978-14799-3360-0/14/$31.00 ©2014 |EEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Multi-Objective Data Placement for
Multi-Cloud Socially Aware Services

Lei Jiao*, Jun Lif, Wei Du*

, Xiaoming Fu*

*University of Gottingen, Germany, fUniversity of Oregon, USA
*{jiao,du,fu} @cs.uni-goettingen.de, flijun@cs.uoregon.edu

Abstract—Socially aware services often have a large user
base and data of users have to be partitioned and replicated
over multiple geographically distributed clouds. Choosing in
which cloud to place data, however, is difficult. Effective data
placements entail meeting multiple system objectives, including
reducing the usage of cloud resources, providing good service
quality to users, and even minimizing the carbon footprint, while
facing critical challenges such as the interconnection of social
data, the conflicting requirements of different objectives, and the
customized multi-cloud data access policies.

In this paper, we study multi-objective optimization for plac-
ing users’ data over multiple clouds for socially aware services.
We build a model framework that can accommodate a range
of different objectives, and based on this model we formulate
the optimization problem. Leveraging graph cuts, we propose an
optimization approach that decomposes our original problem into
two simpler subproblems and solves them alternately in multiple
rounds. We carry out evaluations using a large group of real-
world geographically distributed users with realistic interactions,
and place users’ data over 10 clouds all across the US. We
demonstrate results that are significantly superior to standard
and de facto methods in all objectives, and also show that our
approach is capable of exploring trade-offs among objectives,
converges fast and scales to a huge user base.

I. INTRODUCTION

Internet services that span multiple geographically dis-
tributed clouds intrinsically have multiple system objectives,
including budgeting the monetary expenditure spent on cloud
resource usage [1], [2], ensuring the service quality perceived
by users (e.g., access latency) [3], [4], and even reducing the
carbon footprint of the service [5], [6], to name a few. Key to
meeting many of such objectives is at which cloud to place
the data accessed by each user. For example, different clouds
may charge different prices for the same amount of resource
consumption, have different proximity to users, and emit
different amounts of carbon for the same workload, i.e., they
have different carbon intensities. Data placement determines
how the workload of a service is distributed over clouds, and
thus affects various aspects of the service’s performance.

The data placement problem is particularly challenging for
multi-cloud services that are socially aware, where users build
social relationships and share contents with one another, as
reflected by Online Social Network (OSN) services and many
non-OSN services with social components [7]. Fig. 1 illustrates
how one such service is provided at distributed clouds to serve
users at different locations, where every user can access every
cloud and users form an OSN via online friendships. The
challenges for optimizing data placement for such services
mainly manifest themselves as follows:

First, because of social relations and interactions of users
in a socially aware service, the data of every user are intercon-

Social Network

Fig. 1: A Multi-Cloud Socially Aware Service

nected with data of some others, and data placement on the
basis of individual users probably cannot yield optimal results.
With heavy interactions between online friends [8], [9], for
example, it would be better to have their data placed closely.
Ideally, if the data of a user and the data of her friends are
always co-located at the same cloud, the user can access her
friends’ data without going to another cloud, and thus save the
additional delay and traffic associated with further operations.
This feature distinguishes social data placement from content
placement in conventional content distribution networks, where
data are independently delivered to users.

Moreover, the diverse objectives for data placement are
often intertwined and even contradictory, and may not be
satisfied simultaneously [5]. The social nature, for example,
requires friends’ data to be placed closely. For low access
latency, data accessed by each user—including those of her
friends and her own—are preferred to be located at the clouds
close to a user. However, to reduce the monetary expense or
the carbon footprint, it is beneficial to place more users’ data
at clouds that are cheaper in price or more efficient in carbon
intensity. A data placement approach thus needs to be capable
of seeking trade-offs among multiple objectives.

Further complicating the problem are the multi-cloud
master-slave paradigm [2], [10] and the multi-cloud access
policies [11]. When the data of every user have a master
replica and multiple slave replicas, as is often the case in many
services, these replicas contribute differently to system objec-
tives. The location of a user’s master contributes to the write
latency perceived by all those who write to this user’s data.
The locations of a user’s slaves contribute to the read latency,
and different users may read different replicas of a user. If a
data replica is not available at a current cloud, different multi-
cloud access policies regulate differently “where” and “how”
to obtain the required data from another cloud, thus potentially
leading to different optimal data placements.

Unfortunately, most previous optimization research on
multi-cloud or multi-data-center services [3]-[6], [12], [13]
cannot capture users’ social relations and their interactions in
socially aware services. There are multiple studies on multi-

978-1-4799-3360-0/14/$31.00 (©2014 IEEE

28

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

cloud OSN and social media services [1], [2], [14], [15], but
they do not address the carbon issue and are not able to weigh
costs of multiple dimensions. Furthermore, except the work
in [2], [14], little has been done to investigate multi-cloud data
placement in the context of the master-slave paradigm—which
is very common in reality—and multi-cloud access policies.
In this paper, we capture the multi-objective data placement
problem by building a model framework that generalizes to a
large variety of system objectives of the multi-cloud socially
aware service. We address the aforementioned challenges by
proposing a novel approach that leverages the graph cuts
technique [16]-[18]. We verify our models and approach via
extensive evaluations driven by large-scale real-world data.
Starting with modeling the carbon footprint, the service
quality, the inter-cloud traffic of the socially aware service, as
well as the reconfiguration cost incurred by changing a given
data placement to another, we generalize our models to cover
a wide range of system objectives of different dimensions,
allowing them to be treated within a common framework. The
data placement problem is thus about finding best locations
for each user’s master and slave replicas in order to minimize
the total cost. An interesting observation of our models is that
the cost of every dimension of a socially aware service can be
naturally cast into one or both of the two parts: the unary cost
that depends on the locations of replicas of an individual user,
and the pairwise cost that depends on the locations of replicas
of a pair of users, i.e., one user who conducts read and write
operations and the other user whose data are read or written.
Our core contribution is a novel approach that solves the
data placement problem. Intuitively, the unary cost and the
pairwise cost correspond to vertices and edges of a graph
respectively, motivating us to connect our data placement
problem that is centered around cost minimization with the
problem of finding the minimum cut of a graph, and to solve
the former via solving the latter with the help of the graph
cuts technique. Towards this end, we propose to decompose
our original problem into two subproblems and solve them
alternately in multiple rounds. In one subproblem, given the
locations of all slaves, we identify the optimal locations of
all masters by iteratively cutting the corresponding graphs. In
the other subproblem, we place all slaves given the locations
of all masters, where we find that the optimal locations of
each user’s slaves are independent and a greedy scheme that
takes account of all objectives can usually be sufficient. Our
approach achieves good data placements overall. On one hand,
to the best of our knowledge, the state-of-the-art graph-cut
technique guarantees the best solutions; on the other hand,
our greedy scheme can empirically achieve results close to
the theoretical optimum. By applying it separately to each
community of the entire user base, our approach further
scales to a huge user population. Doing so may degrade the
optimization performance, but only moderately due to the
community structure of users in socially aware services.
With 107,734 users interacting over 2,744,006 social rela-
tions that span all across the US, we perform data placement
over 10 distributed clouds. Our evaluations demonstrate the
following results: (1) While there is no other approach known
to us that optimizes the multi-objective data placement for
multi-cloud socially aware services, our approach significantly
outperforms several standard and de facto practices, such as
random and greedy placement, in all objective dimensions

