we first discuss how we tackle the resource

requirement heterogeneity of user requests, which is typical

in real-world scenarios. Then we discuss our virtual queue

notion to bound the request delay so as to meet the SLA.

Based on these considerations, we then build the Lyapunov

optimization model [7] and convert the cost minimization

problem into a solvable one. We design an online dynamic

provision algorithm (ODPA) to solve this problem. ODPA is

able to approach the minimum time average cost without any

a priori knowledge of the future user request workload and

the future IaaS VM prices.

A. Heterogeneity-aware sub-queues

One of the major challenges to build a queueing model for

a hybrid cloud is to handle the heterogeneity of user requests

to the SaaS. In realistic scenarios, different user requests

may involve different computational resources of VMs, and

incur different resource requirements. For example, a request

may start a computation-intensive job and require more CPU

capacity but less I/O capacity.

Consider the local servers of the SaaS provider that is

typically limited in resource. A request may wait in the queue

because one of the resource requirements cannot be entertained

as the resource is a bottleneck. For example, in case that

the CPU of the local servers is extensively exploited, the

computation-intensive requests would have to be blocked even

if another resource such as the memory is still quite sufficient.
Hence, we should take care of such heterogeneity of user

requests. We consider the queue is occupied with heteroge-

neous user requests and tackle this real-world challenge with

a queue anatomy approach. To the best of our knowledge, we

are the first to take the request heterogeneity into the Lyapunov

optimization queueing model.

We map the queue Q(τ) into a set of sub-queues Qi(τ),
i = 1, 2, ..., n. Each sub-queue Qi(τ) is corresponding to

a certain type of resource (suppose there are n types of

resources). When a request enters Q(τ), it also enters every

sub-queue Qi(τ). When the request is queueing in Q(τ), we

consider it is queueing for each type of resource in Qi(τ). It

leaves Q(τ) only if it can be served by the bottleneck resource

k and leave the corresponding sub-queue Qk(τ). In this case,

the request also leaves the other sub-queues.
Therefore, the service rate of Q(τ) (as well as that of each

sub-queue Qi(τ)) is determined by the service rate of the

bottleneck sub-queue Qk(τ). We name the bottleneck sub-

queue the prime sub-queue and the others the accompany sub-
queues. Note that it is also easy to alter the prime sub-queue

to another one if the type of bottleneck computing resource

changes. We thus model the heterogeneity of user requests

with such sub-queues.

B. Delay-aware Virtual Queue
User request has a deadline dmax to meet after it enters

Q(τ). To handle this situation, we apply ε-persistent service
queue technique [9] to bound the worst-case delay of the

dequeuing operations, so as to ensure that a request can be

served before its deadline.
Let Zi(τ) denote a queue associated with Qi(τ). Its update

equation is as follows.

Zi(τ + 1) = max{Zi(τ)− μi(τ) + εi1Qi(τ)>0, 0}, (9)

where 1Qi(τ)>0 is an indicator function taking the value 1 if

Qi(τ) > 0, and 0 otherwise. εi is a parameter that controls the

growing rate of the delay-aware virtual queue Zi, which has

an impact on the queueing time of a request (We will discuss

the details on εi later).
Queue Zi has the same service rate as that of queue Qi, but

has a different growing process. According to Equation (9),

queue Zi grows if and only if queue Qi is not empty.
Note that queue Qi is bounded in Equation (7)), i.e.,

∀τ,Q(τ) < Qmax
i , where Qmax

i is the maximum backlog of

Qi. According to Equation (9), we can also find that virtual

queue Zi is bounded, i.e., ∀τ, Z(τ) < Zmax
i , where Zmax

i is

the maximum backlog of Zi. To ensure that the requests are

served before the deadline, we have the following lemma.
Lemma 1: Given that Qi(τ) ≤ Qmax

i and Zi(τ) ≤ Zmax
i ,

the user requests have the maximum delay of dmax
i , in which:

dmax
i = �(Qmax

i + Zmax
i )/εi� (10)
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Proof: The proof is omitted due to space limitation. It

can be found in [10]

For parameters εi and εj for sub-queues i and j respectively,

we have the following relationship.

Theorem 1: Given that ∀i, Qi(τ) ≤ Qmax
i and Zi(τ) ≤

Zmax
i , ∀i, j, i �= j, the following equation holds.

εi
εj

=
Qmax

i + Zmax
i

Qmax
j + Zmax

j

(11)

Proof: The proof can be also found in [10]

C. Lyapunov Optimization

At each time slot τ , we select and control the prime queue

Qk(τ) (i.e., k is the bottleneck resource index), and other sub-

queues are also controlled following the bottleneck one.

