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Abstract—In the emerging edge computing paradigm, small-
scale highly distributed edge clouds are on the service path
between end users and conventional large-scale clouds at the
Internet core. A crucial problem that needs to be addressed in
order to drive cost and performance in this multi-tier distributed
infrastructure is the dynamic and joint allocation of cloud and
network resources, which is particularly challenging due to the
coexistence of several factors: the reconfiguration cost associated
to changing resource allocation decisions over time, the constantly
varying and often unpredictable nature of service demands, as
well as the heterogeneity of distributed resources.

We study the problem of resource allocation and reconfigura-
tion in the multi-tier resource pool from an online optimization
perspective that addresses all the challenges above. Our approach
decouples the original problem over time by constructing a
series of subproblems that are solvable at each corresponding
time slot using the output of the previous time slot. Via solid
formal analysis, we prove that, without any lookahead beyond the
current time slot, our online algorithm provides a solution with
a parameterized competitive ratio for any arbitrarily dynamic
workload and operating price. We conduct extensive evaluations
in a variety of settings based on a number of clouds and real-
world workloads with regular and flash crowd fluctuations, and
demonstrate that our online algorithm performs well in practice,
achieving up to 9× total cost reduction than the sequence of
one-shot optimizations and at most 3× the offline optimum.

I. INTRODUCTION

Clouds are moving closer to end users [5], [19], [20], [22],

which enables major improvements in key service performance

metrics such as latency (via service proximity), reliability (via

service redundancy), and privacy (via local or regional data

storage). Small-scale highly distributed edge clouds can be

built at network operators’ existing points of presence, or

implemented separately at metro, branch, or even customer

premises. Introducing the edge cloud into the service path

between end users and large commercial clouds at the Internet

core results in a multi-tier hierarchic infrastructure, as shown

in Fig. 1. A motivating scenario can be using this infrastructure

to deploy Virtual Network Functions (VNFs) and service

chains. The VNFs at lower-tier clouds are typically those that

benefit from the proximity to end users, and the VNFs at

upper-tier clouds are those that benefit more from the economy

of scale of the large resource pool. User requests or flows

are firstly processed at the lower-tier clouds, and afterwards

forwarded upstream and processed at the upper-tier clouds.

To exploit the great potential of this multi-tier distributed

infrastructure, a critical problem that needs to be addressed is

the joint allocation of cloud and network resources across the

Fig. 1: The tiered resource pool of clouds and networks

hierarchic resource pool. Challenged by the reconfiguration

cost, workload dynamics, and resource heterogeneity, this

problem roots its difficulty in both time and space dimensions.

In the time dimension, resource allocation needs to be

balanced with resource reconfiguration over time, and strik-

ing this balance dynamically under unpredictable workloads

requires online decision making. Allocation cost refers to the

operating cost incurred by using physical and virtual resources

such as Physical Machines (PMs), Virtual Machines (VMs),

and networks. Reconfiguration cost is incurred by changing

resource allocation decisions over time via switching on/off

resources, and can capture service interruption [17], hardware

wear and tear [11], risk and system instability [27], as well as

resource lead time (e.g., when booting a VM) [13]. On one

hand, one prefers to allocate just sufficient resources to process

the workload to avoid over provisioning and minimize the

operating cost; on the other hand, one may desire the resource

allocation decisions to be as smooth as possible to avoid sharp

changes over time that can incur excessive reconfiguration

cost. Striking the right balance is particularly hard in an online

setting, where a resource allocation decision needs to be made

on the fly without prior knowledge about the workload in the

future. The operating price may also vary unpredictably and

influence the resource allocation decisions as well.

In the space dimension, the heterogeneity and the geo-

graphic distribution of multi-tier resources requires the joint,

multi-dimensional optimization of clouds and networks across

locations and tiers, while respecting capacity limits [14], [24]

and service quality requirements [9], [15]. Unlike gigantic

upper-tier clouds where resources may be considered “infi-

nite”, lower-tier clouds and networks often impose limited

capacities, and are diverse in resource prices. To process the

incoming workload from an edge cloud, for instance, maybe

only a particular subset of the upper-tier clouds can satisfy the
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specified Service Level Agreement (SLA) in terms of latency,

security risk, reliability, and so on. Thus, at different upper-

tier clouds, resources need to be allocated and reconfigured to

handle workloads from different edge clouds. Such factors add

additional complexities to the online optimization problem.

