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Abstract—Edge inference applications are becoming increas-
ingly complex and composed of multiple models. The dependency
of models is modeled by a Directed Acyclic Graph (DAG).
The accuracy of the edge model is easily affected by data
drift. Retraining is employed to sustain the inference accuracy
of models. But the introduction of retraining complicates the
inter-task dependency of the inference request. Moreover, model
retraining prolongs the inference completion time. The accuracy
improvement and the latency increment under different retrain-
ing configurations necessitate a trade-off between inference accu-
racy and request completion time. In this paper, we investigate
multiple-model inference with retraining, aiming to maximize
inference accuracy while minimizing request completion time.
Through experimental analysis, we observed that retraining can
enhance model inference accuracy in a short time. We represent
the retraining tasks of models as nodes in the DAG of the
inference request and then construct a unified DAG structure
for both retraining and inference tasks. We first propose a Single
Request Scheduling Algorithm (SRS) with a theoretical perfor-
mance guarantee to select the optimal retraining configuration for
each model under edge resource constraints and jointly schedule
retraining and inference tasks. Subsequently, we extend SRS to
a Multiple Requests Scheduling Algorithm (MRS) to address
scheduling in a more general online multi-request scenario. The
experiments on an edge system indicate that compared to existing
methods, MRS can enhance the inference accuracy by 25% while
reducing the request completion time by 45%.

I. INTRODUCTION

The diversification of smart devices has greatly enriched the

sources of inference data. To promptly handle data streams

such as images, videos, and audio from various smart devices,

multiple-model applications have been developed, including

lifelogging [1], social media [2], video analysis [3], and more.

These applications use multiple models organized in directed

acyclic graphs (DAGs) to analyze data and achieve various in-

ference objectives. For instance, the lifelogging [1] application

integrates object detection models, face recognition models,

vehicle classification models, and more. While identifying the
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objects in the image, it can further analyze the individual

behavior and vehicle’s property.

Requests from these applications demand quick completion

to ensure the effectiveness of data analysis [4]. However, uti-

lizing multiple models for inference is more time-consuming

than using a single model, making it challenging to complete

requests on edge devices with limited computing and storage

resources. On the other hand, cloud computing introduces

excessive communication latency. To guarantee low response

time for multi-model applications, edge servers are typically

employed to handle these requests.

Models deployed by applications are susceptible to the

influence of data drift when inferring on edge servers. Data

drift refers to significant disparities between the inference data

and the data used to train the models [5]. In dynamic envi-

ronments, the inference data is constantly changing. Factors

such as lighting conditions, capture angles, and poses can

all contribute to data drift. Due to limited resources (such

as GPU), edge servers typically deploy small or compressed

models with shallow structures and fewer parameters. These

models are unable to properly recognize data drift, leading to

a decrease in model inference accuracy.

To address the issue of data drift and enhance real-time in-

ference accuracy, model retraining, also known as continuous

learning, is an effective strategy [6]. However, handling the

coordinated offloading of model retraining and model infer-

ence on edge servers presents new challenges for scheduling

multiple-model application requests. First, model retraining

makes the dependencies between tasks even more intricate.

Apart from the dependencies between inference tasks, it is

essential to consider the dependencies between retraining tasks

and inference tasks for the same model. To maximize inference

accuracy, it is desirable to utilize the latest retrained model

for inference tasks. The model retraining must be completed

before inference, indicating that inference tasks are dependent

on the corresponding model’s retraining tasks. Changes in

the type and number of models being retrained will alter

the dependencies between tasks. With varying dependency

relationships, the scheduling order of requests needs to adapt

accordingly. Second, selecting retraining configurations re-

quires striking a balance between inference accuracy and

request completion time. Retraining models involve diverse

configurations, with resource consumption and end-accuracy



varying under different setups. Allocating more resources for

retraining may lead to insufficient resources for inference

tasks, thus extending request completion times. Conversely,

retraining models with limited resources may result in lower

inference accuracy after training.

Current research on model retraining has mainly focused on

training and updates, neglecting the joint scheduling of retrain-

ing tasks with inference tasks. Ekya [7] addresses single-model

inference requests, allocating resources and configurations for

each task but lacks scalability for multi-model DAG requests.

While AdaInf [8] manages DAG with a focus on meeting

the Service Level Objective (SLO) of inference requests.

However, it provides limited resources for retraining, resulting

in marginal accuracy improvements. Noted that both Ekya and

AdaInf are tailored for offline requests and unable to manage

online requests. We will discuss more details in Sec. VI.

To the best of our knowledge, we are the first study of

online scheduling for multiple-model inference with retraining.

Motivation experiments (in Sec. II) have demonstrated that the

model accuracy can be significantly improved through short

retraining periods. Therefore, retraining tasks can be inserted

as nodes into the DAG of the request, while still ensuring

the low completion time for the request. To ensure that

retraining tasks are completed before their respective inference

tasks, we expand the original DAG structure of requests,

making each model’s retraining task a predecessor node for

its inference task. The dependencies between inference tasks

are also preserved. Adding retraining tasks can enhance model

inference accuracy but may delay the completion time of the

request. To minimize request completion time while maximiz-

ing model inference accuracy, we model the request, which

has multiple models’ retraining tasks and inference tasks, as an

extended DAG. Then we propose the single request scheduling

algorithm (SRS), which selects the optimal retraining config-

uration for each model to balance request completion time

and inference accuracy. The optimal configuration ensures that

the improved accuracy after model retraining outweighs the

additional request completion time; otherwise, the model is

not retrained. We prove that the solution obtained by SRS

has a theoretical upper bound. Furthermore, extending SRS

to a multiple request scheduling algorithm (MRS) addresses

multiple incoming online application requests. We summarize

our contributions as follows:

• We demonstrate that inference accuracy can be improved

in a short period of time by retraining. Then we add nodes

for model retraining tasks to the request DAG, and formu-

late the scheduling problem to minimize the completion

time and maximize accuracy for online requests.

