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Abstract—Transfer learning does not train from scratch but
leverages existing models to help train the new model of better
accuracy. Unfortunately, realizing transfer learning in distributed
cloud-edge networks faces critical challenges such as online
training, uncertain network environments, time-coupled control
decisions, and the balance between resource consumption and
model accuracy. We formulate distributed transfer learning as a
non-linear mixed-integer program of long-term cost optimization.
We design polynomial-time online algorithms by exploiting the
real-time trade-off between preserving previous decisions and ap-
plying new decisions, based on primal-dual one-shot solutions for
each single time slot. While orchestrating model placement, data
dispatching, and inference aggregation, our approach produces
new models via combining the existing offline models and the
online models being trained using weights adaptively updated
based on inference upon data samples that dynamically arrive.
Our approach provably incurs the number of inference mistakes
no greater than a constant times that of the single best model
in hindsight, and achieves a constant competitive ratio for the
total cost. Evaluations have confirmed the superior performance
of our approach compared to alternatives on real-world traces.

I. INTRODUCTION

The 5G mobile communication networks are shaping the
new paradigm of how users can explore and utilize Artificial
Intelligence (AI). 5G networks consist of centralized gigantic
data centers (referred to as “clouds”) in the core [1], [2],
and distributed cellular base stations often strengthened by
co-located micro data centers or computing servers (referred
to as “edges”) as in Multi-access Edge Computing (MEC). AI
models can be trained in the cloud using abundant data and
dispatched to edges to serve users’ inference requests [3], [4].

One fundamental problem of AI in 5G is that, as time goes,
AI models often have varying or even decaying accuracies.
First, the underlying data distribution, i.e., the relation between
data’s features and labels, drifts due to the non-stationary
nature of the data and the environment [5], [6]. Under such
“concept drifts”, AI models which capture the relation between
existing data’s features and labels may not capture that for
the new data. Second, the underlying data distribution may
differ across communities or areas and AI models trained by
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Fig. 1: Distributed Transfer Learning in Edge Networks

different data may capture different relations between data’s
features and labels. As users move, their requests, which used
to be served by the models at a previous edge, may not be
properly resolved by the models at the new edge [7].

Transfer learning [8], [9] seems a promising solution to this
problem. As existing AI models become less accurate, rather
than dropping them and building new models from scratch, one
can leverage existing models to help build the new models, i.e.,
transferring “knowledge” from existing models (i.e., offline
classifiers) and models being trained (i.e., online classifiers)
to the new model which is a combination of them, especially
when the new data alone may be insufficient for training or
when the underlying data distribution may possess periodical
patterns. Yet, this approach faces critical challenges in 5G.

First, it is non-trivial to design and realize transfer learning
in a distributed manner. While it is desired to keep data
samples within the local edge networks without sending them
to the remote cloud due to privacy and performance (e.g.,
traffic localization), extracting knowledge from each of the
potentially heterogeneous offline classifiers, which may reside
across different edges, to train the online classifier upon data
samples that dynamically arrive requires to make a compre-
hensive set of control decisions, such as classifier placement,
data sample dispatching, inference aggregation, and training
parameter update, as exhibited in Fig. 1. Besides, distributed
transfer learning also needs to ensure the quality or accuracy
of the new classifiers being produced. It is challenging to make
and navigate the trade-offs of these intertwined decisions.

Second, it is not an easy task to make distributed transfer
learning cost-efficient in an online manner. Transfer learning
needs to operate continuously as needed in the uncertain cloud-
edge environment, where the operational cost of edges, the
delay between edges, and the available capacity of each edge
can vary unpredictably [7], [10]. We thus need to control the
system on the fly to pursue the long-term optimization without



observing any future inputs. This is particularly hard due to
time-coupled decisions [11], [12] caused by selecting the edge
to download the offline classifier from the cloud or host the
online classifier to be created. For instance, hosting a classifier
on a local edge now will save “start-up” cost of downloading
the classifier and re-instantiating the edge environment if it
is also needed here in the next time slot, but will waste the
operational cost if this classifier turns out to be unwanted (e.g.,
if there is another cheaper edge for it) in the next time slot.

Existing research falls insufficient for addressing the afore-
mentioned challenges. Some [7], [13]–[17] studied transfer
learning’s performance, efficiency, and accuracy, but have
never considered resource or cost overhead, not to mention in
distributed cloud-edge environments or in an online manner.
Others [18]–[24] focused on resource utilization, job schedul-
ing, and various optimizations for cloud and edge networks
and related applications, but none of them has investigated
distributed transfer learning. To the best of our knowledge,
this work is the first to combine these two lines of research.

In this paper, we model and formulate distributed transfer
learning over edge networks as a long-term cost optimization
problem, which captures the operational cost of hosting offline
and online classifiers, the start-up cost of downloading offline
classifiers and instantiating local environments, the delay of
dispatching data samples and aggregating inference results,
as well as the number of mistakes incurred by applying
the combined classifier to conducting inference upon data
samples. Our problem is a non-linear mixed-integer program,
which is NP-hard, makes no assumption on the dynamism of
all the inputs, and allows arbitrary offline classifiers.

We then design a set of polynomial-time online algorithms
to solve this problem. We firstly design a primal-dual-based
Algorithm 1 to solve the one-shot problem to place offline
classifiers along with data dispatching and inference aggrega-
tion, assuming all other control decisions have been made. We
afterwards design Algorithm 2 to balance the new decisions
from Algorithm 1 against the most recent previous deci-
sions of the offline classifier placement, assuming the online
classifier placement is given. Our rationale is to determine
whether to switch to the new placement through a real-time
comparison between the current start-up cost of switching
to this new placement against the cumulative non-start-up
cost of continuing to stay at the previous placement. Based
on a similar idea, we also design Algorithm 3 to determine
the online classifier placement with the cost associated to
the decisions from Algorithm 2. Having a weight for each
classifier, we further design Algorithm 4 which, at each time
slot, invokes Algorithm 3 to set up the distributed transfer
learning, decreases the weights of those classifiers with poor
accuracy in terms of inference mistakes upon data samples that
arrive dynamically, and updates the online classifier based on
the loss it incurs. The final combined classifier per data sample
is hence the weighted sum of existing offline classifiers and
the online classifier being trained upon that data sample.

We have rigorously proved that our approach can guarantee
an upper bound on the number of the mistakes made by the

combined classifiers’ inference results compared to the ground
truth, which is in terms of the logarithm of the number of the
offline classifiers, against the number of the mistakes made by
the single best classifier in hindsight. Our approach also leads
to a parameterized-constant competitive ratio for the total cost
against the offline optimum which assumes all the inputs over
the entire time horizon are to be observed all at once in prior.