Existing researches do not capture the emerging distributed

multi-tier cloud networks architecture, and more importantly,

they either ignore the reconfiguration cost [7], [8], [12], [25],

or assume the lookahead into the future so that their results

highly depend on the capability of prediction [10], [23],

[26], [27]. The gap remains: for the essentially unpredictable

workloads, how to allocate resources online in a multi-tier

cloud and network resource pool so that the total allocation

and reconfiguration cost over time is minimized?

In this paper, we aim to fill this gap by developing formal

models, online algorithms and competitive analysis to capture,

solve and characterize the optimization problem of smoothly

allocating resources in multi-tier cloud networks for unpre-

dictably time-varying workloads. We make three contributions:

We build models that can capture a range of real-world costs

and we formulate the smoothed online resource allocation

problem. The allocation cost is modeled as affine functions

of resource units of clouds and networks, which can capture,

e.g., the pay-as-you-go billing scheme for resource usage and

electricity consumption. The reconfiguration cost is modeled

as only paying for the increase of the amount of allocated

resources from one time slot to the next, which can capture,

e.g., PM and VM booting and lead time. SLA is modeled

using the subset approach, i.e., for a lower-tier cloud, only a

cloud in a specified subset of the upper-tier clouds can satisfy

the SLA requirement. We do not enforce how such subsets

are determined or what criterion is used. We also make no

assumption on workload and operating price dynamics.

We design an online algorithm by exploiting the technique

of regularization [4], and formally prove that our online

algorithm provides a solution with a parameterized competitive

ratio independent of workload and operating price dynamics.

Fundamentally different from existing work, our approach,

without any lookahead, decouples the original problem over

time by constructing a series of subproblems where the optimal

decision of a subproblem at a time slot depends on the

workload at that time slot and the decision of the subproblem

at the previous time slot, and uses the sequence of decisions

to this series of subproblems as the solution to our original

problem. The intuition behind our algorithm is that, when the

workload increases, we allocate just enough resources to cover

the workload, and when the workload decreases sharply, we

do not reduce the resource allocation immediately to match

the workload and instead we take a controlled exponential-

decay reduction in the amount of allocated resources to avoid

excessive reconfiguration cost as the workload may increase

later. We derive the optimality guarantee for our algorithm

via rigorous competitive analysis for two tiers of clouds, and

generalize such a guarantee to arbitrary N � 2 tiers of clouds.

We conduct extensive numerical evaluations based on real-

world data traces. Using the 18 AT&T clouds in North Amer-

ica as tier-2 clouds and one tier-1 cloud per continental US

state, and using the realistic dynamic electricity price and the

estimated bandwidth price as the operating prices, we run the

sequence of one-shot optimizations, our online algorithm, and

the offline optimization to allocate and reconfigure resources

for the 2007 Wikipedia workload of 500 hours with regular

dynamics and for the 1998 World Cup workload of 600 hours

with large spikes, respectively. Through a number of different

settings, we demonstrate that our online algorithm performs

consistently well in practice, achieving up to 9× total cost

reduction over time than one-shot optimizations and at most

3× the offline optimum.

II. MODEL FORMULATION

A. Models and Notations

System: Clouds are geographically distributed and organized

in tiers, as shown in Fig. 1. Tier-1 clouds, indexed by j ∈ J ,

are edge clouds (e.g., at metro points of presence) located in

close proximity to the end users in each region. Tier-2 clouds,

indexed by i ∈ I, are larger clouds located at the Internet

core, which are typically public clouds or enterprise clouds

that host services offered to end users or customers. Note that

tier-1 clouds are on the path between users and tier-2 clouds,

i.e., to reach a tier-2 cloud, a user’s requests or flows must

go through the regional tier-1 cloud. All users in a region

are connected to their corresponding tier-1 cloud, and a tier-1

cloud can potentially connect to all the tier-2 clouds.