• SRS is designed to address single request scheduling with

model retraining. It estimates inference resource usage by

scheduling the inference tasks. Then SRS selects optimal

retraining configurations under resource constraints, and

offloads retraining and inference tasks together. The upper

bound of SRS can be proven. MRS, an extension of

SRS, manages multi-request scheduling. It forms task

lists, selects initial tasks to create candidate sets, and

chooses the earliest task for completion iteratively until

all requests are scheduled.

• We conduct extensive experiments on an edge system

with real-world request traces. The results demonstrate

that our algorithm achieves a 25% enhancement in infer-

ence accuracy and a 45% reduction in request completion

time, compared to three state-of-the-art algorithms.

In the rest of the paper, we perform motivation analysis in

Sec. II. Sec. III models the scheduling of multiple-model re-

quests with retraining in edge computing. In Sec. IV, SRS and

MRS are proposed to schedule single and multiple requests,

respectively. Extensive experiments’ results are presented in

Sec. V. We review the related work in Sec. VI. Finally, we

conclude the paper in Sec. VII.

II. MEASUREMENT-BASED MOTIVATION

To show the impact of data drift and the accuracy improve-

ment of model retraining, we take the lifelogging application

[1] shown in Fig. 1 as an example of the multi-model infer-

ence. More details of the experimental settings can be found

in Section V.
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Fig. 1: DAG of the lifelogging application.

A. Impact of Data Drift

Fig. 2 illustrates the variation of model inference accuracy

over time for different models in a dynamic environment. It

can be observed that as time progresses, the inference accuracy

of all models shows a decreasing trend. This is due to the

significant variations in the data distribution of user input data

in a dynamic environment [7]. Even for the same user, data

drifts in user input data can occur due to multiple factors, in-

cluding variations in device type, lighting conditions, posture,

and other factors. Models pre-trained on initial datasets may

struggle to accurately capture these variations, leading to a

decrease in model inference accuracy, especially for tiny or

compressed models deployed on edge servers.

Fig. 2: Inference accuracy of

different models (over time).

Fig. 3: Impact of the number

of retraining samples.

Additionally, the data drift has different impacts on different

models. For example, in Fig. 2, during the time intervals of



100-200 seconds and 250-400 seconds, there is a continuous

decrease in the inference accuracy of EfficientNet, while the

inference accuracy of ShuffleNet remains relatively stable.

Therefore, it is necessary to selectively retrain the models

used in the application. The timing of retraining should be

determined considering the model’s accuracy.

B. Improvement of Accuracy by Model Retraining

To address the decrease in model accuracy caused by data

drift, we employ model retraining to improve the model’s

inference accuracy. Different retraining configurations yield

varying effects on accuracy improvement. Using the Incep-

tionV3 model as a case study, we explore the impact of

retraining parameters, such as training dataset size, number

of training epochs, batch size, and resource allocation, on the

accuracy and end-latency of the model after retraining.

As shown in Fig. 3, with an increase in the number of drift

retraining samples used during retraining (i.e., an increase in

the size of the training dataset), the accuracy of the retrained

model continues to improve. However, it is important to

note that this improvement is accompanied by a proportional

increase in the retraining latency required to complete the

retraining process. The impact of retraining epochs is similar

to that of the samples’ number. By selecting different combina-

tions of the epoch counts and sample quantities, it is possible

to achieve a balance between model accuracy and retraining

latency. For instance, when retraining with a dataset of 144

samples, it is possible to achieve a high level of accuracy

with just 2 retraining epochs, while maintaining low latency.

Fig. 4: Retraining accuracy of

different batch size.

Fig. 5: Retraining latency of

different resource.

The training batch size also has a considerable influence on

the end-accuracy of retraining. Fig. 4 illustrates the variation

in model accuracy after retraining as the batch size increases,

considering different numbers of retraining samples. It can be

observed that the optimal batch size for retraining varies for

different numbers of samples. Typically, a batch size of 16 is

a common optimal setting. However, for a small number of

samples, such as 36, a smaller batch size may be required to

achieve optimal results.

In addition, we need to pay attention to the retraining latency

under different resource demands. Due to the time sensitivity

of user requests, the retraining process needs to be completed

within a short time frame. Fig. 5 displays the retraining latency

under different GPU resource allocation ratios, with each

retraining process involving two epochs. It is evident that

most model retraining tasks can be completed within a short

period of time, even with limited resource allocation. However,

for retraining tasks with larger workloads, it is necessary to

allocate more resources to reduce the training latency.

C. Observation

We observed that: i) Data drift causes a decline in model

inference accuracy, with varying degrees of impact on different

models. ii) Model inference accuracy can be improved in a

short time by retraining. iii) The retraining configuration of

models can be obtained through the experimental profile.