We finally conduct extensive evaluations using real-world
data traces. We utilize London’s underground stations [25]
with their dynamic passenger traffic to mimic users’ inference
requests, the geographical distance [26] to estimate the delay
between edges, and the wholesale electricity price [27] to serve
as the unit operational cost, respectively. We also use the text
classification dataset 20Newsgroups [28] with 8843 data
samples for transfer learning. We observe multiple results:
(i) our approach saves up to 60.6% total cost in the long
run, compared to existing algorithms, and performs best by
achieving up to 63.1% cost reduction when varying the weight
of different components in the total cost; (ii) our approach
also guarantees model quality in terms of lower mistake rates
compared to state-of-the-art transfer learning approaches; and
(iii) our algorithms execute fast on an commodity computer,
finishing within 4.7 seconds per 15-minute-long single time
slot, showing high efficiency and scalability.

II. MODELS AND PROBLEM FORMULATION

A. System Models

Edge Computing Networks: We study the system over a
series of consecutive time slots T = {1, ..., T}, correspond-
ing to our decision-making frequency. We consider a set of
geographically distributed edges I, where an “edge” refers to
a cellular base station or a WiFi access point equipped with a
micro data center or a server cluster. The edges are connected
to one another, and also to a common cloud via backhaul
networks. For i, j ∈ I and t ∈ T , we use dtij to denote the
delay between the edge i and the edge j at the time slot t,
and use Dt

i to denote the available capacity of the edge i at
the time slot t. We also consider that this edge environment
provides a virtual machine (VM) or a container to host and
run each offline or online classifier, as elaborated below.

Offline and Online Classifiers: The cloud maintains a set
K of pre-trained “offline” classifiers that are to be downloaded
to the edges to serve users with ultra-low latency and used to
train a single “online” classifier being updated continuously
to accommodate any concept drift. For k ∈ K, i ∈ I, and t ∈
T , we use atki to denote the operational cost (e.g., electricity
consumption) of hosting offline classifier k on edge i at t,
use bti to denote the operational cost of hosting the online
classifier on edge i at t, use cki to denote the “start-up” cost
of offline classifier k on edge i, including the cost (e.g., traffic
or bandwidth consumption) of downloading offline classifier k
from the cloud to edge i and the cost (e.g., lead time, system
oscillation) of booting and preparing the VM or container on
edge i, and use ci to denote the “start-up” cost of the online
classifier on edge i, which only includes booting and preparing
the VM or container on edge i. The online classifier is directly
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Fig. 2: Distributed Transfer Learning per Data Sample

created on edge using the training data samples per time slot,
rather than being downloaded from the cloud. We also use
fk(·) to denote the “decision function” of the offline classifier
k. Besides, we use f tm(·) to denote the decision function of
the online classifier that is trained at the time slot t for the data
sample m. Note that we write f tm(·) instead of f t(·), because
the single online classifier is being updated per data sample
m during transfer learning, further elaborated as below.

Data Samples: We use Mt = {1, ...,Mt} to denote the
data samples that arrive at the system at the time slot t
from users. Each single data sample m ∈ Mt is represented
as (ptm, q

t
m), where ptm refers to its feature values and qtm

refers to its ground-truth label. Without loss of generality, we
assume qtm ∈ {−1, 1}, ∀m, ∀t. We emphasize that qtm is only
observable right after we conduct the inference for m using our
offline and online classifiers. We also note that any data sample
m may arrive at one edge but be dispatched to a different edge
to do the inference. We use dtmi to represent the delay between
the edge where the data sample m arrives and the edge i at t.

Distributed Transfer Learning: At the time slot t, as the
data sample m arrives at the system, we design distributed
transfer learning that works as follows, also shown in Fig. 2:

• Step 1: The data sample m with its feature value ptm is
dispatched to every edge that has the offline classifiers
or the online classifier. Note that it only needs to be
dispatched to an edge once even if an edge hosts multiple
classifiers. Receiving ptm, every offline classifier k com-
putes fk(ptm) and the online classifier computes f tm(ptm).

• Step 2: The decisions from the offline classifiers are sent
to the edge that maintains the online classifier with all
the weights of all the classifiers to compute the inferred
label as F tm(ptm) = sign(

∑
i

∑
k z

t
kimsign(fk(ptm)) +∑

i w
t
imsign(f tm(ptm))) [29], where sign(·) returns 1 for

a positive value, −1 for a negative value, and 0 for 0;
ztkim is the weight for the offline classifier k on the edge
i for ptm; and wtim is the weight for the online classifier
on the edge i for ptm.

• Step 3: The inferred label F tm(ptm) is then sent to the
edge where the data sample m arrives originally, and is
further sent back to the user.

• Step 4: The ground-truth label qtm arrives at that same
edge, and is dispatched to the edge that has the online
classifier and all the weights. There, the weight for each
classifier is updated and the decision function itself of
the online classifier is also updated, i.e., f tm(·) is updated
to f tm+1(·) using the received decision results of offline

classifiers (see details in Section IV-B).
Our distributed transfer learning then proceeds to the next data
sample m+1 at the time slot t. Note that, in the above process,
we “transfer knowledge” from the existing offline decision
functions fk(·), ∀k to the new decision function F tm(·) which
is a combination of fk(·), ∀k and the online decision function
f tm(·) being trained upon each data sample.

Control Decisions: We concentrate on making the following
control decisions in this paper. We use xtki ∈ {1, 0} to denote
whether or not the offline classifier k is downloaded from
the cloud and hosted on the edge i at the time slot t. We
use yti ∈ {1, 0} to denote whether or not the online classifier
is trained and hosted on the edge i at the time slot t. We
utmi ∈ {1, 0} to denote whether or not to transfer data sample
m from the edge where it arrives to the edge i at t, and use
vtij ∈ {1, 0} to denote whether or not to transfer the decision
results of offline classifiers from the edge i to the edge j at
t. We also use ztkim, w

t
im ∈ [0, 1] to denote the weight for the

offline classifier k on the edge i and the weight for the online
classifier on edge i, respectively, for the data sample m at the
time slot t, also described in the above.

Cost of Transfer Learning: The cost of distributed transfer
learning at any individual time slot t consists of multiple
components: (1) the operational cost of hosting classifiers
on edges:

∑
i

∑
k a

t
kix

t
ki +

∑
i b
t
iy
t
i ; (2) the start-up cost of

downloading classifiers from the cloud to edges and preparing
the VMs or containers on edges:

∑
i

∑
k cki

[
xtki − x

t−1
ki

]+
+∑

i ci
[
yti − y

t−1
i

]+
, where [·]+ = max{·, 0}; (3) the perfor-

mance overhead incurred by running distributed transfer learn-
ing across edges, including the delay of dispatching data sam-
ples

∑
i

∑
m d

t
miu

t
mi, the delay of transmitting decisions of

offline classifiers
∑
i

∑
j d

t
ijv

t
ij , and the delay of transmitting

the inferred label and the ground-truth label 2 ·
∑
i

∑
m d

t
miy

t
i .