We model the cloud resources of tier-1 and tier-2 clouds,

as well as the network resources between tier-1 and tier-2

clouds. Tier-2 cloud i has capacity Ci, unit allocation cost (i.e.,

the operating price) ait which may be time-varying, and unit

reconfiguration cost (i.e., the reconfiguration price) bi. Analo-

gously, tier-1 cloud j has capacity Cj , unit allocation cost ejt,
and unit reconfiguration cost fj . The network between tier-2

cloud i and tier-1 cloud j has capacity Bij , unit allocation

cost cijt, and unit reconfiguration cost dij . In a time-slotted

system, the allocation cost pays for the amount of allocated

resources at every time slot, such as energy and bandwidth

expense; in contrast, the reconfiguration cost only pays for the

increase of the amount of resources across consecutive time

slots to capture the fact that, e.g., booting PMs or VMs incurs

considerable time while shutting them down is often fast.

Workload: We target web services workload and alike, and

use λjt to denote the aggregated workload, e.g., in terms of

the number of requests, received at edge cloud j at time slot

t. User requests are first processed at the local edge cloud

and then at one of the clouds at the upper tier that host the

target service. The workloads at different edge clouds can be

different, and change over time. We make no assumption on

workload dynamics and statistical distributions, and allow the

workload of each edge cloud to vary arbitrarily and inde-

pendently. We model a time-slotted system where each time

slot t ∈ {1, 2, 3, ..., T} corresponds to a resource allocation

decision at all clouds and inter-cloud networks across tiers.

SLA: We model the SLA requirements as the selections of

clouds at the upper tier. For each tier-1 cloud j, there exists
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a subset of tier-2 clouds, denoted as Ij , that satisfy the SLA

requirement, meaning that the latency, security risk, reliability,

and so on as in the SLA specification can be satisfied if user

requests received at cloud j are routed to any cloud in Ij .

Correspondingly, Ji refers to the subset of tier-1 clouds for

which the tier-2 cloud i can satisfy the SLA. Taking Fig. 1

as an example, we have Ji2 = {j1, j2}, Ij1 = {i1, i2}, Ij2 =
{i2, i3}. In case of a system with more than two tiers of clouds,

an edge cloud receives the requests and sends them to a cloud

at the top tier eventually for processing. Multiple paths may

exist to satisfy the SLA and to reach one of the clouds at the

top tier via different clouds at the intermediate tiers.

B. Problem Formulation

Based on the models as described above, we formulate the

total cost, including the allocation cost and the reconfiguration

cost, at the two tiers of clouds and at the network between

them. We use xijt to denote the amount of resources allocated

at cloud i to process the incoming workload from cloud j at

time t, yijt to denote the amount of resources allocated at the

network between clouds i and j to transport the workload from

cloud j to cloud i at time t, and zijt to denote the amount of

resources allocated at cloud j to process the workload that is

sent to cloud i for processing at time t:

F1=
∑
t

∑
j

∑
i∈Ij

ejtzijt +
∑
t

∑
j

fj

⎡⎣∑
i∈Ij

zijt −
∑
i∈Ij

zijt−1

⎤⎦+

,

F12=
∑
t

∑
j

∑
i∈Ij

cijtyijt +
∑
t

∑
j

∑
i∈Ij

dij [yijt − yijt−1]
+
,

F2=
∑
t

∑
i

∑
j∈Ji

aitxijt +
∑
t

∑
i

bi

⎡⎣∑
j∈Ji

xijt −
∑
j∈Ji

xijt−1

⎤⎦+

.

Then we formulate the dynamic resource allocation problem

as follows, where
∑

i

∑
j∈Ji

xij =
∑

j

∑
i∈Ij

xij , ∀xij and

[x]+ � max{x, 0}, ∀x:

min F1 + F12 + F2

s. t.
∑
i∈Ij

min{xijt, yijt, zijt} � λjt , ∀j , ∀t , (1a)

∑
j∈Ji

xijt � Ci , ∀i , ∀t , (1b)

yijt � Bij , ∀i ∈ Ij , ∀j , ∀t , (1c)∑
i∈Ij

zijt � Cj , ∀j , ∀t , (1d)

xijt � 0 , yijt � 0 , zijt � 0 , ∀i ∈ Ij , ∀j , ∀t . (1e)

The objective is to minimize the total cost over time. Recall

our workload model where user requests or flows are processed

at each tier and transported by the network between tiers. So,

Constraint (1a) ensures sufficient resources along the service

path; Constraints (1b), (1c), and (1d) ensure that the resource

allocation can only be done within the capacity.