III. SYSTEM MODEL

TABLE I: Notations and Descriptions
Notations Description

R The set of requests

E The set of edge servers

U The set of retraining configurations

ej The j-th edge server of E
Cj The computation resources capacity of edge server ej
Sj The computational speed on edge server ej
Dj0,j/Dj The data transfer rate from edge server ej0 /storage cluster

to edge server ej
rk The k-th request of R
T a
k The arrival time of request rk

Gk = (Vk,Lk) The task DAG of the request rk
|V | the number of initial inference tasks in request rk
vik The i-th task of request rk
mi

k The model called by task vki
ai
k The initial accuracy of the model called by task vki

Ai
k The inference accuracy of the model used by task vki

cik The required computation resource of task vki
wi

k The workload of task vki

di,i
0

k The data size transferred from task vki to task vki0
uh The h-th retraining configuration of U

xi,j

k Whether task vki is assigned to edge server ej
yi,h

k Whether retraining configuration uh is used to retrain
the model mk

i

A. Edge Inference with Continuous Learning

System Overview. As shown in Fig. 6, we investigate a

system comprising user devices, several edge servers, and a

storage cluster. This system is designed to efficiently process

user inference requests while ensuring high inference accuracy.

Users transmit their inference requests to the edge servers,

which may involve input data from various devices like mobile

phones, smartwatches, and cameras. Initially, the input data

from these devices is transmitted to a fixed edge server known

as the controller. Upon receiving a user request, the controller

aggregates the necessary data and schedules it for processing

on the edge servers. To handle the inference requests, the

edge servers leverage pre-stored models. These edge servers,

denoted as ej 2 E , show heterogeneity in terms of their

computation resource capacities Cj , and computational speeds

Sj , measured in teraflops.

Model Retraining. To maintain inference accuracy, model

retraining is employed to mitigate the negative effects of data

drift in dynamic scenarios. The system collects drift data

samples from the inference requests and utilizes them for

model retraining. Data drift detection is performed by the

edge servers on the input data of each request. The detected

drift data samples are received by a storage cluster, where the

labels for these samples are derived from the golden models

[7] stored in the cluster. Although the golden models exhibit
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Fig. 6: System Overview.

exceptional accuracy, their high cost and prolonged inference

time make them impractical for the direct use in inference re-

quests. For each inference model, the storage cluster maintains

a retraining sample pool, continuously capturing and labeling

drift data samples. After completing a retraining iteration, the

sample pool associated with the retrained model is cleared

and begins accumulating fresh samples. Moreover, the updated

model parameters obtained from the model retraining process

are subsequently applied to every edge server.

Retraining Configuration. Various training hyperparame-

ters are considered for model retraining, including the training

dataset size, number of training epochs, batch sizes, frozen

layers, resource utilization, etc. The retraining configuration

uh 2 U (i.e., hyperparameters), is denoted as uh = (bh, nh, oh).

Here, bh represents the data size of retraining samples, nh

denotes the retraining workload (i.e., GPU times), and oh
indicates the computation resource (e.g., GPUs) required for

retraining.

Requests and Tasks. We consider a sequence of online

inference requests arriving online in arbitrary time and order,

denoted as R. The arrival time of request rk is denoted as T a
k .

We assume the request rk can be represented as a Directed

Acyclic Graph (DAG) Gk = (Vk,Lk), where the vertex set Vk

indicates the tasks of request rk and the edge set Lk indicates

the dependency between tasks. For each task vik 2 Vk, the

corresponding model called by the task is denoted as mi
k and

its initial accuracy is represented as ai
k.

Decision Variables. For each task vik in request rk arriving

at the system, the decisions made include: i) xi,j

k 2 {0, 1},

whether task vki is served in edge server ej ; ii) yi,h

k 2 {0, 1},

whether retraining configuration uh is used to retrain the model

mk
i . Table I summarized the important notations.

B. Extended DAG with Retraining Tasks

Retraining Nodes. For each model called in an inference

request, we add a retraining task node of the corresponding

model in the request DAG. The training configuration of

the retraining task is determined by the decision variable

yi,h

k 2 {0, 1}. When yi,h

k = 1, the retraining task uses

configuration uh to complete training. When
P

h
yi,h

k = 0,

model mi
k does not need to be retrained, that is, the retraining

node does not run. We use |V | to represent the number of

initial inference tasks in request rk, then the retraining task

for model mi
k can be expressed as v

|V |+i

k . For the retraining

task v
|V |+i

k with retraining configuration uh, we have the

required computation resource c
|V |+i

k =
P

uh2U yi,h

k oh, the

workload w
|V |+i

k =
P

uh2U yi,h

k nh and the retraining data size

d
|V |+i

k =
P

uh2U yi,h

k bh. After model mi
k is retrained with

configuration uh, the model inference accuracy is updated to

Ai
k =

X

uh2U

yi,h

k f(uh,m
i
k) + (1�

X

uh2U

yi,h

k )ai
k, (1)

where f() models the relation between model retraining con-

figuration and post-training accuracy. It is noted that yi,h

k

indicates whether the model corresponding to task vik is

retrained. For the model corresponding to the retraining task

(i.e., i > |V |), it will definitely not be retrained. Otherwise,

the retraining task will be iteratively generated.