Note that the inferred label (or the ground-truth label) is only
sent from (or to) the edge i that has the online classifier.

Mistakes of Transfer Learning: We consider the number
of “mistakes” to measure the quality or accuracy of transfer
learning [13], i.e., the number of occurrences where the
inferred label does not match the ground-truth label. We denote
the number of mistakes for all data samples of any single
time slot t as

∑
m I{sign[qtm · (

∑
i

∑
k z

t
kimsign(fk(ptm)) +∑

i w
t
imsign(f tm(ptm)))] < 0}, where I{·} = 1 if the inequal-

ity condition contained is true and I{·} = 0 if not.

B. Problem Formulation, Challenges, and Goal

Problem Formulation: We minimize the sum of (i) the
long-term total cost of transfer learning and (ii) the long-term
total number of mistakes of transfer learning over time:

Min C1 =
∑
t

∑
i

∑
k

(
atkix

t
ki + cki[x

t
ki − x

t−1
ki ]+

)
+
∑
t

∑
i

(
btiy

t
i + ci[y

t
i − y

t−1
i ]+

)
+
∑
t

∑
i

∑
m (dtmi (utmi + 2yti)) +

∑
t

∑
i

∑
j d

t
ijv

t
ij

+
∑
t

∑
m I
{
sign

[
qtm ·

(∑
i

∑
k z

t
kimsign(fk(ptm))

+
∑
i w

t
imsign(f tm(ptm))

)]
< 0
}

(1)



s.t. ztkim ≤ yti ,∀k, i, t,m, (1a)
wtim ≤ yti ,∀i, t,m, (1b)∑
i y
t
i = 1,∀t, (1c)∑

i x
t
ki = 1,∀t, k, (1d)∑

i(
∑
k z

t
kim + wtim) = 1,∀m, t, (1e)∑

k x
t
ki + yti ≤ Dt

i ,∀i, t, (1f)∑
j v

t
ij ≥ xtki,∀k, i, t, (1g)

vtij ≤ ytj ,∀i, j, t, (1h)

utmi ≥ xtki,∀k, i,m, t, (1i)
utmi ≥ yti ,∀i,m, t, (1j)

var. xtki, y
t
i , u

t
mi, v

t
ij ∈ {0, 1}, ztkim, wtim ∈ [0, 1].

Constraints (1a) and (1b) ensure that only the edge that hosts
the online classifier can maintain all the weights for all the
classifiers. Constraints (1c) and (1d) ensure that the online
classifier can only be hosted by a single edge, and every offline
classifier can only be hosted by a single edge. Constraint (1e)
states that all the weights are normalized and their sum is one.
Constraint (1f) respects the capacity of each edge. Constraints
(1g) and (1h) guarantee that the decision computed by every
offline classifier is transmitted to the edge that hosts the online
classifier. Constraints (1i) and (1j) guarantee that every data
sample is dispatched to every edge that hosts the classifier(s).

Challenges: It is non-trivial to solve the above optimization
problem due to three challenges. First, we want to solve the
problem in an online manner. That is, as time goes, at any time
slot, we want to make control decisions for that time slot while
observing only the inputs for that single time slot and no inputs
for all the future time slots. For example, for the start-up cost
cki
[
xtki − x

t−1
ki

]+
, we need to make xt−1 at t−1; however, at

t−1, we have not made the decision of xt, without which it is
difficult to make a good decision of xt−1 in order to optimize
cki
[
xtki − x

t−1
ki

]+
. It is a similar case for yt−1 and its start-up

cost ci
[
yti − y

t−1
i

]+
. Second, the problem contains nonlinear

terms, i.e., the number of the mistakes of transfer learning
with sign(·) and I{·} functions, which are intertwined with
online training. While fk(ptm) can be observed as the offline
classifiers are given and the data samples arrive, we need to
determine how we should train or update the online classifier
f tm(·) at t in our algorithms in addition to accommodating
the nonlinearity. Third, the problem is NP-hard. The problem
contains integer variables, and is actually NP-hard as it can be
reduced to the existing uncapacitated facility location problem
(if we only retain the variables x and u and the related terms in
the formulation). The NP-hardness demands computationally
efficient algorithms. It is not easy to achieve so in the offline
setting, and it will be harder to do it in an online setting.

Goal: Our goal is to design polynomial-time approximation
algorithms which make control decisions in an online manner
and ensure that such decisions lead to a provable “competitive
ratio”. The competitive ratio r is a constant, which may contain
parameters, to satisfy C1 ≤ rC∗1 . Here, C1 refers to the value
of the objective function of the problem (1) evaluated with the

solution produced by our online algorithms, and C∗1 refers to
that evaluated with the optimal solution of (1) which were to
be produced in the offline manner, when all the inputs were
observed all at once before the start of the entire time horizon.

Algorithms Roadmap: First, to overcome intractability, we
design a primal-dual approximation algorithm (i.e., Algorithm
1) to solve xt, vt and ut from the one-shot problem at any
t, assuming yt is given. Second, to overcome the challenge
of being online, we design two algorithms (i.e., Algorithm 2,
which invokes Algorithm 1, and Algorithm 3, which invokes
Algorithm 2) to (re-)solve xt, yt, vt and ut at t, pursuing
the dynamic trade-off between switching to a new decision
and continuing to stay at the previous decision. Third, to
accommodate nonlinearity and online training, we present the
overall algorithm (i.e., Algorithm 4, which invokes Algorithm
3) to set the weights zt and wt of all classifiers given xt and
yt at t, and conduct online training by updating f tm(·) per data
sample m. We elaborate these four algorithms and prove the
performance guarantees in the next two sections.

III. ALGORITHM FOR ONE-SHOT PROBLEM

In this section, we formulate the innermost problem of
the offline classifier placement for each individual time slot,
assuming all the other control decisions are pre-specified (and
these decisions will be all made in the next section). We design
a primal-dual algorithm, i.e., Algorithm 1, with a provable and
guaranteed approximation ratio for this one-shot problem.