By introducing the axillary variable sijt, we can rewrite the

problem as follows:

min F1 + F12 + F2

s. t. xijt � sijt , ∀i ∈ Ij , ∀j , ∀t , (2a)

yijt � sijt , ∀i ∈ Ij , ∀j , ∀t , (2b)

zijt � sijt , ∀i ∈ Ij , ∀j , ∀t , (2c)∑
i∈Ij

sijt � λjt , ∀j , ∀t , (2d)

sijt � 0 , ∀i ∈ Ij , ∀j , ∀t , (2e)

(1b) , (1c) , (1d) .

For the problem to be feasible, the following inequalities must

be satisfied: Cj � λjt, ∀j, ∀t;
∑

i∈Ij
Bij � λjt, ∀j, ∀t;∑

i Ci �
∑

j λjt, ∀t. These three inequalities correspond to

constraints (1d), (1c), and (1b), respectively.

Due to the highly analogous structure of F2 and F1, we re-

move F1 and its corresponding constraints (2c) and (1d) from

our problem for the ease of presentation. All the techniques

that we develop in this paper are naturally applicable to the

problem that has F1, (2c) and (1d). In the rest of this paper,

we focus on the following problem that we name P1:

min F12 + F2

s. t. (2a) , (2b) , (2d) , (2e) , (1b) , (1c) .

III. ALGORITHM AND OPTIMALITY

A. Key Idea

In a typical online setting, the “competitive ratio” is often

used to quantify the quality of the solution produced by an

online algorithm. To make decisions for a series of time

slots, an online algorithm, to which the input is revealed

incrementally and only a piece at a time, makes a decision

for the current time slot on the fly; an offline algorithm, to

which the entire input is assumed to be revealed all at once,

makes decisions for all time slots at one time. The competitive

ratio, independent of the input, refers to the ratio of the over

time cost incurred by the online decisions over that incurred

by the offline optimal decisions. We aim to propose an online

algorithm and also analyze its competitive ratio in this paper.

The major difficulty in solving the problem P1 online lies in

the reconfiguration cost which couples every two consecutive

time slots. The resource allocation decision for a time slot can

influence the reconfiguration cost between this time slot and

its next time slot—without knowing the workload of the next

time slot, it is hard to make a good decision for this time slot.

To conquer such difficulty, we exploit the regularization

technique to decouple the original problem P1 by construct-

ing a series of subproblems {P
(1)
2

,P
(2)
2

, . . . ,P
(t)
2

, . . . ,P
(T)
2
}.

Denoting by (x∗t , y
∗
t ) the optimal solution to P

(t)
2

, we use

the sequence {x∗1, y
∗
1 , x

∗
2, y

∗
2 , . . . , x

∗
t , y

∗
t , . . . , x

∗
T , y

∗
T } as the

solution to P1 (Lemma 1 in the next section shows this

sequence is feasible for P1). Without knowing the workload

of the next time slot, this approach enables us to make an

appropriate decision for the current time slot with bounded

335



Fig. 2: Key idea

proximity to the offline optimum, based on the decision of the

previous time slot and the workload of the current time slot.

Our key idea for algorithm design and competitive analysis

is illustrated in Fig. 2. We proceed through the following steps:

• Step 1: Construct P
(t)
2

whose optimal solution (x∗t , y
∗
t )

is feasible for P1 at t;

• Step 2: Construct P3 by relaxing P1, and derive P4, the

Lagrange dual problem of P3;

• Step 3: Construct the mapping π which maps (x∗t , y
∗
t ) to

a solution feasible for P4 at t;

• Step 4: Prove P1({x
∗
t , y

∗
t |∀t}) � rP4({π(x

∗
t , y

∗
t )|∀t}).