Initial Inference Tasks

Retraining Tasks

Pseudo Entry/Exit Task

Retraining Samples Transmission

Initial Data Transmission Data Transmission when Retraining

Initial DAG

Retraining 

Nodes

Extended DAG
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Fig. 7: Adding Retraining Task Nodes.

DAG Extension. As shown in Fig. 7, to add task v
|V |+i

k

node to the set Vk of request rk’s DAG, we add edges

< vi
0

k , v
|V |+i

k >, i0 2 prek(i) and < v
|V |+i

k , vik > to the

set Lk, where prek(i) denotes the predecessor tasks of task

vik. The transfer data size between predecessor tasks vi
0

k and

retraining task is d
i0,|V |+i

k =
P

uh2U yi,h

k di
0,i

k , and the trans-

fer data size between retraining task v
|V |+i

k and task vik is

d
|V |+i,i

k =
P

uh2U yi,h

k (
P

i02prek(i)
di

0,i

k + d(mi
k)), i

0 2 prek(i).

Here, d(mi
k) represents the data size of model mi

k parameters,

which should be updated to other edges after retraining. Note

that the transfer data size between predecessor task vi
0

k and

task vik is updated to di
0,i

k = (1�
P

uh2U yi,h

k )di
0,i

k . We call the

task without any predecessor tasks as the entry task, and the

task without any successor tasks as the exit task. For ease of

expression, we assume the entry tasks all connect to a pseudo

entry task, denoted as v0k, which does not need to be processed.

Similarly, all the exit nodes are connected to a pseudo exit

node v
2|V |+1
k . Therefore, there is one pseudo entry task in

DAG for each request. Considering the additional training data

required for retraining tasks, we include edge < v0k, v
|V |+i

k >

in the set Lk to represent the transmission of retraining data

samples from the storage cluster, and d
0,|V |+i

k = d
|V |+i

k .

C. Request Completion Time

Execution Time. Due to the heterogeneity of edge servers,

we assume that the computational speed of each unit resource

in edge ej is Sj . The execution time of the task vik can be

calculated as

texek (i) =
X

ej2E

xi,j

k wi
k

cikSj

, (2)

where wi
k stands for the workload of task and cik denotes the

computation resource required by the task.



Transmission Time. The data transfer rate between edge

server ej0 and ej is denoted as Dj0,j . We assume Dj0,j = Dj,j0 ,

and Dj0,j = +1, if j0 = j. The data transmission time between

task vik and its predecessor task vi
0

k can be expressed as:

ttrans
k (i0, i) =

X

ej02E

X

ej2E

xi0,j0

k xi,j

k di
0,i

k

Dj0,j

, i0 2 prek(i), (3)

where di,i
0

k denotes the data size transferred from task vik to

vi
0

k . The retraining data sample transmission time is:

ttrans
k (0, i) =

X

ej2E

xi,j

k d0,ik

Dj

, (4)

where Dj denotes the data transfer rate between edge server

ej and the storage cluster.

Completion time. We define T s
k (i) and T f

k (i) as the start

time and the finish time of the task vik, respectively. We have

T s
k (0) = T f

k (0) = T a
k . (5)

T f

k (i) = T s
k (i) + texek (i). (6)

Considering the dependencies between tasks, the start time of

task vik should satisfy

T s
k (i) � T f

k (i
0) + ttrans

k (i0, i), 8i0 2 prek(i). (7)

Resource Constraint. For tasks scheduled to the same edge

server, resource limit constraints need to be ensured. We use

gj(t) to record the set of tasks that are processed in of edge

server ej at each time t. When xi,j

k = 1 and T s
k (i)  t  T f

k (i),

vik 2 gj(t). Hence, we have the following constraint:
X

vi
k
2gj(t)

cik  Cj . (8)

D. Problem Formulation

Our objective is to minimize the completion time of in-

ference requests and maximize the inference accuracy while

satisfying the DAG dependencies and edge resource con-

straints. The online problem for DAG request scheduling with

retraining can be formulated as follows: 1

min P (X,Y ) =
X

k

( max
vi
k
2Vk

(T f

k (i)) + θ
X

vi
k
2Vk

(1�Ai
k)) (9)

s.t.
X

ej2E

xi,j

k = 1, 8i, 8k, (9a)

X

uh2U

yi,h

k  1, 8i  |V |, 8k, (9b)

yi,h

k = 0, 8i > |V |, 8k, 8h, (9c)

Ai
k � Amin, 8i, 8k, (9d)

xi,j

k 2 {0, 1}, 8i, 8j, 8k, (9e)

yi,h

k 2 {0, 1}, 8i, 8h, 8k, (9f)

(6), (7), (8)

Constraint (9a) guarantees that each task of each request

should be offloaded on only one edge server. Constraint (9b)

means that at most one configuration is selected for retraining

the model called by each task. Constraint (9c) guarantees that

nested retraining tasks are prohibited. Constraint (9d) requires

1We use parameter θ to model the time sensitivity of users. Specifically,
for every additional θ unit of completion time extended, there is an expected
increase of one unit in the inference accuracy from users.

that the accuracy of models used for inference in each request

must be higher than the threshold Amin.

Challenge. [9] has already proven that scheduling a DAG

request on heterogeneous servers while considering inter-

server communication time is NP-hard, which is a special

case of our problem. Therefore, Problem (9) is NP-hard. Fur-

thermore, Problem (9) is more complex. It not only involves

online scheduling of multiple DAG requests but also considers

whether to add retraining tasks within the DAG, along with

their configurations.