29

including carbon, distance and traffic in a variety of settings;
(2) Our model can be easily tuned to achieve different trade-
offs among multiple objectives, and to help decide whether a
specific optimization outcome is worth the effort of conducting
this optimization; (3) Our approach converges fast, e.g., the
first 3 iterations reach approximately 97% of the total cost
reduction that can be achieved; (4) Our approach scales, e.g.,
by partitioning the user base into 4 communities and applying
our approach independently to each community, we obtain
a speedup of 4.5 in execution time with the optimization
performance degraded only slightly by 6%.

II. MODEL FORMULATION
We now introduce the system settings of the multi-cloud
socially aware service, model its different objectives, and
formulate the optimization problem of users’ data placement
based on this model.

A. Settings and Notations

We target a multi-cloud socially aware service as in Fig. 1,
where each cloud is located in a different geographic region
and each user has replicas of her data stored in the clouds.
We consider the single-master-multi-slave paradigm [10], [19],
where every user has one replica as a master and multiple
replicas as slaves. Each replica is stored in one cloud. The
cloud that hosts a user’s master replica is the user’s master
cloud, and those that host a user’s slave replicas are the user’s
slave clouds. Central to user interactions are the read and write
operations between users. We focus on the number of reads
and writes in our model.

A service with data partitioned and replicated across clouds
often follows some multi-cloud access policies about “where”
and “how” to obtain the required data from a remote cloud if
they are unavailable at a local cloud. This happens when, e.g.,
a user accesses the service via the web and her read request is
directed by DNS to a cloud, but the data requested turns out
to be at a different cloud. We handle such access policies in
this paper as follows. “Where” is captured in our model by the
function z,, ,,, which selects a cloud out of user v’s master and
slave clouds by any given policy in order to serve user u’s
requests that access v’s data. Note that z,, only applies to
read operations, since write operations are always executed in
master clouds, with propagations to slaves afterwards. “How”
is captured as either a relay mode or a redirect mode [11].
The former means the local cloud reads the data from another
cloud and then returns the data to the user. The latter means
the local cloud redirects the user to another cloud and lets the
user retrieve the data on her own. Due to space limitation and
in order to demonstrate our model’s capability of addressing
objectives of multiple dimensions, we only focus on the relay
case (while the redirect case has fewer objective dimensions,
as will be discussed in Section II-B3). One can easily apply
our methodologies presented in this paper to the redirect case.

Before going into details, we introduce the notations that
are used throughout the rest of this paper. We use u, v to denote
users and 4, j to denote clouds. The decision variables to be
solved are m,, and s,,;, [= 1, ..., k, Vu, indicating the location
of u’s master (i.e., the ID of u’s master cloud) and those of u’s
k slaves (i.e., the IDs of u’s k slave clouds), respectively. k is
the number of slave replicas each user has. r,, and w,, denote
the number of reads and that of writes conducted by user u on
her own data. r,,, and w,,,, denote the number of reads and that

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

of writes conducted by user u on user v’s data. N,, is the set of
user u’s neighbors, where two users are considered neighbors
if and only if there exists at least one read or write operation
between them. 2, (M, My, Sy 1,...,8, k) is the function as
stated above, returning the ID of the selected cloud according
to a given policy. §(z,y) is a binary function that returns 1 if
x # y, and 0 otherwise.

B. Modeling Socially Aware Service

1) Modeling Carbon Footprint: The total carbon footprint
of the service depends on the workload of each cloud, and
also depends on the carbon intensity of the region where a
cloud is located. A user reads and writes her own data at her
master cloud, as we assume a user is hosted by her master
cloud since she signs in to the service, and all of a user’s
writes are eventually propagated from her master cloud to all
her slave clouds for consistency. When a user u reads another
user v’s data, the cloud determined by z, , serves such reads.
When u writes v’s data, the writes go to v’s master cloud for
execution, and further propagate to all of v’s slave clouds.'

Let € be the energy consumption of a single read or write
operation and e; be the carbon intensity of the region where
cloud 7 is located. We write the total carbon footprint as

DD D Vi M

where DS = DS + D", with DS’ = eem, (ry + Wy +
ZU N, W,), representing the carbon at w’s master cloud
incurred by all of u’s reads and writes on her own data
and all the writes conducted by u’s neighbors on u’s data,
and DS = S8, (ees, (W, + > ven, Wou)), representing the
carbon at all of u’s slave clouds incurred when all writes to u
are propagated to her slaves, and Vi, = ee,, ry, refers to
the carbon at the cloud z,, when u reads her neighbor v.

2) Modeling Operation Distance: We define the operation
distance of a service as the total geographic distance traveled
by all reads and writes occurred in this service, and we use this
notion as a measure of service quality. For example, if a user
issues a read request and this request is forwarded due to data
absence at her master cloud, then the distance traveled by this
read is the distance between the user and her master cloud plus
the distance between her master cloud and the cloud that this
request is forwarded to. 2 All operations issued by a user firstly
go to her master cloud, and then if the data required by some
operations are not available there, such operations continue to
travel to the destination clouds which have the required data.