A. Innermost Problem
Consider C1, i.e., the objective function of (1). If yt is

given, then at t, we can temporarily remove
∑
m I{sign[qtm ·

(
∑
i

∑
k z

t
kimsign(fk(ptm)) +

∑
i w

t
imsign(f tm(ptm)))] < 0},

because as we will show, given yt we will use Algorithm 4
in Section IV to determine zt and wt to satisfy Constraints
(1a)∼(1b). Also, if yt is given,

∑
i b
t
iy
t
i +

∑
i

∑
m 2dtmiy

t
i +∑

i ci
[
yti − y

t−1
i

]+
is known at t accordingly. Thus, we only

need to focus on the following part of the problem (1):

Min C2 =
∑
t,i,k

(
atkix

t
ki + cki[x

t
ki − x

t−1
ki ]+

)
+
∑
t,i,m d

t
miu

t
mi +

∑
t,i d

t
iv
t
i (2)

s.t.
∑
i x

t
ki = 1,∀k, t, (2a)∑

k x
t
ki ≤ Qti,∀i, t, (2b)

vti ≥ xtki,∀k, i, t, (2c)
utmi ≥ xtki,∀i,m, k, t, (2d)

var. xtki, v
t
i , u

t
mi ∈ {0, 1}, (2g)

where Qti = Dt
i −yti . As yt is given, we have replaced vtij by

vti , d
t
ij by dti, and

∑
j v

t
ij ≥ xtki by vti ≥ xtki for simplification.

This is because there is only one j where ytj = 1, and for all
the other js, we have ytj = 0. So, for this specific j, we can
set vtij = 1, ∀i; for all the other js, we naturally have vtij = 0,
∀i, due to (1h). vtij is irrelevant to j now, but corresponds to
vti in a one-to-one manner; it is a similar case for dtij and dti.

To tackle the time-coupled term
∑
t,i,k cki[x

t
ki − x

t−1
ki ]+ in

C2 in an online manner, we will explore the real-time trade-
off between keeping the “previous” decisions and applying



the “new” decisions at each t, which will be discussed later
in details. Now, in order to obtain such “new” decisions, we
temporarily remove

∑
i,k cki[x

t
ki − x

t−1
ki ]+ in C2 to construct

the following one-shot problem at any individual t (where we
have omitted the time index t to simplify the presentation).
This is also what we call our “innermost problem”:

Min C3 =
∑
i,k akixki +

∑
i,m dmiumi +

∑
i divi (3)

s.t.
∑
i xki = 1,∀k, (3a)∑
k xki ≤ Qi,∀i, (3b)

vi ≥ xki,∀k, i, (3c)
umi ≥ xki,∀i,m, k (3d)

var. xki, di, umi ∈ {0, 1}. (3e)

By relaxing the binary variables xki, di, umi into real domains
and introducing dual variables λk, δi, εki, φkim for (3a)∼(3d),
respectively, we write the Lagrange dual problem as

Max D3 = −
∑
iQiδi −

∑
k λk (4)

s.t. aik + δi + λk + εki +
∑
m φkim ≥ 0,∀i, k (4a)∑

k εki ≤ di,∀i, (4b)∑
k φkim ≤ dmi,∀m, i, (4c)

var. δi, εki, φkim ≥ 0, λk ∈ R. (4d)

B. Primal-Dual Algorithm

We design Algorithm 1 to simultaneously construct integral
feasible solutions to the primal problem (3) and feasible
solutions to the dual problem (4). The idea of the primal-dual
algorithm is to elevate the dual variable continuously until the
dual constraint becomes tight (i.e., a constraint of the form of
ax ≤ b is considered tight when ax = b), and then the primal
variable corresponding to that tight dual constraint can be set
to a non-zero value in order to still satisfy the complementary
slackness of the Karush-Kuhn-Tucker (KKT) conditions. Our
Algorithm 1 is for each t, so t is omitted from the presentation.

We explain our Algorithm 1 following the above principle.
By combing (4b) and (4c) with (4a), we can transform (4a)
into

∑
k(λk + δi + aik) + di +

∑
m dmi ≥ 0. Note that if this

inequality is tight, then (4a) is tight. One sufficient condition
to make this inequality hold is to make the following hold:
λk + δi +aik +di/K+

∑
m dmi/K ≥ 0, ∀k. Now, instead of

increasing dual variables slowly, we can directly set the value
of λk to λk = −mini∈I(δi + aik + di

K +
∑
m dmi
K ), which can

make (4a) tight. Afterwards, the primal variable xik, which
corresponds to (4a), can be set to 1; vi and umi can be also
set to 1 at this point. Based on what is stated above, we choose
i as i = argmini∈I(aki+δi+

di
K +

∑
m dmi
K ) for each k, as in

Line 3 of our algorithm. Line 4 guarantees no violation of the
constraint (3b), where ∆Qi is defined as the remaining number
of classifiers that edge i can host. We regard the dual variable
δi as a reflection on the potential capability of edge i to host
offline classifiers (i.e., the larger δi, the less likely i is to be
selected). Thus, δi is increased for the selected edge i∗ due to
the decrease of ∆Qi∗ and remains intact otherwise. The update
of δi is carefully designed for achieving low additive loss in

Algorithm 1: Offline Classifier One-Shot Placement
Input: aki, dmi, di, yi, Qi = Di − yi

1 Initialize: δi, λk, εki, φkim,∆Qi = 0
2 for k ∈ K do
3 i+ = argmini∈I(aki + δi + di

K +
∑
m dmi
K );

4 while ∆Qi+ + 1 > Qi+ do
5 I = I\i+;
6 i+ = argmini∈I(aki + δi + di

K +
∑
m dmi
K );

7 i∗ = i+;
8 δi∗ = δi∗(1 + 1

Qi
) +

ai∗k+di∗/K+
∑
m dmi∗/K

Qiξ
;

9 λk = −(δi∗ + ai∗k + di∗
K +

∑
m dmi∗

K );
10 xki∗ = 1, umi∗ = 1;
11 vi∗ = 1 (i.e., vi∗j = 1 where yj = 1);

Output: x,v, u

approximation ratio, as in Line 8, where ξ = maxi∈I{Qi}.
Lines 9 and 10 update the dual variable λk and the primal
variables xki, vi, umi, respectively.

C. Performance Analysis

First, by Lemma 1, we demonstrate that Algorithm 1 is a
polynomial-time algorithm with no violation of the constraints
of the primal problem (3) and the dual problem (4). Second, by
Theorem 1 on top of Lemma 1, we derive the approximation
ratio r1. We show C3 ≤ r1D3 ≤ r1C

∗
3 , where C3 and D3

refer to the objective function values of (3) and (4) evaluated
with the feasible solutions returned by Algorithm 1; C∗3 refers
to the optimal objective function value of the primal problem.
Note that D3 ≤ C∗3 holds automatically due to duality.