IV. DESIGN OF ONLINE SCHEDULING ALGORITHM

To start, we consider the case where there is a single request.

We propose the single request scheduling algorithm to tackle

the problem. Then, expanding on the single request algorithm,

we have devised an algorithm that can effectively handle

multiple requests.

A. List Scheduling

We first design a list scheduling algorithm to determine the

assignment of each task in the request for offloading. This

algorithm selects the highest-priority task and assigns it to the

“best" edge server, repeating this process until all tasks in the

request are offloaded.

We define the priority of the task vi as
φ(i) = max

i02suc(i)
{t

exe
(i) + ttrans

max (i, i0) + φ(i0)}, (10)

where suc(i) represents the successor tasks connected to task

vi. t
exe

(i) is the average execution time of the task vi on all

edge servers, and ttrans
max (i, i0) is the maximum data transmission

time between task vi and its successor task vi
0

, which is

calculated by the lowest transfer rate on all edge servers.

Lemma 1. The decreasing order of priority provides a topo-

logical ordering of tasks in the task DAG.

Proof. See details in Appendix A.

Algorithm Details. The list scheduling algorithm is pre-

sented in Alg. 1. Alg. 1 first calculates the priority of each

task according to the Eq. (10) (line 1). Then, it assigns tasks

to their “best" edge server based on the decreasing order of

priorities (lines 2-9). For the task with the highest priority (line

4), it calculates the finish time of the task on every edge server

(line 5) and selects the edge server with minimum finish time

as the “best" edge server to offload (line 6-8).

Algorithm 1 List Scheduling Algorithm

1: Calculate the priorities of all tasks in V with Eq.(10);
2: q  scheduling list of tasks following decreasing order of

priorities;
3: while q 6= ; do
4: Select the first task vi in the list q;
5: Calculate T f (i) on each edge server by Eq.(5)-(7);

6: Find the edge server ej 2 E that satisfies minX T f (i);
7: Assign task vi to edge server ej , xi,j = 1;
8: Delete task vi from list q;
9: end while;

10: return X;



B. Algorithm for Single Request

While the list scheduling algorithm is effective in handling

DAG request scheduling problems, it is insufficient for making

decisions related to model retraining. We design the single

request scheduling algorithm (SRS) in Alg. 2, which balances

the trade-off between the latency introduced by model retrain-

ing and the improvement in accuracy, and selects the optimal

retraining configuration for each model.

Algorithm Details. Alg. 2 first schedules the initial task

DAG, which only handles inference tasks (line 1). In this

way, it can pre-evaluate the resource utilization and latency of

inference tasks in the request, thereby avoiding the overload of

retraining tasks. For easy calculation, the initial DAG structure

is converted into a single-chain DAG (line 2). Given the

existing resource constraints, the algorithm selects the opti-

mal retraining configuration for each inference task’s model,

aiming to minimize the change value ∆P in the objective

function after retraining (lines 3-6). The change value ∆P

with configuration uh 2 U can be calculated as:

∆P (i, h) =
nh

ohSj⇤
+

di
0,i + d(mi)

Dj0⇤,j⇤
+

bh
Dj⇤

+ θ(1�Ai)� θ(1� ai)

=
nh

ohSj⇤
+

di
0,i + d(mi)

Dj0⇤,j⇤
+

bh
Dj⇤

+ θ(ai � f(uh,m
i)), (11)

where edge server ej⇤ is the available edge server with the

average computing resources, bh represents the data size of

retraining samples, and nh denotes the retraining workload.

Finally, the algorithm invokes Alg. 1 once again to make

scheduling decisions for the extended DAG with retraining

task nodes (line 7).

Algorithm 2 Single Request Scheduling Algorithm (SRS)

1: Invoke Algorithm 1 to schedule initial inference tasks;
2: Convert the initial DAG into a single chain DAG in topological

order;
3: for each vi 2 V do
4: Find the retraining configuration uh 2 U that satisfies

min∆P (i) with Eq. (11)
5: Add the retraining node to the DAG with configuration uh,

yi,h = 1
6: end for
7: Invoke Algorithm 1 to schedule extended DAG to get X;
8: return X,Y ;

Theoretical Analysis. Here, we analyze the gap between the

solution obtained by our algorithm and the optimal solution for

the single request scheduling with model retraining problem,

which are denoted as Malg and Mopt, respectively.

Theorem 1. The solution Malg achieved by our algorithm

satisfies
Malg 

smax

smin
Mopt +

|V |�1X

i=1

ttrans
max + θ

|V |X

i=1

(1� ai), (12)

where smax and smin denote the maximum and minimum

computational speed by per computation unit on edge servers,

respectively.

Proof. See details in Appendix B.

C. Algorithm for Multiple Requests

SRS is not efficient when handling online multiple requests,

particularly regarding task scheduling. The main reason is that

multiple tasks should be processed in parallel while satisfying

resource constraints, while SRS only schedules one request at a

time. In this case, we propose the multiple request scheduling

algorithm (MRS) for a series of requests arriving online.

Similar to the list scheduling approach, MRS determines the

scheduling order by considering the priority of tasks and

selects the currently optimal edge server to offload each task.