Let Θ(τ) denote the vector [Qk(τ), Zk(τ)]. We define a

Lyapunov function as follows.

L(Θ(τ)) � 1

2
[Qk(τ)

2 + Zk(τ)
2] (12)

The 1-slot conditional Lyapunov drift is defined as:

Δ(Θ(τ)) � E{L(Θ(τ + 1))− L(Θ(τ))|Θ(τ)} (13)

Following the drift-plus-penalty algorithm[11], our aim is to

make decisions on the state of VMs to minimize the upper

bound of the following drift-plus-penalty expression given the

current system state:

Δ(Θ(τ)) + V E{Cost(τ)|Θ(τ)}, (14)

where V is a parameter determined by the SaaS provider to

achieve a best tradeoff between queueing delay and the cost,

to be discussed later.

The following theorem derives the upper bound of the drift-

plus-penalty expression.

Theorem 2: Assume that 0 ≤ λk ≤ λmax
k , 0 ≤ μk ≤ μmax

k ,

and Qk(τ) < Qmax
k , the drift-plus-penalty expression satisfies:

Δ(Θ(τ)) + V E{Cost(τ)|Θ(τ)}
≤ B + V E{Cost(τ)|Θ(τ)}
+Qk(t)E{(λk(τ)− μk(τ))|Θ(τ)}
+ Zk(t)E{(εk − μk(τ))|Θ(τ)},

(15)

where B is:

B =
1

2
max{(μmax

k )2, ε2k}+
1

2
((μmax

k )2 + (λmax
k )2) (16)

Proof: The proof can be also found in [10]

Rewriting Equation (15) by substituting μ(τ) and Cost(τ )

in Equations (2) and (3), we turn the drift-plus-penalty upper

bound minimization problem into the following problem P0.

min E{R(t)

T
(V Pr(t)−Qk(t)− Zk(t))|Θ(t)}

+ E{D(τ)(V Pd(τ)−Qk(τ)− Zk(τ))|Θ(τ)}
+ E{S(τ)(V Ps(τ)−Qk(τ)− Zk(τ))|Θ(τ)}
+ E{L(τ)(−Qk(τ)− Zk(τ)) + VM(τ)|Θ(τ)}

(17)

Dynamic
Provision

Long-term
Scheduling

Short-term
Scheduling

System
State

... Local Servers

Local Server
State

Request
Workload

VM prices

Public Cloud

Sub-queues

Queue

Queue State Decisions

Fig. 1. Architecture of the system and ODPA.

s.t. Equations (5)(6)(7)(8),

where τ ∈ [t, t+T -1], and t is the beginning fine-grained time

slot of the coarse-grained interval T .

D. Online Dynamic Provision Algorithm (ODPA)

By analyzing the optimization problem with a Lyapunov

optimization framework, we are able to tackle the complicated

time-average cost minimization problem into P0. P0 can then

be decoupled into three parts, namely, the long-term schedul-
ing, the short-term scheduling, and the dynamic provisioning.

It can then be handled with a separation-of-concern approach:

Every part can be solved individually with efficient algorithms

while the time-average cost can be minimized. Figure 1

overviews the framework of ODPA. What follows elaborates

these three key parts.

1) Long-term scheduling: The SaaS provider optimizes its

cost at the beginning of each coarse-grained interval with

length T . Let t denote the first fine-grained time slot of the

coarse-grained interval. The current system state then includes

Qk(t), Zk(t), λk(t), and the reserved VM pricing information

Pr(t).

The number of reserved VMs to be rented can be decided

with the following optimization problem P1.

min
R(t)

R(t)

T
(V Pr(t)−Qk(t)− Zk(t))

s.t. Equation (5)(6)(7)(8)

(18)

It is easy to see that the objective and constraints of P1
are all linear. Hence, P1 can be efficiently solved with linear

programming.

2) Short-term scheduling: The SaaS provider decides the

numbers of the local servers VMs, the on-demand VMs,

and the on-spot VMs in every fine-grained time slot τ of

each coarse-grained interval. The system state includes Qk(τ),
Zk(τ), λk(τ), the pricing information Pd(τ), Ps(τ), and the

remained resource capacities of local servers, e.g., remained

CPU, memory, and etc.

With the knowledge of long-term scheduling (the solution

to P1), the numbers of the various VMs can be optimized via
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solving the following problem P2.

min
D(τ),S(τ),L(τ)

D(τ)(V Pd(τ)−Qk(τ)− Zk(τ))

+ S(τ)(V Ps(τ)−Qk(τ)− Zk(τ))

+ L(τ)(−Qk(τ)− Zk(τ))

s.t. Equations (5)(6)(7)(8)

(19)

Similar to P1, P2 is also a linear optimization problem

which can be easily solved with linear programming.