Lemma 1. Algorithm 1 returns feasible solutions to both the
problem (3) and the problem (4) in the polynomial time.

Proof. A solution is feasible for a problem if the solution
satisfies the problem’s constraints. For (3), (3a) is satisfied by
Line 10. Lines 4∼5 ensure no violation of the edge capacity
limit, i.e., (3b). Once the edges to host offline classifiers are
determined, (3c) and (3d) are also satisfied, following Line 10.
Line 10 also guarantees (3e). For (4), this inequality

∑
k(λk+

δi+aik)+di+
∑
m dmi ≥ 0 is constructed based on (4a), (4b)

and (4c), guaranteeing they are satisfied according to Lines
3∼6. As for the time complexity of Algorithm 1, the for loop
runs K times, and the while loop in the for loop runs at most I
times according to its termination condition ∆Qi+ +1 > Qi+ .
Thus, the total time complexity is O(KI).

Theorem 1. Algorithm 1 is an r1-approximation algorithm to
the problem (3), i.e., C3 ≤ r1C

∗
3 , where r1 = ξ

ξ−1 .

Proof. See Appendix A.

IV. ALGORITHMS OF LONG-TERM TRANSFER LEARNING

In this section, we design Algorithms 2 and 3 that determine
in real time the offline and online classifier placement with
data dispatching and inference aggregation for each time



TABLE I: Summary of Notations

Notation Definition

XtSC
∑
i
cki[x

t
ik − x

t−1
ik ]+

Xt−SC
∑
i,k

atkix
t
ki +

∑
i,j
dtijv

t
ij +

∑
i,m

dtmiu
t
mi

∆X−SC
∑t−1

τ=t̂
Xτ−SC

Y tSC
∑
i
ci[y

t
i − y

t−1
i ]+

Y t−SC XtSC +Xt−SC +
∑
i b
t
iy
t
i +

∑
i,m 2dtmiy

t
i

∆Y−SC
∑t−1
τ=ť

Y τ−SC

slot. We also design Algorithm 4 for transfer learning upon
each data sample as the classifier placement is determined
dynamically. We theoretically analyze the number of mistakes
of transfer learning and the competitive ratio for the total cost.
We use some new notations in Table I to ease our presentation.

A. Online Algorithms for Classifier Placement

Our main rationale is to postpone changing the placement of
the classifiers until “appropriate”. That is, until the cumulative
non-start-up cost (i.e., operational cost and delay of transfer
learning incurred by continuing to host classifiers at previous
locations) exceeds the current start-up cost (i.e., downloading
cost and edge instantiation cost incurred by changing the
classifier placement) times a constant which can be controlled.

We briefly explain our Algorithm 2.1 In Line 2, ρ2 is the
controllable constant as aforementioned, and ∆X−SC records
the cumulative non-start-up cost from t̂ to t − 1, where t̂
refers to the last time slot when the offline classifier placement
changes before t. When the condition in Line 2 is satisfied,
we adopt the decision returned by Algorithm 1; otherwise, we
use the most recent decision as the current decision. We design
Algorithm 3 in a similar spirit as for Algorithm 2. Specifically,
we traverse I possible values of yt in Lines 1∼2. Then, as
in Line 4, only when ∆Y−SC exceeds Y tSC(ỹt,yť) times ρ1

will we adopt the new decision of yt, where ť indicates the
last time slot of the online classifier placement change before
t. Otherwise, in Line 10, we invoke Algorithm 2 given yť. We
record all Ct−M with the different yt, and find the minimum
Ct−M over all i with its corresponding decisions.

B. Online Algorithm for Transfer Learning

We propose our overall online transfer learning algorithm,
i.e., Algorithm 4, to tie together every per-slot optimization of
classifier placement and conduct the actual transfer learning
process as data dynamically arrive. Our algorithm conducts
online training in four steps: weights update, label inference,
parameters update, and online classifier update. First, at each
time slot, we invoke Algorithm 3 to find all the classifiers’
placements in Line 4, and for the current data sample, we
determine the weight for each classifier in Lines 7∼8. Then,
for this data sample, we conduct the joint inference as a
weighted sum of the static offline classifiers’ results and the
online classifier’s result in Line 10. As receiving the ground-
truth in Line 11, we next decrease the weights of those
classifiers which misclassify instances so as to weaken their

1In Algorithm 2, we use symbols like x̃ to refer to decisions obtained from
Algorithm 1. Analogously, in Algorithm 3, we use symbols like x̃ to represent
decisions obtained from Algorithm 2. This should be clear from the context.

Algorithm 2: Conditional Offline Classifier Placement

Input: yt,∆X−SC , t̂
1 given yt, get x̃t, ṽt, ũt by invoking Algorithm 1;
2 if Xt

SC(x̃t,xt̂) ≤ 1
ρ2

∆X−SC then
3 xt = x̃t;
4 ∆X−SC = Xt

−SC(x̃t, ṽt, ũt) ;
5 t̂ = t;
6 else
7 xt = xt̂;
8 set ut and vt according to xt and yt;
9 ∆X−SC = ∆X−SC +Xt

−SC(xt̂,ut,vt);

Output: xt, vt, ut, t̂

Algorithm 3: Offline and Online Classifier Placement

Input: ∆Y−SC , t̂, ť
1 for i ∈ I do
2 set ỹt as ỹti = 1, and ỹtj = 0 for j 6= i;
3 given ỹt, get x̃t, ṽt, ũt by invoking Algorithm 2;
4 if Y tSC(ỹt,yť) ≤ 1

ρ1
∆Y−SC then

5 yt = ỹt;
6 ∆Y−SC = Y t−SC(x̃t, ỹt, ũt, ṽt);
7 ť = t;
8 else
9 yt = yť;

10 given yt, get x̃t, ṽt, ũt by invoking Algorithm
2;

11 ∆Y−SC = ∆Y−SC + Y t−SC(x̃t,yt, ũt, ṽt);

12 Ct−M = Y t−SC + Y tSC ;

13 find the minimum Ct−M for all i and its xt,yt,ut,vt;
Output: xt, yt, vt, ut, t̂, ť

impact by updating the parameters used to determine the
weights for the next data sample, as in Lines 13∼17. Finally,
we update the online classifier itself based on its loss on
the current data sample, as in Lines 19∼21. Here, we regard
the data sample’s feature ptm as a support vector and add it
into the set of the support vectors of the online classifier:
f tm+1 = f tm + αtmq

t
mf

t
m(ptm, ·), where αtm is the coefficient

for the support vector; k (·, ·) is the kernel function; and F
is a constant trade-off value used to prevent the coefficient of
the vector from being too large. Note that we allow offline
classifiers of arbitrary and heterogenous types or formats, but
without of loss of generality, we focus on training the online
classifier as a Support Vector Machine in this paper. This is
for concretizing our Algorithm 4, and does not impact our
performance analysis and proofs.