Algorithm Details. For each request rk, the model retraining

decisions Yk are obtained by invoking Alg. 2 (line 3). The

algorithm maintains a task list qk where tasks are sorted in

descending order of priority (lines 4-5). In the set of task lists,

the algorithm first chooses the first task of each list (line 9).

Next, the algorithm selects the task from the candidate tasks

that can start the earliest for scheduling (line 10). Lines 11-13

select the best edge server with minimum finish time of the

task to assign. Once the task is assigned, it is removed from

the list (line 14). The scheduling for that request is considered

complete when the list is empty (lines 15-16).

Algorithm 3 Multiple Requests Scheduling Algorithm (MRS)

1: Initialize set Q ;;
2: if new request rk arrives then
3: Invoke Algorithm 2 to get Yk;
4: Calculate the priorities of all tasks in Vk with Eq.(10);
5: qk  scheduling list of tasks following decreasing order of

priorities;
6: Q Q [ {qk};
7: end if
8: while Q 6= ; do
9: Choose the first task of each list qk to construct set H;

10: Select the earliest task vik that can be processed from set H;

11: Calculate T f

k (i) on each edge server by Eq.(5)-(7);

12: Find the edge server ej 2 E that satisfies minX T f

k (i);
13: Assign task vik to edge server ej , xi,j

k = 1;

14: Delete task vik from list qk;
15: if 9qk 2 Q and qk = ; then
16: Delete list qk from set Q;
17: end if
18: end while;
19: return X,Y ;

V. PERFORMANCE EVALUATION

A. Evaluation Settings

Testbed Setup. We constructed an edge computing environ-

ment using containers, comprising five edge servers, a storage

cluster, and a controller. Each edge server is equipped with

two NVIDIA A100 GPUs, each with 80GB of memory. The

GPU computational speed of the edge servers ranges between

[9.7, 19.5] teraflops [10]. Similar to [11], we use the Multi-

Process Service (MPS) [12] to partition GPU resources for

tasks in requests. The controller and the edge servers have

the same GPU configuration. The storage cluster consists of

two object storage servers (OSS), each with 256GB of storage

space and one Nvidia GTX 2060 GPU [13]. The data transfer

rates between edge servers, between edge servers and the



controller are [3, 5] Gbps, and between edge servers and the

storage cluster are [7, 10] Gbps [14].

Request Arriving. Similar to [9], the application requests

arrive following the Alibaba trace [15], which indicates the

real-world inference request workload. We consider requests

of the same type in the trace as requests from the same

application. These requests are then scaled in arrival time

according to appropriate proportions to align with the total

runtime. The data size of inference tasks is within [0.8, 1.6]
MB, while the workload is set from 0.1 to 0.5 GPU times.

Applications and Models. By default in the experiment,

we evaluated five applications: life logging, image processing,

video monitoring, social media, and TF cascade. For the

lifelogging application, we utilize TinyYolo [16], InceptionV3

[17], MobileNetV3 [18], ShuffleNet [19], and EfficientNet

[20] models to accomplish tasks in this DAG application.

The dataset is the Adience image dataset [21], which contains

26580 photos and 2284 subjects. The 40% of the dataset was

used to pre-train the models. The models and datasets of the

other four applications are from [22]. For the experiment with

different numbers of applications, we obtained the additional

applications and datasets from [8]. In the experiment, requests

from the same application share the same DAG structure.

Offline Profiling. To establish the correspondence be-

tween different retraining configurations and the post-accuracy

achieved by model training, denoted by the function f(), we

conducted offline profiling of the models as shown in Sec.

(II-B). We randomly sampled from the test dataset to obtain

data samples for retraining. Then, we retrained the models

under various training hyperparameters, including epochs,

batch size, number of samples, frozen layers, resources, etc.,

and obtained the post-accuracy of models. Given that f() may

vary in a dynamic environment, it is advisable to periodically

run offline profiling to update it to mitigate errors resulting

from environmental changes.

Baselines. To evaluate the performance of our algorithm,

we compare it with the following three baselines.

• AdaInf [8]: AdaInf employs incremental retraining and

considers the SLO of requests. It divides GPU time

between retraining and inference to meet the SLO and

then assigns GPU time to retraining tasks based on their

impact levels for each request.

• Ekya [7]: Ekya is a heuristic algorithm that makes in-

ference and retraining scheduling jointly. It employs a

greedy strategy to select the retraining configuration and

corresponding resource allocation scheme that maximizes

inference accuracy.

• PASS [23]: PASS is a priority-based DAG scheduling

algorithm that computes priorities for each task and

selects edge servers for tasks in priority order. As PASS

does not involve model retraining, we have configured it

to periodically retrain all models to achieve the highest

accuracy.

B. Evaluation Results

As MRS is an extension of SRS tailored for multi-request

scenarios, MRS leverages SRS to make decisions on retraining

configurations, with both algorithms sharing a common core

scheduling philosophy. The primary objective of our experi-

ments is to evaluate the effectiveness of MRS in online multi-

request environments.

Fig. 8: Average inference ac-

curacy over time.