The operation distance is thus calculated as follows, where
d. . is the distance between a user and a cloud, or between two

clouds:
Zu Dg + Zu ZUENu Vlii*)v’ {n

where DY dum, (e + Wy, + ZveNu (fuw + Wy)) is the
user-cloud distance, i.e., the total distance traveled by all of
u’s operations to go from w herself to her master cloud, and
Vi, = dm,, 2, 0 (M 2u,0) Fuw +dm,, m,, O (M, My)Wy, is the
inter-cloud distance, i.e., the sum of the total distance traveled

ITssues out of the scope of this paper include write conflicts resolution [10].
We assume such issues are addressed by existing techniques, which does not
affect our work as long as all writes are eventually executed.

2 Aligning with eventual consistency, we assume a write operation returns
to the user as soon as it is completed on the maser replica [19]. Therefore,
the operation distance of a write does not involve propagations.

30

from w’s master cloud to the cloud z,, when u reads v and
the total distance traveled from w’s master cloud to v’s master
cloud when u writes v.

3) Modeling Inter-Cloud Traffic: The inter-cloud traffic is
incurred by inter-cloud operations. One type of inter-cloud
operations are reads and writes that cannot be completed at
a local cloud due to absence of data, and are thus executed
at a remote cloud. The other type is the writes propagated
for replica consistency. However, the amounts of propagated
writes are fixed when the inputs (i.e., the number of write
operations received by each user and the number of slave
replicas of each user) are given, and thus they are out of our
optimization framework. Consequently, the inter-cloud traffic
under our consideration only exists in the relay mode.

The total amount of inter-cloud traffic reads as follows,
assuming ¢ bytes of traffic incurred by a single operation:

SHINNS m
where V!

Ly = t(6(My, 2y p) Py + 6 (M, My,)W,,) is the sum
of the inter-cloud traffic incurred when u reads and writes v.
4) Modeling Reconfiguration Cost: Different from carbon,
operation distance, and inter-cloud traffic, all of which are
associated with one data placement, we introduce the reconfig-
uration cost as a measure of the cost incurred by changing one
data placement to another. While there may be many ways to
define the reconfiguration cost, here we focus on the number
of affected users, i.e., those whose masters change locations.
Let m/, denote the location of u’s master in the initial data
placement, and m,, denote its location in the optimal one. The
reconfiguration cost is

> Di (IV)

where D!, = §(m/,,m,,) simply calculates whether u’s master
remains at the cloud where it used to be. We will extend this
definition of the reconfiguration cost later in Section III-C.

C. Generalizing Models

We generalize (I) to the intra-cloud cost that is incurred at
all clouds. The intra-cloud cost is calculated by replacing ce;
in (I) with a;, where we think of «; as a property (that can
be of any dimension) only specific to cloud ¢. The intra-cloud
cost can represent the following metrics:

e The carbon footprint as in (I), if a; = ee;;

e The electricity fees, if a; = €q;, where q; is the per
unit electricity price of the region where cloud ¢ is
located;

e The fees of using Virtual Machines (VMs) in the
clouds, if a;; = Tp;/M, where T is the time period
during which all operations under consideration are
executed, p; is the price per VM per time unit at cloud
i, and M is the number of operations that one VM
accommodates during T.

We also generalize), D? to the user-cloud cost that is
incurred between all user-cloud pairs. Replacing d,, ; with vy, ,
a property only specific to user » and cloud ¢, enables the user-
cloud cost to represent the following metrics:

e The operation distance between users and clouds, i.e.,

>, D2 as in (ID), if v, ; = dyis

e The reconfiguration cost as in (IV), if «,; =

d(m!,,7)/G, where G = "u"'Wu"'ZveNu (Fuw + Wao)3

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

e The total network delay or hop counts between users
and clouds, if o, ; = Xy, where x,,; is the network
delay or hop count between user u and cloud <.

We finally generalize _, > . Vi, to the inter-cloud
cost that is incurred between all pairs of clouds. It is calculated
by using «;_; that is specific to a pair of clouds ¢, j to replace
dijin D2 > en. V4, . The inter-cloud cost can represent

the following metrics:

e The operation distance between clouds, i.e.,
Zu Z@ENu Vud—m as in (H), if Q5 = di,j;
The inter-cloud traffic as in (IID), if «; ; = t;
The total inter-cloud network delay or hop counts,
similarly.

Our generalized models potentially cover a wide range of
metrics that can be used as system objectives of the multi-
cloud socially aware service, going beyond the concerns of
cloud customers, i.e., socially aware service providers in our
case. The electricity fee is, for instance, not of the interest of
cloud customers as they do not directly pay for it, but rather a
concern of cloud or data center operators who can also leverage
our models to seek optimization. One can explore our models
to express even more metrics in the multi-cloud environment.

D. Optimization Problem
Putting all objectives together, we minimize the following
cost function:

§ “ Du(mqusu,la -~-asu,k)+
E E Vu%v(muymvysv,la ---asv,k)a
u vEN,,

where D, = DS + D¢ + DI, Vo, = Ve, + VI, +
V!, . The most important feature of this formulation is that it
consists of two terms: D,, that only depends on the locations
of a single user’s data (her master and slaves), and V,,_,, that
depends on the locations of a pair of neighboring users’ data
(the master of user © who conducts operations and the master
and slaves of user v who receives operations). We refer to the
former as the unary cost, as it contains the decision variables of
only one user, and the latter as the pairwise cost, as it contains
the decision variables of a pair of users.

Note that (V) is equivalent to the sum of the three types
of costs defined in Section II-C, with a; = €e;, a3 = dy s +
d(m,i)/G, and a; ; = d; ; +t. Due to the generality of the
three types of costs, solving our optimization problem implies
solving a class of problems with a variety of system objectives.

One can always associate a weight with each objective, or
with each of the three types of costs. For the ease of presenta-
tion, we do not write these weights in all our formulas in this
paper. Service providers can tune these weights by standard
approaches in order to seek trade-offs among objectives based
on their own requirements.

As we establish a multi-objective optimization problem,
the major constraint that our problem is subject to is no co-
location of a user’s replicas at a common cloud, which reads as
m, # Sy, Sug # Sy, Where [,I" = 1,...,k, 1 # I',Vu. Note
that we do not regard cloud capacity as a constraint for the
following reasons: (1) From a cloud customer’s perspective,
a cloud can provide “infinite” resources on demand; (2) By
assuming an unlimited capacity of each cloud, we aim at a
lower bound of the total cost possible with our framework.

V)

31

ITI. DATA PLACEMENT OPTIMIZATION
This section describes how we solve the data placement
problem. The direct optimization of (V) is intractable due to
its NP-hardness. Our general idea is thus to develop heuristics
that seek good approximate solutions.