3) Dynamic provisioning: We now consider the commu-

nication cost M(τ). Given the solutions of long-term and

short-term scheduling, we should then decide the locations

of the VMs to minimize the communication cost with SLA

guarantee. A good provision of VMs to the local servers and

the IaaS cloud should be able to minimize the communication

cost at each slot. The optimization problem is defined in the

following P3 formulation.

min V ·M(τ)

s.t. constraint(8)
(20)

Unfortunately, P3 is not an easily tractable problem. We

prove it NP-complete, and then resort to a fast online heuristic

algorithm.

Theorem 3: The problem of P3 is NP-complete.

Proof: By regarding the VMs as the vertices and the

communication links between the local servers and the IaaS

as the edges of the graph, the SaaS system can be modeled

as a graph. Each edge is then weighted with its corresponding

communication cost. The local servers and the IaaS clouds are

then regarded as two fix-sized partitions of the graph. P3 is

to find the partition that minimize the edge weights across the

two fixed unequal sized sets.

We now show that this problem belongs to NP. For a

given graph G = (V,E) and size k, we use the edge set

E′ ⊆ E as a certificate for G. For each edge e in E′, we

can check whether its two endpoints are in different partitions

and whether |{e | ∀e ∈ E′}| is equal to k in polynomial

time. In other words, verifying the certificate can be solved in

polynomial time, and hence P3 belongs to NP.

We next prove P3 NP-hard by reducing it from Minimum

Graph Bisection problem (MGBP), a known NP-complete

problem [12]. Given an instance G = (V,E) (|V | = 2n1,

n1 ∈ N+) of MGBP, we reduce it to an instance of P3.

Assuming n2 > n1, we form G′ = (V ′, E′) by adding a

clique of size n2 − n1 with +∞ edge weights to G. This can

be done in polynomial time. We then show this transformation

is in nature a reduction.

Suppose S ⊆ E is a cut set of size k in G. S is also a cut

set of size k in G′, i.e., S = S′, since edges of new added

clique have +∞ weights and they cannot be in the cut set of

G′. Conversely, suppose S′ ⊆ E′ is a cut set of size k in

G′. Since clique edges cannot be in the cut set due to their

positive infinity weights, we have S′ = S.

Hence, we prove that S is a cut set of size k in G if and

only if S′ is a cut set of size k in G′. The reduction is then

proved. As a result, P3 is NP-hard. Since P3 is NP as well as

NP-hard, it is NP-complete.

Algorithm 1 Minimizing Communication Cost

Input: The initial distribution of VMs G = (V,E), and the

initial partitions of local servers A0 and cloud B0 with

fixed size kA and kB respectively.

Output: The partition A and B of size kA and kB that

approximately minimize the communication cost between

the two partitions.

1: repeat
2: compute the gain for all VMs;

3: i = 1;

4: repeat
5: select vi that has maximum gain g[i] from unlocked

VMs and satisfies the balance and SLA contract;

6: if no such VM then
7: break;

8: end if
9: update gains of adjacent VMs with vi;

10: lock VM vi;
11: i = i+ 1;

12: until all VMs are locked

13: find k that maximize gmax =
∑k

i=1 g[i];
14: if gmax > 0 then
15: move v1, v2, ..., vk VMs to the other partition;

16: unlock all VMs;

17: reset g, gmax;

18: end if
19: until gmax ≤ 0

Next, we designed a fast heuristic algorithm that can efficiently

solve P3 illustrated in Algorithm. 1. We modify the state-

of-the-art Fiduccia-Mattheyses algorithm [13] by bringing the

moving penalty between two partitions and the SLA contract

into consideration.

The algorithm first computes the gain of all VMs in each

iteration, greedily selects the VM of maximum gain and

updates the adjacent VMs until all VMs selected. It then

executes the first k moves that maximize the sum of those

gains. The gain, which is the cost reduction after moving one

VM to the other partition, is defined as follows.

g(i) = Ei − Ii − Pi, (21)

where Ei and Ii are the external cost and internal cost of

VM i respectively, i.e., the communication cost with the VMs

in the other partition and VMs in the same partition (if each

communication is charged), and Pi is the possible extra penalty

caused by the moving operation, i.e., the violation of the

communication cost. Note that the moving operation may

cause the change of the partition size. To ensure that the

partition size is fixed, each labelled VM should satisfy the

balance constraint as follows.

r · |U | − 1 ≤ |A| ≤ r · |U |+ 1, (22)
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Algorithm 2 Online Dynamic Provision Algorithm (ODPA)

Input: VM prices, local servers state, request workload.