Fig. 9: Normalized comple-

tion time over time.
Accuracy Over Time. Fig. 8 illustrates the average inference

accuracy of requests under different algorithms. It is evident

from the graph that our algorithm can sustain an accuracy

of around 85%, surpassing the other three algorithms. AdaInf

achieves an average inference accuracy of around 60%. This

is attributed to its utilization of idle time, apart from inference

time, to incrementally retrain models, resulting in shorter

training duration and limited improvements in model inference

accuracy. Ekya performs slightly better than AdaInf but

still lags behind our algorithm by approximately 15%. This

is because Ekya sequentially selects the optimal retraining

configurations and resource allocations for each inference

model, even those that do not require accuracy improvements.

This approach reduces available resources for models that

truly need retraining, preventing the selection of higher end-

accuracy retraining configurations. As a result, this diminishes

overall inference accuracy and prolongs request completion

times. As for PASS, it conducts regular retraining for all

models. Consequently, model accuracy gradually declines until

the models are retrained.

Completion Time Over Time. Fig. 9 displays the completion

time of requests under different algorithms. For ease of repre-

sentation, we have normalized the time data. It shows that our

algorithm consistently achieves the fastest request completion

time for the majority of cases. Ekya, due to its excessive

retraining tasks, exhibits the longest completion times, with

AdaInf slightly outperforming it. Our algorithm is more than

45% faster than these two algorithms. For PASS with periodic

retraining, during non-retraining periods, the completion time

for requests may be faster than our algorithm, which schedules

retraining tasks as well. However, during retraining periods,

the completion time for requests is significantly delayed.

Impact of Application Numbers. As the number of ap-

plications increases, Fig. 10 displays a decrease in inference

accuracy, and Fig. 11 demonstrates a continuous increase in

completion time. This is because as the number of applications

grows, the volume of requests within the system also increases,

leading to a gradual reduction in idle resources on the edge

servers. When GPU resources become insufficient, the wait



Fig. 10: Average inference ac-

curacy of different number of

applications.

Fig. 11: Normalized comple-

tion time of different number

of applications.

time for tasks in requests increases, consequently prolonging

the requests completion time. Insufficient resources for retrain-

ing can result in a reduced frequency of retraining or the se-

lection of configurations that require fewer resources, leading

to a decrease in the model’s inference accuracy. Compared to

the other three algorithms, our algorithm excels at achieving

the highest accuracy in the shortest time when fulfilling

application requests, even when the number of applications

is high.

Fig. 12: Average inference ac-

curacy of different edge re-

sources.

Fig. 13: Normalized comple-

tion time of different edge re-

sources.

Impact of Edge Resources. We conducted experiments

on algorithms using different computing resource capacities

of edge servers. Fig. 12 indicates that as edge computing

resources increase, the model’s inference accuracy also im-

proves, with MRS consistently achieving the highest accuracy.

This is because with a fixed inference workload, the greater

the computing resource capacity of the edge servers, the more

resources are available for retraining, leading to an improve-

ment in model accuracy. MRS can flexibly choose retraining

configurations, allowing it to maintain high model accuracy

even with smaller resource capacities. Fig. 13 illustrates the

impact of edge computing resources on request completion

time. When edge servers have larger resource capacities,

requests scheduled by the algorithms can be completed earlier,

with MRS achieving the shortest completion time.

Impact of The Value of θ. Here we investigate the impact

of the value of θ on accuracy and completion time. θ is used

to model user time sensitivity, indicating that users prefer to

trade θ times the unit completion time for one unit of accuracy.

In other words, the larger the value of θ, the more inclined

users are to sacrifice completion time for accuracy. From the

Fig. 14, we can observe that as the value of θ increases, the

model’s accuracy rises. Simultaneously, the completion time

also increases. This is because, to enhance accuracy, the al-

Fig. 14: Accuracy, completion

time and objective value of

different value of θ.

Fig. 15: Execution time of

different algorithms.

gorithm conducts more frequent model retraining sessions and

utilizes more time-consuming configurations, thereby delaying

the completion of requests. Since our goal is to minimize

request completion time and maximize inference accuracy, for

our system, the more suitable theta parameter value is 3. It

can strike a balance between accuracy and completion time,

ultimately minimizing the objective value. Certainly, the value

of θ can also be adjusted based on user requirements.

Execution Time. Fig. 15 illustrates the execution time of

different algorithms within 100 time slots, where all four

algorithms exhibit similar time. Taking our algorithm as an

example, the execution time of the algorithm within each time

slot is 0.013 seconds. With each time slot set at 2 seconds,

the algorithm’s runtime occupies 0.65% of the entire time slot.

This indicates that our algorithm can swiftly schedule user

requests and achieve the goal of completing requests with high

accuracy in a short amount of time.

VI. RELATED WORK

A. Scheduling of Dependent Tasks

Many studies focus on the scheduling of tasks with de-

pendencies in edge computing [9], [23]–[29]. Chen et al.

[24] proposed the LPSched algorithm, which took a linear

programming approach to schedule the jobs with precedence

and resource constraints. Zeng et al. [26] structured the

deployment of linked microservices as a quadratic integer

problem, and then proposed a randomized rounding algorithm

to solve it. Zhao et al. [25] investigated the issue of offloading

interdependent tasks with service caching, introducing the CP

algorithm based on convex programming to address it. Li et al.

[23] explored the scheduling of dependency-aware serverless

functions on edge servers, considering the priority of each

function. Li et al. [27] investigated the offloading of depen-

dency tasks involving encryption and decryption operations

on edge servers, and proposed a customized list scheduling

algorithm to minimize the makespan.