A. Overview of Our Approach

We have the following insights into the problem of (V).

Insight 1: The difficulty in optimizing (V) roots partially in
that the decisions of placing master replicas and slave replicas
affect each other.

Insight 2: Our problem can be potentially connected to the
minimal s-¢ cut problem [20]. Naively, consider two clouds and
a social network, and let’s assign users to clouds. We can add
edges to the social graph by connecting every user with every
cloud, regarding one cloud as the s terminal and the other as
the ¢ terminal. The weight of the edge between any two users is
the pairwise cost of assigning them to different clouds, and the
weight of the edge between a user and a cloud is the unary cost
of assigning this user to this cloud. Consequently, by finding
the minimal s-¢ cut of this graph, we find the set of edges with
the minimum total cost, where each edge between a user and
a cloud in this cut set represents the optimal assignment of the
user to the corresponding cloud.

Motivated by these two insights, we decompose our data
placement problem into the following two subproblems.

Master Replicas Placement: The first subproblem is plac-
ing users’ master replicas given the placement of users’ slave
replicas, which is formulated as minimizing

Do Dulm) £330 N Vi (my,m,). (VD

Leveraging a more sophisticated version of iterative minimal
s-t cuts [16]-[18] as will be described in Section III-B, we can
identify the optimal assignments of users’ masters to clouds.

Slave Replicas Placement: The second subproblem is
placing users’ slave replicas given the placement of users’
master replicas, which is formulated as minimizing

Zu Du(su,lv eeey Su,k) + Zu ZUGNu Vu%v(sv,lv ceey Sv,k)'
(VID
As will be shown in Section III-C, minimizing the total cost
incurred by all users’ slaves can be achieved by independently
minimizing the cost incurred by each user’s slaves.

Overall, our approach consists of solving the two subprob-
lems of minimizing (VI) and (VII) alternately via fixed-point
iterations, as in Fig. 2. Starting with an initial placement of all
masters and slaves, we solve the two subproblems iteratively
to reduce the total cost and to improve the solution of each
subproblem, until no further cost reduction is possible or until
an expected number of iterations are executed.

Graph Cuts

Initialization

Graph Cuts

Placement Placement

~N_

Greedy

Master Replicas] [Slave Replicas

Fig. 2: Our Fixed-Point Iteration Approach

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

B. Solving Master Replicas Placement

The basic idea is iterating cloud pairs and finding the
minimal s-t¢ cut for each pair [18]. Every s-t cut represents
the optimal assignments of involved masters to a pair of
clouds. The algorithm keeps iterating cloud pairs to update
the assignments until the total cost of the assignments of all
masters cannot be reduced any more.

Fig. 3 visualizes how this works. Users, i.e., their master
replicas, are in the middle while at the top and the bottom
are the clouds. An edge between two users means the two
users have interactions. An edge between a user and a cloud
indicates that the user’s master is placed at that cloud. Initially,
every user is connected to a cloud arbitrarily. Selecting a cloud
pair, e.g., the blue ones in this figure, it constructs a graph by
connecting both clouds to every user who is connected to one
of the two clouds, as in the left part of Fig. 3, and assigns an
appropriate weight to each edge in this constructed graph. The
weight of the edge between a user u and a cloud 7 is computed
based on D, (i), reflecting how much u wants her master to be
placed at ¢, while the weight of the edge between two users u
and v is computed based on Vi, (4, 5)+ Vy—u(J, 1), reflecting
how much u and v want their masters to be placed at ¢ and
7, respectively. We can always find the minimal s-¢ cut of the
constructed graph by the max-flow min-cut algorithm [20].
The right part of Fig. 3 marks the cut edges by double dashes,
where other edges of the constructed graph that are not in the
cut set are not shown. The algorithm continues by selecting
another cloud pair, e.g., a blue one and the red one, constructs
a graph by adding edges, and calculates the minimal s-t cut for
the optimal assignments of involved users to these two clouds,
and so on.

\ '|n|mal s-t Cut
l '\ B /\
l

Fig. 3: Using Graph Cuts to Place Master Replicas

C. Solving Slave Replicas Placement

Noticing that we have) ZUeN Viso(Su,1, s Suk) =

D ou D ven, su’k) we apply it and transform
(VID) to

Zu (Du(su,la ceey Smk) + ZUENU Vv—)u(su,h ceey Su7k))

which implies that slave data placements for different users are
independent, given the locations of all users’ masters. Thus,
we can solve this subproblem by finding the optimal placement
of the slave replicas of each user separately.

To place a slave of a user, a greedy method finds the
current best cloud for this replica, places the slave there, and
continues to place the next slave of the same user until all k
slaves are placed. The cost incurred by placing place u’s lth
@2<l<k)slaveatcloud i (i #my, i #s,p, ' =1,...,1—1)
S i = W+ e, o) + Bul, ,
where Bui = > en, (a2, , +am, 2, , 0(My, 2 0)) o), .
and «.. are as in Section II-C, Bu,i‘z;’,’u means calculating

. . i .
Bu,i by replacing z,, with 2z, = 2yu(Su1, s Sui-1,1),

v%u(su 1.

32

and 0, i|z” means calculating 3, ; by replacing 2, ., with
z;’u =2 u(su 1y Su,i—1). 24, returns the selected cloud if
u’s [th slave slave is placed at cloud 1, and zv ., returns the
selected cloud when this slave does not exist in the system.
Therefore, the best cloud for u’s Ith slave is ¢ = argmin; 7, ;.
When [= 1, we naturally do not have Bu,i‘z;’ ., and only use
Busilzr, =i I Yuie

An exhaustive method is also possible. Except a user’s
master cloud, one can select k clouds out of all other clouds
to place this user’s k slaves, and after checking all the
possibilities, place slaves on those where the total incurred
cost is minimum. This exhaustive approach always finds the
theoretical optimum. We experimentally find that graph cuts
with the greedy approach achieves only about 1-2% worse
than with the exhaustive one, which indicates that a greedy
approach can be empirically sufficient in our case.

Note that 7, , can be extended to include ¢ (i) as part
of it, where d,,(i) = 0 if i € {s},1,...,s,, } and &,(i) =
1 otherwise, and s’ L [=1,...,k, are u’s slave locations in
the initial placement o1 (4), Jomtly with (IV), enables us to
calculate the total number of moved masters and slaves as the
reconfiguration cost.