C. Performance Analysis

We introduce some new notations to simplify our de-
scriptions. We split C1, the objective function of (1), as



Algorithm 4: Online Transfer Learning

Input: offline classifiers fK = (f1, f2, ..., fK),
trade-off F , and weight discount θ ∈ (0, 1)

1 Initialize: t = 1, t̂ = ť = 0, f0 = ∅, ζ1
k1 = ψ1

1 = 1
K+1

2 for t = 1, 2, ..., T do
3 f t0 = f t−1;
4 invoke Algorithm 3 to obtain xt,yt;
5 for m = 0, 1, ...,M t do
6 . Weights update

7 ztkmi =

ζ
t
km/(

∑
k ζ

t
km + ψtm), yti = 1

0, yti = 0

8 wtmi =

ψ
t
m/(

∑
k ζ

t
km + ψtm), yti = 1

0, yti = 0

9 . Label inference
10 calculate inference:

q̂tm = sign(
∑
i,k z

t
kimsign(fk(ptm)) +∑

i w
t
imsign(f tm(ptm)));

11 receive ground-truth: qtm ∈ {−1,+1};
12 . Parameters update
13 for k = 1, 2, ...,K do
14 ηtkm = I{sign[qtm · sign(fk (ptm))] < 0};
15 ζtk,m+1 = ζtk,mθ

ηtkm ;

16 γtm = I{sign[qtm · sign(f tm (ptm))] < 0};
17 ψtm+1 = ψtmθ

γtm ;
18 . Online classifier update
19 calculate loss: lt = [1− qtmf tm(ptm)]+;
20 if lt > 0 then
21 f tm+1 = f tm + αtmq

t
mk(ptm, ·) where

αtm = min{F , lt

k(ptm,p
t
m)};

C1 =
∑
t(C

t
M + Ct−M ), where CtM =

∑
m I{sign[qtm ·

(
∑
i

∑
k z

t
kimsign(fk(ptm))+

∑
i w

t
imsign(f tm (ptm)))] < 0},

and Ct−M =
∑
i,k(atkix

t
ki + cki[x

t
ki − x

t−1
ki ]+) +

∑
i(b

t
iy
t
i +

ci[y
t
i − y

t−1
i ]+) +

∑
i

∑
m(dtmi(u

t
mi + 2yti)) +

∑
i

∑
j d

t
ijv

t
ij .

We also use Ct∗M and Ct∗−M to denote their optimal values.
First, by Theorem 2, we exhibit that the total number of
mistakes, i.e.,

∑
t C

t
M , incurred by our transfer learning over

time is no greater than a constant times the total number
of mistakes incurred by the single best classifier (out of
the offline classifiers and the online classifier), plus another
constant. Second, by Theorem 3, we exhibit the competitive
ratio of Algorithm 4. That is, we show C1 ≤ rC∗1 and find r,
where C1 is the objective function value of the problem (1),
evaluated with the solutions produced by Algorithm 4, and C∗1
is the optimal objective value. To do so, we derive

∑
t C

t
M ≤

r2

∑
t C

t∗
M and

∑
t C

t
−M ≤ r3

∑
t C

t∗
−M , and then find r by

C1 ≤ r2

∑
t C

t∗
M + r3

∑
t C

t∗
−M ≤ max{r2, r3}C∗1 = rC∗1 .

Theorem 2. Algorithm 4 incurs the total number of mistakes
as
∑
t C

t
M ≤

(
2+2

√
2 ln(K + 1)

)
Mmin+2 ln(K+1), where

Mmin = min{M1, ...,Mk, ...,MK ,MO}, Mk =
∑
t,m η

t
km,

TABLE II: Sub-topics of Documents

Label of +1 Label of −1
comp.graphics sci.crypt

comp.os.ms-windows.misc sci.electronics
comp.sys.ibm.pc.hardware sci.med

comp.sys.mac.hardware sci.space
comp.windows.x

MO =
∑
t,m γ

t
m. Here, ηtkm and γtm indicate whether the

inference computed by the offline classifier k and the online
classifier is wrong for the data sample m of the time slot t,
respectively, as in Algorithm 4.

Proof. See Appendix B.

Theorem 3. Algorithm 4 is an r-competitive online algorithm
to the problem (1), i.e., C1 ≤ rC∗1 , where r = max {r2, r3},
r2 = ln(1/θ)+ln(K+1)

1−θ , and r3 = (1+ 1
ρ1

)(1+ 1
ρ2

+Dmax)r1σ.
Here, θ is a constant in Algorithm 4; ρ1 and ρ2 are constants
in Algorithms 2 and 3; r1 is the approximation ratio of Algo-
rithm 1, as in Theorem 1; Dmax = max{maxi,k,t{ bti

atk,iK
}, 2};

and σ = maxt{
maxi{

∑
k aki+

∑
j dij+

∑
m dmi}

mini
∑
k aki

}.

Proof. See Appendix C.

V. EXPERIMENTAL STUDY

A. Experimental Settings

Transfer Learning Dataset and Classifiers: We use the
text classification dataset 20Newsgroups [28], which con-
tains nearly 20,000 newsgroup documents with 61,188 unique
words (i.e., features), associated to multiple topics. Each topic
has several sub-topics, and each document has been labelled
with one and only one sub-topic. We consider the 8843
documents associated to all the sub-topics of comp and sci, as
shown in Table II. We treat all the sub-topics of comp as the
label of +1, and all the sub-topics of sci as the label of −1. By
matching one sub-topic from +1 with another sub-topic from
−1, we have 20 pairs of sub-topics in total and for each of
such pairs, we collect all their documents and train a Support
Vector Machine (SVM) classifier. We select the classifier with
comp.windows.x and sci.space as our online classifier (with a
linear kernel function) to be trained during our experiments,
and the rest 19 classifiers as our existing offline classifiers.

Edge Networks and Data Samples: We adopt the data of the
268 underground stations in London with dynamic passenger
counts [25]. We choose the first 25 stations based on the total
passenger count at each station, and envisage that each of such
stations has an edge. We study the system for T = 24 hours
and set the length of a single time slot as 15 minutes. We
consider one document as one data sample. Based on the ratio
of the passenger count at each edge in each time slot over the
total passenger count across all edges and time slots, we spread
the 8843 documents proportionally. We use the geographical
distance [26] to estimate the network delay between the two
edges. We set the dynamic operational cost as within [2, 8]
cents/kWh, following the wholesale electricity prices [27]. We
vary the unit start-up cost as multiplied by a weight in order to



0 20 40 60 80
����

0.0

0.2

0.4

0.6

0.8

��
��

	�
��

��

��
�

�������

��	�����
������
�	�
��

Fig. 3: Total Cost per Time Slot
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Fig. 4: Impact of Operational Cost
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Fig. 5: Impact of Delay
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Fig. 6: Impact of Start-up Cost
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Fig. 7: Mistakes
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Fig. 8: Execution Time

demonstrate a spectrum of different results. We assume each
edge can host 2∼8 VMs or classifiers at most.