Nevertheless, these studies are founded on predetermined

task dependencies. To mitigate accuracy loss caused by data

drift, model retraining becomes crucial. Yet, the addition of

retraining tasks may alter the DAG structure, a situation for

which these algorithms are inadequately prepared.

B. Model Retraining in Edges

Model retraining stands out as a promising strategy to

tackle data drift. Zhang et al. [30] sampled drift data for



retraining to maintain the model accuracy in edges and reduce

costs. Tian et al. [6] provided two policies to decide when

to update models to cope with drift data. Aleksandrova et al.

[31] updated models based on the Optimal Stopping Theory

(OST) principles to minimize the network overhead. Chen et

al. [32] updated models from cloud server to edges aimed to

minimize the transferring of data. Additionally, some papers

focus on the scheduling of retraining, especially in conjunction

with inference scheduling. Bhattacharjee et al. [33] explored

the scheduling of model retraining and inference colocation.

But the inference tasks were only treated as known back-

ground processes without resource allocation in [33]. Ekya

[7] utilized heuristic algorithms to balance the accuracy of

inference and retraining, allocating limited edge computing

resources. AdaInf [8] employed incremental retraining on edge

servers to enhance model accuracy, and allocated GPU time

for retraining based on the model’s drift impact while meeting

the SLO of inference.

However, in these studies, the timing and scheduling of

model retraining are suboptimal. Ekya conducts model re-

training for every inference task, even for models unaffected

by data drift, leading to resource wastage. Conversely, AdaInf

utilizes the remaining time of the inference SLO for retraining,

providing only a limited accuracy boost. And their offline

algorithms are not suitable for the online multi-requests edge

environment.

VII. CONCLUSION

This paper studies the online scheduling of multiple-model

inference with DAG structure and retraining in edge comput-

ing. To minimize the completion time of inference requests

while maximizing the inference accuracy, we propose to add

the retraining nodes to the original DAG structure of the

request. We then design a single request scheduling algorithm

with a performance guarantee, which selects optimal retraining

configurations under resource constraints, and offloads retrain-

ing and inference tasks together. We further design a multiple

requests scheduling algorithm to address incoming online

application requests. Experiments on the edge system show

that our algorithm outperforms three baselines in inference

accuracy and request completion time.

APPENDIX

A. Proof of Lemma 1

From the definition of task priority in Eq. (10), for each

edge (i, i0) 2 Lk in the request DAG Gk = (Vk,Lk), it

always satisfies φ(i) � φ(i0). This indicates that task i will be

scheduled before its successor task i0, ensuring the topological

order of the DAG.

B. Proof of Theorem 1

Lemma 2. In single request scheduling algorithm, the solution

Malg satisfies

Malg 

|V |X

i=1

(
smax

smin
texemin(i)) +

|V |�1X

i=1

ttrans
max + θ

|V |X

i=1

(1� ai), (13)

where ttrans
max is the maximum data transmission time in

graph G, texemin(i) is the minimum execution time of task vi

on the edge servers. smax and smin denote the maximum and

minimum computational speed by per computation unit on

edge servers, respectively. ai is the initial inference accuracy

of task vi .

Proof. Talg denotes the request completion time of our algo-

rithm. For the extended request DAG with retraining nodes,

it has been proved that we can always extract a task chain

V : v1 ! v2 ! ... ! v2|V |, whose completion time is equal to

Talg [27].

The completion time of chain V consists of two parts: task

execution time texe(V) and data transmission time ttrans(V).

For the data transmission time ttrans(V), it is obvious that

ttrans(V) = ttrans(1, 2) + ...+ ttrans(2|V |� 1, 2|V |)



2|V |�1X

i=1

ttrans
max . (14)

And the task execution time texe(V) satisfies

texe(V) = texe(1) + texe(2) + ...+ texe(|V |)



2|V |X

i=1

(
smax

smin
texemin(i)). (15)

By (14) and (15), we can prove that

Talg 

2|V |X

i=1

(
smax

smin
texemin(i)) +

2|V |�1X

i=1

ttrans
max , (16)

Considering the change value ∆P in Eq. (11), each added

retraining node vi+|V | and its retrained accuracy Ai
alg in the

request DAG satisfy that
smax

smin
texemin(i+ |V |) + ttrans

max + θ(ai �Ai
alg)  0, (17)

By (16) and (17), we can prove that

Malg = Talg + θ
X

vi2V

(1�Ai
alg)



|V |X

i=1

(
smax

smin
texemin(i)) +

|V |�1X

i=1

ttrans
max + θ

|V |X

i=1

(1� ai) (18)

Previous study [34] proved that the optimal completion time

for any DAG is longer than the completion time of any chain

extracted from the DAG. Therefore, we have

Topt �

|V |X

i=1

texemin(i). (19)

Then, based on the inference accuracy updating in Eq. (1)

and (19), we have

Mopt = Topt + θ
X

vi2V

(1�Ai
opt) �

|V |X

i=1

texemin(i) (20)

According to (20) and Lemma 2, we can derive that

Malg 

|V |X

i=1

(
smax

smin
texemin(i)) +

|V |�1X

i=1

ttrans
max + θ

|V |X

i=1

(1� ai)


smax

smin
Mopt +

|V |�1X

i=1

ttrans
max + θ

|V |X

i=1

(1� ai). (21)
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