D. Discussions

Optimality: We believe that the solutions found by our
approach are reasonably good, as the two subproblems are
either solved by the current state-of-the-art technique of graph
cuts or fairly easy to be solved due to the independence
among users. To the best of our knowledge, each subproblem
is solved to the best that can be achieved to date. Although our
approach cannot guarantee the Pareto efficiency theoretically,
it is experimentally justified by our evaluations which will be
shown in the next section.

Scalability: The most time-consuming part of our approach
is calculating the minimal s-t cut by the max-flow min-cut
algorithm, which could be computationally expensive for an
extremely large user population. However, in socially aware
services, users often form communities within which they in-
teract heavily and across which sparsely. We can thus partition
the user base into communities by algorithms like METIS [21],
and then apply our approach to each community independently
and even in a parallel manner.

Regularity: The graph cuts technique that we use requires
the pairwise cost to obey the regularity property [16]. Trans-
lated into our case, it means when solving the master replicas
placement problem, V,_,,(m,,m,) + V,_,(m,, m,) must
satisfy Vi (4,9) + Voo (4,9) + Vuso (4, 5) + Voosu (4, §) <
Vu—>v(z .7) + Vv—)u(]a) + Vu—)v(.ja) + VU—)u(’L j) V’U/, v, 27]
Regularity actually encourages the co-location of the masters
of users who have interactions between them—which matches
the requirement of social data placement.

We analyze how our case satisfies regularity. To align

VU*W + VU*)U = Vuc—w + Vz;i—w + V7f—>v + ch—>u + Vvd—>u +
V., with regularity, we deduce two sufficient conditions:

Zu,v (muamv) = Zu,v(mu), Yu, v; Zu,v (muam'u) =m,, Yu,v.
The regularity is satisfied as long as one of these two con-
ditions holds. The former requires z,, ,, the selection of one
of v’s clouds, not depend on which v’s master cloud is. This
can be implemented by making the selection only out of v’s
slave clouds, e.g., selecting the slave cloud of v that is closest
to u’s master cloud. The latter requires z,, always select v’s

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

master cloud, which is naturally true in a system with no slave
replicas (i.e., k = 0). In reality, however, it is possible that z,, ,
does not necessarily have one of the above two forms, e.g.,

m,,if m, =m, or m, =s,;,3 € {1,....k}
Puw = { 2, (My, m,), otherwise '
(VIID)
where u always accesses her master cloud if v has a repli-
ca co-located there, and accesses another cloud if not. To
make Vi, + Vi, with 2, , in (VII) satisfy regulari-
ty, we also deduce a sufficient condition: z;, ,(m,,m,) =
m,, which requires w’s requests be always forwarded to
v’s master cloud if v’s data are not found at w’s mas-
ter cloud. However, 2, ,(m,,m,) # m, does not tend
to cause a problem practically. Note that Vi, ,,(i,i) +
Vu—>u(i7 Z) + Voo (]a j) + Vu—)u(ja]) = (ai + aj)(ru’u +’rvu)’
and Vu—)v(za]) + Vv—)u(za]) + Vu—)v(]az) + Vv—)u(]vz) =
(@) + @z, Gi))Tue + (@2) + e, G))Tou +
(Vo (i) + Vi (i) + Vil (3,0) + Vis,(id) +
Vilau (650) + Vi (653) + Vil (5.9) + Vi, (4,4))- Tt is obvi-
ous that the the latter equation is definitely no smaller than the
former if «; = o, Vi, j holds. As discussed in Section II-C,
a;’s can capture the carbon intensity, the electricity or VM
price. In reality, the difference of each of these quantities at
different clouds or regions does not differ by more than one
order of magnitude [5], [13]—it is thus easy to tune the weights
associated with V.2, V! and «; to make the latter equation
large enough, which translates into the practical success of
graph cuts no matter what z,,,, is used by service providers.

IV. EXPERIMENTAL EVALUATION
With real-world data trace as inputs, we run simulations
in a variety of realistic settings. We demonstrate that our
approach can achieve significantly better results than existing
approaches, explore trade-offs among objectives, converge fast,
and scale to a huge user base.

A. Data Preparation

Users: We obtained 107,734 users all across the US with
2,744,006 social relations among them by crawling Twitter in
a breadth-first manner in 2010. We translate each user’s profile
location into geographic coordinates (i.e., [latitude, longitude]),
enabling us to calculate the geographic distance. Our Twitter
graph is a single connected component, and is used as an
undirected social graph throughout our evaluations, as in [22].
Fig. 4a is a CDF, showing that about 30% of social relations
in our dataset stretch within 500 km and all the rest spread
almost uniformly over geographic distance.

100% 100%

80%) 80%)

60%) 60%

Proportion

40%)| 40%)

-e-Social Relation
-=User to the Closest Cloud

—User to the 2nd Closest Cloud
User to the 3rd Closest Cloud

8,511.522,533.544,55 012345678910
Geographic Distance (in 1000 km) # of Closest Clouds

(a) ©)
Fig. 4: Geo-Distributions of Users and Clouds

20% 20%)

Proportion of Friends Covered

Clouds: According to the geographic distribution of users,
we select 10 regions across the US and select a city out of

33

each region as the location of a cloud. Fig. 4a confirms that
our clouds are at or near locations with dense user populations,
as about 80% of users can find a cloud closest to them with no
longer than 500 km. Fig. 4b indicates that 30% of all friends
of a user have the same closest cloud as the user. Considering
more clouds, we see that, e.g., the 5 closest clouds to a user
can include the closest cloud to about 60% of all the user’s
friends. The default factors for estimating carbon emissions
are also reported on a per region basis [23]. Table I lists the
cities we select in a carbon ascending order.

TABLE I: Carbon Intensities of Cloud Locations

City State eGRID Region [23] CO2 (Ib/MWh)
Palo Alto CA WECC California 658.68
Fall River MA NPCC New England 728.41

Seattle WA WECC Northwest 819.21
Secaucus NJ RFC East 947.42
Ashburn VA SERC Virginia/Carolina 1035.87

Miami FL FRCC All 1176.61

San Antonio X ERCOT All 1181.73

Atlanta GA SERC South 1325.68
Lansing MI RFC Michigan 1659.46
St. Louis MO SERC Midwest 1749.75

Interactions: It is extremely hard to obtain interaction
traces, especially for read operations such as one user browsing
another user’s profile. Service providers are often reluctant to
share such data due to competition and privacy concerns [24].
User interactions differ from other types of cloud workloads in
how read and write operations are distributed among users and
among users’ friends. Recent literature, fortunately, disclosed
such features for a small-scale and local OSN [8], [9], making
it possible to synthesize realistic user interactions. Fig. 5 pro-
vides CDF distributions of the operations synthesized among
our real-world Twitter users. Without loss of generality, we
have precisely scaled the OSN interactions of the smaller,
regional OSN to our large-scale, geo-distributed OSN.