Algorithms and Implementation: We implement the follow-
ing algorithms for comparison: (1) Proposed refers to our
proposed online algorithms; (2) Delay_only chooses edges
for classifiers only based on optimizing delay regardless of
other costs, and directly downloads classifiers and/or preparing
VMs as the one-shot optimum indicates (i.e., without post-
poning start-up); (3) OC_only chooses edges only based on
optimizing operational cost regardless of others and without
postponing state switching; (4) Random selects edges ran-
domly without considering any cost-related optimization. We
also implement (5) HomOTL_1 and (6) HomOTL_2, which are
state-of-the-art online transfer learning approaches [29]. Our
implementation includes around 6,000 lines of Python codes,
and we conduct all evaluations on a commodity laptop with
an Intel Core i5 1.8-GHz CPU and 16-GB RAM.

B. Experimental Results

Total Cost: Fig. 3 visualizes the total cost of different algo-
rithms per time slot over the entire time horizon. Proposed
always produces the lowest total cost. Our approach achieves
47% less total cost than Delay_only, 60.6% less total cost
than OC_only, and 53.8% less total cost than Random.

Impact of Operational Cost and Delay: Fig. 4 and Fig.
5 compares the total cost incurred by different algorithms
as the weight of the operational cost and the weight of
the delay varies, respectively. Proposed beats others no
matter how these weights change. In Fig. 4, OC_only which
only optimizes operational cost embodies more advantages
compared to Delay_only and Random; yet, as operational
cost becomes more important within the total cost, Proposed
still outperforms it even under the largest weight value, by bal-
ancing the trade-off among the different cost components. The

maximum cost reduction of Proposed is 51.3% compared
to Delay_only, 37.3% compared to OC_only, and 63.1%
compared to Random. In Fig. 5, Proposed still yields the
maximum reduction of 48.3%, 61.5%, and 55.6% compared
to Delay_only, OC_only, and Random, respectively.

Impact of Start-up Cost: Fig. 6 shows how the variation
of the weight of the start-up cost, denoted as ω, influences
the total number of the occurrences of state switching for the
online classifier (i.e., preparing VMs) and the offline classifiers
(i.e., downloading classifiers plus preparing VMs). In this
figure, 1 means new and different decisions are applied to
the current time slot; 0 means decisions of the previous time
slot are applied to the current time slot. Our approach incurs
more frequent state switching (i.e., there are more 1s than 0s)
when ω is small because the state switching criterion can be
satisfied easily, and leads to less frequent state switching as ω
becomes larger, due to a stricter state switching criterion.

Mistakes of Transfer Learning: Fig. 7 presents the rate
of the mistakes (i.e., the ratio of the number of incorrect
inferences compared to ground truth over the total number of
inferences). It shows Proposed is effective in transferring
knowledge from existing classifiers, with an acceptable rate
of mistakes lower than those of HomOTL_1 and HomOTL_2.

Execution Time: Fig. 8 depicts the cumulative distribution
of the execution time of each of our proposed algorithms.
Algorithms 1∼3 can be executed and finish within several
seconds per 15-minute-long single time slot. For the time
horizon of 24 hours, it takes no more than 7.5 minutes in
total to finish running everything across all time slots, which
includes the transfer learning process. Hence, our proposed
algorithms are practically and computationally efficient.

VI. RELATED WORK

Optimization of Transfer Learning: Daga et al. [7] de-
signed a distributed transfer learning system for adapting to
varying workload and data shift. Wu et al. [13] proposed online
transfer learning for both homogeneous and heterogeneous
environments. Yang et al. [14] focused on evaluating which
source domain could be more suitable for transfer learning
and the amount of knowledge transferred. Ding et al. [15]
studied the minimization of the divergence among different
sources by realizing cross-domain and cross-source knowledge
transfer. Yang et al. [16] minimized domain discrepancy by
promoting positive knowledge and decreasing the effect of



unrelated instances. Yan et al. [17] introduced neural data
servers to select the relevant transfer learning data.

These works focus on transfer learning, and almost all of
them neglect resource usage and cost minimization from the
systems perspective. The last work mentioned above is not
typically for the cloud-edge and 5G environments.

Optimization over Edge Networks: Castellano et al. [18]
explored optimal partitioning of shared resources in heteroge-
neous edge networks. Wang et al. [19] studied online resource
allocation for edge computing in response to high dynamism
of user mobility. Tu et al. [20] developed distributed learning
optimization of the costs associated to device processing, of-
floading, and data disgarding. Meng et al. [21] optimized band-
width and computing resource for deadline-restricted tasks.
You et al. [22] explored dynamic resource provisioning in edge
networks. Zhou et al. [23] proposed an online orchestration
framework for cost-efficiency of cross-edge service functions.
Han et al. [24] focused on minimizing the response time for
latency-sensitive jobs in edge-cloud computing.

These works study cloud-edge systems and networks, but
are unfortunately not about (distributed) transfer learning
which has unique computing and and communication pattern.
Thus, such existing research generally do not apply.

VII. CONCLUSION

Transfer learning is a useful and important technique, yet
gets overlooked in the context of mobile communication
networks. This paper aims to bridge this gap. We formulate a
non-linear mixed-integer program via considering operational
cost of edges, delay of networks, start-up cost of downloading
classifiers and preparing local edge environments, and perfor-
mance of transfer learning in terms of the mistakes of the
combined classifiers. We design our online optimization algo-
rithms and prove their theoretical guarantees. Using real-world
data, we conduct extensive evaluations and have validated the
practical efficacy and efficiency of our algorithms.

APPENDIX

A. Proof of Theorem 1

Let ∆P and ∆D denote the increment of the ob-
jective function in the problem (3) and (4), respec-
tively, ∆D = −(λk∗ + Qi∗∆δi∗), where ∆δi∗ =

δi∗
Qi

+
ai∗k+di∗/K+

∑
m dmi∗/K

Qiξ
stands for the increment in δi∗ . Thus,

we have ∆D = − (λk∗ +Qi∗∆δi∗) = −λk∗ − Qi(
δi∗
Qi

+
ai∗k+di∗/K+

∑
m dmi∗/K

Qiξ
) = (1 − 1

ξ
)(ai∗k∗ +

d∗i
K

+
∑
dmi∗
K

) =
ξ−1
ξ

∆P . Due to PK =
∑
k(P k − P k−1) = ξ

ξ−1

∑
k(Dk −

Dk−1) = ξ
ξ−1

(DK −D0) = ξ
ξ−1

DK ≤ ξ
ξ−1

Ct∗3 , followed by P 0

and D0 are initialized with 0 and duality, we obtain r1 = ξ
ξ−1

.