Output: The provision strategy

1: for each coarse-grained slot T do
2: select the prime sub-queue;

3: solve linear programming problem P1;

4: for each fine-graind slot τ do
5: select the prime sub-queue;

6: solve linear programming problem P2;

7: algorithm1;

8: update queue state;

9: end for
10: update queue state;

11: end for

where |A|+ |B| = |U |, and r = |A|
|A|+|B| . The time complexity

of Algorithm 1 is O(n), and it only needs a very small number

of passes to converge leading to a fast approximate algorithm.

Finally, we can now formally describe ODPA in Algorithm

2. ODPA involves solving two linear programming problems

and Algorithm 1 with linear time complexity. Hence, it meets

the efficiency requirement in real-world online application.

Next, we will first theoretically analyze the algorithm per-

formance in Section IV, and then build a simulation to have

further studies.

IV. PERFORMANCE ANALYSIS

We now theoretically analyze the performance of ODPA.

We first give the worst case delay of the requests and then

find the performance bound of the algorithm.

Lemma 2: If ODPA is implemented and given that 0 <
Pr(t) ≤ Pmax

r , 0 < Pd(τ) ≤ Pmax
d , 0 < Ps(τ) ≤ Pmax

s ,

0 ≤ εi ≤ μmax
i , and V > 0, we have:

(i). The length of Qi and Zi can be bounded by the following:

Qmax
i = V max{Pmax

r , Pmax
d , Pmax

s }+ λmax
i ,

Zmax
i = V max{Pmax

r , Pmax
d , Pmax

s }+ εi
(23)

(ii). The worst case delay dmax
i of the requests in sub-queue

i is:

dmax
i = �2V max{Pmax

r , Pmax
d , Pmax

s }+ λmax
i + εi

εi
�
(24)

(iii). The worst case delay dmax
i and dmax

j of sub-queue i and

j are equal, ∀i, j, i �= j:

dmax
i = dmax

j (25)

Proof: The proof can be also found in [10]

Based on this lemma, we derive the following theorem.

Theorem 4: ODPA can bound the time average cost as

follows.

limt→∞
1

t

t−1∑

τ=0

E[Cost(τ)] ≤ 1

t

t−1∑

τ=0

c∗τ +
B

V
, (26)

Proof: The proof can be also found in [10]
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Fig. 2. Real traces

, where 1
t

∑t−1
τ=0 c

∗
τ is the minimum possible time average cost

if the future information of subsequent slots is known, B is

defined in Equation (16).

The above theorem shows the [O(1/V ), O(V )] trade-off

between cost and delay. By increasing the value of V , we

can get the near-optimal value of time average cost but bring

in larger queue length and longer delay. We verify it with our

experimental study with real-world data in what follows.

V. EXPERIMENTAL STUDY WITH REAL-WORLD DATA SET

To further study the performance of ODPA, we conduct a

set of experimental study with a large real-world data set.

The VM price data are recorded by tracking the prices of

the prevalent IaaS cloud, the Amazon EC2 [1]. We program to

record the prices of the reserved VMs, the on-demand VMs,

and the on-spot VMs for one month. The user request data are

based on the real cloud request log RICC [14]. Figures 2(a)

and 2(b) plot the on-spot VM prices and the request data. We

can see that both data are highly dynamic, which is a real-

world challenge to VM provision algorithm like ODPA.

We first study the optimization performance of ODPA

via comparing it with two benchmark methods. The first

benchmark method is one based on a conventional notion that

schedules the requests immediately and purchases the lowest

price VMs to serve the requests regardless the changes of

prices. We name it the conventional method.

Another benchmark method assumes that all the future

information is perfectly known across the entire time horizon

and achieves the ideal solution. We name it an ideal offline
method. Note that the ideal offline method is an idealized

best method, which is not feasible in reality since the future

user request and IaaS price information cannot be known

beforehand.
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Detailed comparisons of ODPA with the two benchmark

algorithms are provided in Section V-A. Section V-B futher

examines the delay property of ODPA and the trade-off

between the delay and cost to verify the theoretical analysis

in real-world scenarios.

A. Cost saving of ODPA

First we study how ODPA performs in terms of cost

minimization. According to the previous analysis, V and εi
are two major parameters that influence the cost minimization.

Moreover, the cost may vary with different proportions of the

VMs in the local servers and public IaaS cloud. We evaluate

these factors in what follows.