100%;

100%;

80%(& 80%

60% 60%

40%

40%it
20% -e-Reads 20% -e-Reads
-&Writes - Writes
K 80% 100%

20% 40% 60% 80% 100% 0 20% 40% 60%
Proportion of Most Interactive Users Proportion of Friends Invovled

(@ (b)

Proportion of Interactions
Proportion of Users

Fig. 5: Distributions of User Interactions

We highlight how we capture the distributions of real-world
user interactions and achieve the aforementioned realistic syn-
thesization with our social graph. We first do curve fitting
for the distributions of reads and writes among top interactive
users, and the distributions of reads and writes among each
user’s friends reported in [9], and use these fitted curves as
inputs. With a given total number of reads and that of writes
conducted by all users, we then perform the following steps:
(1) Sort all users in the descending order of social degree.
With the reads and writes distributions among top interactive
users, calculate for each user the number of reads and that of
writes that this user conducts to her neighbors. (2) With the
sorted users and the distributions of reads and writes among
each user’s friends, calculate for each user the number of

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

neighbors that this user reads and writes. (3) For each user,
select the specified number (as calculated in the previous step)
of neighbors, and for a user’s each selected neighbor, assign
the number of reads and writes conducted by this user to
this neighbor as being proportional to this neighbor’s social
degree (as in the preferential model [25]). Note that we do not
consider users’ geographical locations during this procedure,
as location does not obviously influence interactions [26].

B. Evaluation Settings

Interaction Workload: As stated in the previous section,
we can control the total number of reads and that of writes
to produce different workloads while always maintaining the
featured distributions of interactions. We use the ratio of the
total number of reads over that of writes “R/W” to denote
workloads. We evaluate the case of “R/W = 107, to reflect the
fact that OSN services have many more reads than writes [9],
[14], and the case of “R/W = 17, to investigate how “R/W”
may affect the benefits of our approach.

Number of Slaves: We have 10 clouds, and we evaluate 8
cases by iterating the number of slave replicas per user from 1
to 8. The number of slaves per user depends on a lot of factors,
e.g., data availability requirements, the monetary budget of the
service provider, efc. We do not intend to decide what number
is the best for a provider. Here what we want to check is
whether our solution is better in all objective dimensions than
existing approaches for any given number of slaves per user.

Multi-Cloud Access Policies: Leveraging (VIII), we set
two policies that we consider would be among the most
practical ones. The “Master” policy where z,,, = m,,
and the “Closest” policy where z;, , = arg min; (dm, ;)
Vi € {m,,Sy1,...,Syk}. The former has been explained in
Section III-D. The latter means that, when v does not have a
replica at u’s master cloud, u’s read requests go to v’s cloud
(either her master cloud or one of her slave clouds) that is
closest to u’s master cloud for execution. Similarly, we do not
seek to decide the best access policy.

Weights of Multi-Objectives: We have four objectives to
optimize and thus four weights. We vary the weights to
seek trade-offs among objectives, and use the ratio of weights
to denote our variations. Note that we have normalized all
dimensions of inputs to the same order of magnitude in value,
and the ratios reported throughout the evaluations are the ones
of weights associated with the normalized inputs.

Figure Settings: Table 1I summarizes the specific settings
corresponding to each figure. “A/F” means that a figure is
varying this setting for comparison, and relevant information
is available in the figure itself. Note that we do not consider
the reconfiguration cost except in Fig. 12, thus the ratios in
this table are between three weights rather than four.

TABLE II: Evaluation Settings for Figures

Fig. R/W | Slave # (k) Policy | Weights
6, 13 10 A/F Closest 1:1:1
7,8,9 10 A/F A/F 1:1:1

10 A/F 4 A/F 1:1:1
11 10 4 Closest A/F
12, 14 10 4 Closest 1:1:1

Algorithmic Settings: We use C++ to implement different
placement methods. In particular, as for our proposed approach
to solve master data placement, we calculate various costs

34

according to our models and feed them to the gco-v3.0 li-
brary [16]-[18], an open source implementation of graph cuts.
We invoke this library with the option of a—f3-swap [18].

C. Evaluation Results

How much benefit can we gain? We compare the data
placements produced by our approach with those produced by
random placement, the standard practice of distributed databas-
es (e.g., MySQL) and key-value stores (e.g., Cassandra), and
by greedy placement, the de facto practice of many real-world
services [10], [11]. The random approach places each replica
of a user randomly at one of the clouds. The greedy approach
places a user’s master at the closest cloud to that user, and
places her k slaves at the other closest k clouds to that user. As
in Fig. 2, our approach uses greedy placement at initialization.

Fig. 7 shows the operation distance of different data
placements. The distance always drops as a user has more
slaves, since data become available at more clouds and more
operations can be completed locally or nearby. Greedy beats
random because slaves randomly placed at clouds are less
likely to benefit friends, due to the locality shown in Fig. 4b.
Our approach beats both random and greedy. Across all cases,
we save 33%-54% distance when the master policy is applied,
and 7%-48% when the closest policy is applied, compared
with greedy. We save even more compared with random. The
benefit of our approach over others roughly decreases as the
slave number increases, because the number of clouds that do
not have a user’s replica becomes smaller and less room is left
for optimization by rearranging replica locations.