B. Proof of Theorem 2

In order to simplify our proof, we introduce some new
symbols. We use pn to identify nth data sample, use ωk,n
to replace ζtk,m and ψtm, where k ∈ {1, ...,K,K+1} (including
the offline and online classifiers), use Pk,n =

ωk,n∑
k ωk,n

to denote
the normalized weight and mk,n to denote the mistakes of the
classifier k, which are all updated as our Algorithm 4 shows.

Firstly, we prove that I{qn · q̂n < 0}=I{
∑
k Pk,nmk,n > 0.5}.

By assuming that there are only K1 classifiers predict correctly
(i.e., sign(fk(pn)) = qn), we have q̂n = sign(qn(

∑K1
k=1 Pk,n −∑K+1

k=K1+1 Pk,n). Then, based on
∑
k Pk,n = 1, we obtain

qn · q̂n < 0 ⇐⇒
∑K1
k=1 Pk,n −

∑K+1
k=K1+1 Pk,n < 0

⇐⇒
∑K+1
k=K1+1 Pk,n > 0.5 ⇐⇒

∑
k Pk,nmk,n > 0.5.

Next, we have ln(
∑
k ωk,n+1∑
k ωk,n

) = ln(
∑
k Pk,nθ

mk,n) ≤ −(1 −
θ)
∑
k Pk,nmk,n, thus ln(

∑
k ωk,N∑
k ωk,1

) ≤ −(1 − θ)
∑
k,n Pk,nmk,n,

and have ln(
∑
k ωk,N∑
k ωk,1

) lower bounded as ln(
∑
k ωk,N∑
k ωk,1

) ≥
ln(ωk,1θ

∑
nmn,k ) = ln( 1

K+1
) +

∑
nmk,n ln(θ). Based on the

above, we have
∑
k,n Pk,nmk,n ≤

ln(1/θ)
∑
nmk,n+ln(K+1)

1−θ ≤
ln(1/θ)Mmin+ln(K+1)

1−θ . Finally, we upper bound the mistakes as∑
n I{qn · q̂n < 0} ≤ 2

∑
k,n Pk,nmk,n ≤ 2 ln(1/θ)Mmin+2 ln(K+1)

1−θ .

When we set θ =
√
Mmin/(

√
Mmin+

√
ln(K + 1)), we further

obtain
(
2 + 2

√
2 ln(K + 1)

)
Mmin + 2 ln(K + 1).

C. Proof of Theorem 3

Firstly, the start-up cost Xt
SC is no more than 1

ρ2
times

∆X−SC within [t̂, t − 1]. Hence we have
∑
tX

t
SC ≤

1
ρ2

∑
tX

t
−SC as the worst case, i.e., the change of offline

classifier placement always happens at each t. Similarly, we
can obtain

∑
t Y

t
SC ≤ 1

ρ1

∑
t Y

t
−SC . Then, we have

∑
t C

t
−M ≤∑

t Y
t
SC +

∑
t Y

t
−SC ≤ (1 + 1

ρ1
)
∑
t Y

t
−SC . Followed by the

constraints of
∑
i y
t
i = 1 and yti ∈ {0, 1}, ∀i, we have∑

t,i(b
t
i +

∑
m 2dtmi)y

t
i ≤ max{maxi,k,t{ bti

at
k,i
K
}, 2}

∑
tX

t
−SC ,

and
∑
t Y

t
−SC =

∑
t(X

t
SC +Xt

−SC) +
∑
t,i(b

t
i +
∑
m 2dtmi)y

t
i ≤

(1 + 1
ρ2

+Dmax)
∑
tX

t
−SC .

Next, we focus on
maxyt X−SC(Alg2(y

t))

minyt X−SC(Alg2(yt))
, where Alg2(·) refers

to Algorithm 2. We construct a new problem P0 with C0 =∑
i,k akixki +

∑
i,m dmiumi +

∑
i,j dijvij and the constraints

of (1c)∼(1d), (1f)∼(1j), we can obtain
maxyt X−SC(Alg2(y

t))

minyt X−SC(Alg2(yt))
=

MaxP0
MinP0

. Based on duality, we have MaxP0
MinP0

≤ P1
P2
≤ D1

D2
, where

P1 is the problems which maximizes C0 with (1d)(1g)(1i),
and

∑
k xki ≤ Qi, ∀i, P2 is minimization problem with

the same constraints as P1, and D1 and D2 are their dual
problems. We introduce the dual variables λ̄k, δ̄i, ε̄kij , φ̄kim
and λ̃k, δ̃i, ε̃kij , φ̃kim for P1 and P2, respectively. By choosing
λ̄k = aki +

∑
j dij

K
+

∑
m dmi
K

, δ̄i = 0, ε̄kij =
−dij
K

, φ̄kim = −dmi
K

and λ̃k = −aik, δ̃i = ε̃kij = φ̃kim = 0, we obtain that
D1
D2
≤ maxi{

∑
k aki+

∑
j dij+

∑
m dmi}

mini
∑
k aki

, and define the ratio σ as

maxt
maxi{

∑
k aki+

∑
j dij+

∑
m dmi}

mini
∑
k aki

.

Based on the above,
∑
t C−M can be bounded as follows,∑

t C−M =
∑
t YSC +

∑
t Y−SC ≤ (1 + 1

ρ1
)
∑
t Y−SC ≤

(1 + 1
ρ1

)(1 + 1
ρ2

+ Dmax)
∑
tX−SC ≤ (1 + 1

ρ1
)(1 + 1

ρ2
+

Dmax)σ
∑
t minyt X−SC(Alg2(yt)) ≤ r3 ·

∑
t C
∗
−M , where r3 =

(1 + 1
ρ1

)(1 + 1
ρ2

+ Dmax)σr1. According to Theorem 2, we
can obtain

∑
t CM ≤ Mmin( 2 ln(1/θ)+2 ln(K+1)

1−θ ) = r2 · Mmin.
Finally, we exhibit the competitive ratio r as follows, C1 =∑
t(CM + C−M ) ≤ r2

∑
t C

t∗
M + r3

∑
t C

t∗
−M ≤ max {r2, r3}C∗1 .
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