Figure 3 shows the impact of V by setting it in range [0,

54000]. We can see from Figure 3(a) that the total cost de-

creases as V increases. This is consistent with our theoretical

analysis. In particular, when V increases, the performance of

ODPA gets closer to the ideal offline method. Figure 3(b)

further compares ODPA with the conventional method. It

shows that ODPA can reduce up to 30% cost saving when

V is large.

We then evaluate the impact of parameter εi. Note that it

is not necessary to verify each εi since each pair of εi and εj
can be converted to the other based on Theorem 1.

Therefore, without loss of generality, we considers only sub-

queue 1 with its corresponding parameter ε1, and study its

impact on cost. Figure 4 shows the results, where we can

observe that the cost increases with the growing of ε1.

Finally, the proportion of the requests handled by local

servers can influence the cost, since renting less IaaS VMs can

reduce the cost more. Figure 5(a) shows that the cost decreases

as the size of the local servers grows, in which the size is

set at different levels of average workload. When V is set
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large enouth, e.g., V = 50000, the performance of ODPA can

closely approach the ideal offline method. Figure 5(b) shows

that even when the local servers handles most of the requests,

ODPA is still able to reduce the cost by at least around 10%
compared with the conventional method.

B. Delay property of ODPA

Based on Theorem 4, there is a trade-off between cost and

delay with ODPA. The delay is influenced by the parameter

V and εi according to Lemma 2. Figure 6 shows the impact

of these factors on the delay.

We measure the delay as the average request delay, i.e.,
the average queueing time of the requests. The delay caused

by parameter V is illustrated in Figure 6(a), suggesting that

larger V incurs larger delay. Also, the delay decreases when

the parameter ε1 increases, as shown in Figure 6(b).

Together with Figures 3(a) and 4, we can see that there is

a trade-off between cost and delay when tuning the parameter

V and εi. The experimental results are consistent with the

theoretical analysis. ODPA can successfully save cost by

exploiting the delay property. In practice, to meet the delay

requirement, one can tune the parameter V , εi based on the

Lemma 1 and Lemma 2.

VI. RELATED WORK

With the rapid growth of cloud computing industry,

the cloud resource provisioning problem has also at-

tracted many research efforts in cost-optimizing perspective

[5][6][15][16][17][18]. In [5] and [15], the authors build game-

theoretic models in a competing market to decide the number

of different types of VMs provisioned by the cloud to optimize

the profit of the SaaS provider. These approaches require the

prediction of the user requests. [5] considers the uncertainty
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of VM prices and user requests in optimizing the resource

provisioning cost. [17] designs a deadline-awareness system

which optimizes its global resource allocation and reduce the

cost by delaying the excution of particular jobs. Moreover,

[18] proposes to optimize the provisioning cost based also on

a stochastic programming model.

Recently, the hybrid cloud paradigm has been widely ad-

vocated where a SaaS provider owns a small local data

center, but can extend its services into a public IaaS cloud.

Hybrid cloud are embraced by more and more leading industry

practitioners. Examples include the Amazon EC2[1], VMWare

vCloud [2], and IBM Hybrid Cloud Solution [19]. Tak el
al. [20] investigate the economic issues of the application

deployment choice in the hybrid cloud. Hajjat et al. [21]

propose the migration strategy of enterprise application to

the cloud that optimizes the benefits and ensures the security

policies. Guo et al. [6] design a cost-efficient VM migration

algorithm to help local data center scale to the cloud with

optimal monetary cost in the scenario of cloud bursting, in

which a local data center works together with a public cloud

to handle workload peaks [22][23].

Finally, Lyapunov optimization technique has been widely

adopted in routing and resource allocation in several types of

applications. Neely et al. [24] establishes a simple Lyapunov

drift to achieve both system stability and performance opti-

mization in time varying wireless networks. Recently, much

research attention has been paid in applying Lyapunov opti-

mization technique to control power management and resource

allocation in data centers [25][26]. Inspired by this track of

research efforts, we adopt Lyapunov optimization into the

optimal cloud resource provisioning problem by tailoring the

framework according to specifics of the hybrid cloud settings.

VII. CONCLUSION

This paper investigates how to optimize the monetary cost

of purchasing cloud VMs for the hybrid cloud computing

paradigm. Our work assumes an arbitrary request arriving

probability and no accurate a priori knowledge of VM prices

in the public cloud. We specifically tailor a theoretical model

based on Lyapunov Optimization framework according to the

real-world challenges of this problem. We then develop an

method to minimize the time average cost with an online

dynamic allocation algorithm. Both the theoretical analysis

and the experimental study based on real-world data trace

demonstrate the advantages of the algorithm. The evaluation

shows that the online dynamic provision algorithm can achieve

much lower cost than the conventional method and approach

the ideal offline optimal method closely.
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