Fig. 8 depicts the inter-cloud traffic (including those in-
curred by the propagated writes) of different data placements.
In the random and greedy placements, the amount of traffic
does not depend on access policies. With our approach, using
different policies as inputs leads to different placements and
thus different amounts of traffic. Our data placements have
13%-T78% less traffic than others. We dissect the traffic details
in Fig. 6 as follows, where we show greedy and our approach
with the closest policy as examples. The growth of the number
of slaves per user incurs more write traffic to maintain con-
sistency, while the amount of read traffic becomes less due to
the increased data availability at more clouds. Overall, random
and greedy have the total traffic descend; the traffic of our
solutions keeps increasing, as we reduce the read traffic by a
large fraction and the write traffic becomes a dominance.

e
o

e
o

Il Read
I Write

Il Read
I Write

o
o
=}
o

e o
oW
o o
oW

o
o

Normalized Inter—Cloud Traffic
Normalized Inter—Cloud Traffic

o
o

1 8 1 8

3 4 5 6
of Slaves per User

(b) Ours
Fig. 6: A Closer Look at Inter-Cloud Traffic

3 4 5 6
of Slaves per User

(a) Greedy

Fig. 9 focuses on the carbon footprint. Our approach
saves 10%-30% carbon compared to random and greedy. The
essential feature that distinguishes carbon from distance and
traffic is that both the latter encourage data to be placed closely
for optimization, as stated in Section III-D, while carbon does
not necessarily favor this, but rather depends on at which

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Fig. 7: Operation Distance Fig. 8: Inter-Cloud Traffic

=3

[0 o
Qo5 £ 0.6 c <0.8,
§ 25 =w=Master, Random :_@ 04 g 10 -é' 7 El\clllasteri Sm:lg
@ £ osest,RIW=
o 2.0] ~©-Master, Greedy 5 0.5 3 09 2 [IMaster, RW=1
. “¥-Master, Ours =1 i G 0.6
_S 8 0.46 < 0.8 5 M Closest, RW=1
15 %03 » S o 8
@ © 0. c 0. =
§1. S /A—A/A_A_:ATQ—-:« O & “o-Master, Greedy B 04
o 202 ..-‘V---ﬂv"'a'ﬂ om Bo.ee “¥-Master, Ours [¢)
IS 0.5 He-. N ‘_.V‘"‘V -0~ Greedy Ny -#-Closest, Random 202
205 R) Py) E 0.1 ¥~ Master, Ours g 0.5: -B-Closest, Greedy A
€ 0 5 o -4 Closest, Ours 5 o 4‘ Closest, Ours 3
S 2 0.
zZ 1 2 3 4 5 6 8 2 1 2 3 4 5 6 7 1 2 3 4 5 6 7 T 0 " -
of Slave Replicas per User # of Slave Replicas per User # of Slave Replicas per User Distance Traffic ~ Carbon

Fig. 9: Carbon Footprint ~ Fig. 10: Influence of Workload

=3

Carbon

Distance Traffic Distance Traffic CarbonReconfig

Fig. 11: Tuning Weights Fig. 12: Reconfiguration
clouds the operations are executed. Random has a steadily
growing carbon as the slave number increases, since it tends
to span each user’s replicas all across the clouds with carbon
intensity also spanning a certain range, as in Table I. Greedy’s
carbon changes up and down since it places data collectively
and tends to always use a set of nearby clouds.

How does the workload influence the benefit? Fig. 10
describes how the total number of reads and writes among
users may influence the advantages of our approach. For both
policies, our approach optimizes distance and traffic more
than carbon, when there are more reads than writes, and vice
versa. This is normal, because the advantage of our approach
lies in optimizing reads, and writes excluding the propagated
ones. More writes imply more propagations, leaving the system
with less room for optimization, which, in turn, indicates that
our approach is more suitable and capable for read-intensive
services like socially aware ones and many others.

What are the trade-offs among objectives? Fig. 11 indi-
cates that, by tuning the weight of each objective dimension,
one can seek a range of trade-offs without changing any other
part of our framework. Here we choose to tune distance and
traffic as an example while fixing the weight of carbon. We
set the ratio of the distance weight over the traffic weight to
be (1) 1:1, (2) 10:1, (3) 1:10, and (4) 10:10. We make the
following observations: (2) has a larger distance weight than
(1), and thus (2) is smaller in distance, and is in turn larger in
traffic and carbon; (3) has a larger traffic weight than (1), and
thus (3) is smaller in traffic and larger in distance and carbon;
(4) has larger distance and traffic weights than (1), and is thus
smaller in these two dimensions and larger in carbon.

Fig. 12 additionally considers the reconfiguration cost, i.e.,
the total number of moved masters and slaves. By controlling
the weight of the reconfiguration cost, one can set it is cheap
or expensive to move replicas across clouds. In this figure, we
set this weight to be 1 and 10, respectively. One interesting
observation is that setting it to be 10 times larger can efficiently
prohibit replica movements across clouds. However, this does
not prevent optimization, since the 1 case moves a huge many
more replicas and only achieves about 30% more optimization
than the 10 case.

35

0 -6~ Saved Time

3 1 Weighs= 1 11 g W Weight=1 » k-1 o

209 [Eweights=10: 1:1 9] Il Weight=10 4 k=2 z -B-Neglected Edges

O " Eweights= 1:10:1 ©o08 ©0.y9 k=3 S 08 Neglected Interactions

g | IMWeighis=10:10:1 § ket k=4 T | Degraded Total Cost

o 206 L k=5 o 0.6

5 3 0.8 k=6 <]

go7 . 8 ik=7 204

< 0.6 5 © —+k=8 g

8 & Eo7 o0 é

§05 502 2 o =4 5 —
e T

£ £ 06 G

204 20 0 1 2 3 4 5 6 7 8 2 5

3 4
of Partitions

Fig. 14: Scalability

of Executed lterations

Fig. 13: Convergence

How fast does our approach converge? Fig. 13 illustrates
the total costs of the data placement after each iteration of our
approach, varying the number of slaves per user. One iteration
includes an execution of graph cuts to solve the master replicas
placement and an execution of our greedy method to solve the
slave replicas placement. This figure indicates that the most
cost reduction is achieved in the first iteration. For all cases,
the largest number of required iterations is 8, after which no
cost can be reduced any more. Our approach is highly efficient
and converges fast. In practice, one can even adopt an early
stop strategy, i.e., running 2 or 3 iterations and terminating the
algorithm is sometimes already sufficient to achieve a large
part of optimization.

How scalable is our approach? Fig. 14 demonstrates the
scalability of our approach. We use METIS [21] to partition
our original dataset into several partitions, and then apply our
approach to each partition independently while neglecting the
inter-partition interactions. Doing so saves up to 85% (in the
S-partition case) of the total execution time, and only degrades
the total cost of the optimal data placement by less than 8%,
compared with running our approach directly on the original
dataset. The success roots in the community structure of OSN
social relations and interactions, and thus even neglecting 45%
social relations and the associated 22% interactions of the
original dataset only has a slight influence on the optimization.
For real-world data with a stronger community structure, we
can expect even less cost degradation.

V. RELATED WORK

We describe existing work in two categories and discuss
how our work in this paper differs from them.

Saving energy and carbon of distributed data centers:
Qureshi et al. [13] first proposed to cut the electricity bill
of geo-distributed data centers by leveraging the diversity of
electricity prices of different regions. Rao et al. [12] defined
strategies to distribute user requests to minimize the electricity
expense of data centers that consume electricity from multiple
markets. Le et al. [6] argued that the electricity expense could
be reduced by appropriately controlling the proportion of the
brown energy and that of the green energy consumed by each

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

data center. Liu et al. [4] minimized the electricity expense by
additionally integrating the availability of renewable energy at
different regions. Xu et al. [3] considered the price diversity
of both the electricity and the ISP bandwidth of data centers,
and minimized the sum of these two expenditures. Gao et
al. [5], to the best of our knowledge, did the only work so
far of investigating optimizing multiple dimensions of system
objectives of distributed data centers or clouds.

All such work targets conventional and non-socially-aware
services. Except [5], all assume full data replication across data
centers. Even [5] still cannot serve our purpose, as it does not
address (1) social relations and user interactions, (2) writes
to contents and the maintenance of replica consistency, (3)
inter-cloud operations that contribute to QoS and inter-cloud
traffic, and (4) the master-slave paradigm that is widely used
in reality. Our work, in contrast, captures all such particular
features in the context of socially aware services and provides
trade-offs among a wide range of metrics via our generalized
model framework and a unified, single solution approach.

Placing OSN and social media contents across clouds:
Jiao et al. [2] studied distributing OSN over multiple clouds
in order to minimize the monetary expense of the service,
while meeting a pre-specified overall QoS requirement and
ensuring social locality for every user. Liu et al. [14] chose
to replicate data across clouds for selected users instead of
replicating for every user, in order to save the total inter-cloud
traffic involving reads and writes. Wu et al. [1] focused on
scaling social media service into geo-distributed clouds with
minimum cost over time by exploiting a dynamic optimization
framework leveraging social influence among users. Wang
et al. [15] proposed a hybrid edge-cloud and peer-assisted
architecture to serve social videos in order to improve the
replication performance and QoS, leveraging the propagation
properties of social videos.

This category of work focuses either on the performance
of the OSN/social media service [14], [15], or the monetary
expense of the service in clouds [1], [2]. Our work differs
from such work in that, to our best knowledge, we are the
first to include the carbon footprint of socially aware services
into consideration, with a complex trade-off among a large
variety of related factors such as QoS and inter-cloud traffic.
Besides the generality of our models and the unique solution
approach, we are also the first to investigate this complicated
joint optimization problem in the master-slave paradigm while
accommodating customized multi-cloud access policies.

VI. CONCLUSION

While socially aware services attract billions of users, the
need for such services to meet multiple system objectives has
become compelling. The unique features of socially aware
services that distinguish themselves from other Internet ser-
vices pose a new problem of optimizing data placement over
multiple geographically distributed clouds.

In this paper, we firstly build models that generalize to
a variety of system objectives, capturing user interactions, the
master-slave paradigm, and the multi-cloud access policies. We
then propose an approach with multiple iterations, with each
iteration solving master and slave data placement separately,
leveraging our finding that the master placement subproblem
can be effectively solved via graph cuts. Evaluations with real-
world data further show that our approach is not only able to
optimize every dimension of the socially aware service, but can

36

also pursue a diversity of trade-offs among objectives, converge
fast, and scale to a large user base.

ACKNOWLEDGMENT

This work has been partially sponsored by the EU FP7
IRSES MobileCloud Project (Grant No. 612212).

REFERENCES

[1] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling social media
applications into geo-distributed clouds,” in INFOCOM, 2012.

[2] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social
networks on geo-distributed clouds,” in ICNP, 2012.

[3] H. Xu and B. Li, “Joint request mapping and response routing for geo-
distributed cloud services,” in INFOCOM, 2013.

[4] Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew, “Greening
geographical load balancing,” in SIGMETRICS, 2011.

[5] P. Gao, A. Curtis, B. Wong, and S. Keshav, “It’s not easy being green,”
in SIGCOMM, 2012.

[6] K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. Nguyen, “Man-
aging the cost, energy consumption, and carbon footprint of internet
services,” in SIGMETRICS, 2010.

[7] “Case studies - amazon web services,” http://aws.amazon.com/solutions/
case-studies/.

[8] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao, “User
interactions in social networks and their implications,” in EuroSys, 2009.

[9] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and B. Zhao,
“Understanding latent interactions in online social networks,” in IMC,
2010.

[10] Y. Sovran, R. Power, M. Aguilera, and J. Li, “Transactional storage for
geo-replicated systems,” in SOSP, 2011.

[11] N. Tran, M. Aguilera, and M. Balakrishnan, “Online migration for geo-
distributed storage systems,” in USENIX ATC, 2011.

[12] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in INFOCOM, 2010.

[13] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in SIGCOMM,
2009.

[14] G. Liu, H. Shen, and H. Chandler, “Selective data replication for online
social networks with distributed datacenters,” in ICNP, 2013.

[15] Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and S. Yang,
“Propagation-based social-aware replication for social video contents,”
in ACM Multimedia, 2012.

[16] V. Kolmogorov and R. Zabin, “What energy functions can be minimized
via graph cuts?” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 2, pp. 147-159, 2004.

[17] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124-1137, 2004.

[18] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, 2001.

[19] . Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J. Léon,
Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing scalable,
highly available storage for interactive services,” in CIDR, 2011.

[20] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, no. 3, pp. 399404, 1956.

[21] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359-392, 1999.

[22] J. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: Scaling online social
networks,” in SIGCOMM, 2010.

[23] “U.s. energy information administration (eia),” http://www.eia.gov/.

[24] M. Mondal, B. Viswanath, A. Clement, P. Druschel, K. Gummadi,
A. Mislove, and A. Post, “Defending against large-scale crawls in online
social networks,” in CoNEXT, 2012.

[25] 1. Hoque and I. Gupta, “Disk layout techniques for online social network
data,” IEEE Internet Computing, vol. 16, no. 3, pp. 24-36, 2012.

[26] A. Kaltenbrunner, S. Scellato, Y. Volkovich, D. Laniado, D. Currie,
E. Jutemar, and C. Mascolo, “Far from the eyes, close on the web: im-
pact of geographic distance on online social interactions,” in SIGCOMM
WOSN, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