Let us denote by Pi(x) the objective function value of the

problem i evaluated at x and denote by OPT (·) the offline

optimal objective function value. From Steps 2 and 3, it natu-

rally follows P4({π(x
∗
t , y

∗
t )|∀t}) � OPT (P3) � OPT (P1)

due to weak duality and relaxation, respectively. By Step 1,

we achieve Step 4, from which it follows P1({x
∗
t , y

∗
t |∀t}) �

rOPT (P1), and consequently r is the competitive ratio.

B. Algorithm Design

Our online algorithm solves P
(t)
2

, ∀t ∈ {1, . . . , T}, taking

the optimal solution of P
(t−1)
2

and the workload at t as input.

At t = 0 where P
(0)
2

is undefined, we set its “optimal solution”

to zero. We construct the following formulation as P
(t)
2

:

min Ft =
∑
i

∑
j∈Ji

aitxijt +
∑
j

∑
i∈Ij

cijtyijt

+
∑
i

bi
ηi

⎛⎜⎝
⎛⎝∑

j∈Ji

xijt + ε

⎞⎠ln

∑
j∈Ji

xijt + ε∑
j∈Ji

x∗ijt−1 + ε
−
∑
j∈Ji

xijt

⎞⎟⎠
+
∑
j

∑
i∈Ij

dij
η′ij

(
(yijt + ε′) ln

yijt + ε′

y∗ijt−1 + ε′
− yijt

)
s. t. xijt � sijt , ∀i ∈ Ij , ∀j , (4a)

yijt � sijt , ∀i ∈ Ij , ∀j , (4b)∑
i∈Ij

sijt � λjt , ∀j , (4c)

∑
k∈I
k �=i

∑
j∈Ji

xkjt �
∑
j

λjt − Ci , ∀i , (4d)

∑
k∈Ij
k �=i

ykjt � λjt −Bij , ∀i ∈ Ij , ∀j , (4e)

sijt � 0 , ∀i ∈ Ij , ∀j , (4f)

where (x∗ijt−1, y
∗
ijt−1), satisfying x∗ij0 = y∗ij0 = 0, is the op-

timal solution to P
(t−1)
2

, and ε, ε′, ηi, η
′
ij are the parameters:

ε > 0 , ε′ > 0 , ηi = ln

(
1 +

Ci

ε

)
, η′ij = ln

(
1 +

Bij

ε′

)
.

Note that P
(t)
2

is a convex optimization problem. When

formulating the objective of P
(t)
2

, we “regularize” the re-

configuration cost by replacing the function [·]+ (recall

[x]+ = max{x, 0}) with a logarithmic function. Furthermore,

we reformulate constraints (2a), (2d) and (1b) in P1, intro-

ducing (4d) in P
(t)
2

, and analogously for (2b), (2d) and (1c)

in P1, we introduce (4e) in P
(t)
2

.

We state the following lemma to show the feasibility of the

sequence {x∗1, y
∗
1 ,x∗2, y

∗
2 ,. . . ,x

∗
t , y

∗
t ,. . . ,x

∗
T , y

∗
T } for P1:

Lemma 1. (x∗t , y
∗
t ) is feasible for P1 at t.

Proof: We prove this lemma by showing that (x∗t , y
∗
t ), as

the optimal solution to P
(t)
2

, while satisfying P
(t)
2

’s constraints

(4a)-(4f), also satisfies P1’s constraints (2a), (2b), (2d), (2e),

(1b) and (1c) at the same t. Note that x∗t and y∗t , for the ease

of presentation, actually refer to x∗ijt and y∗ijt, ∀i ∈ Ij , ∀j.

∂Ft

∂xijt

= ait +
bi
ηi

ln

∑
j∈Ji

xijt + ε∑
j∈Ji

x∗ijt−1 + ε
� 0 ,

when xijt � x∗ijt−1 , ∀i ∈ Ij , ∀j , and

∂Ft

∂yijt
= cijt +

dij
η′ij

ln
yijt + ε′

y∗ijt−1 + ε′
� 0 ,

when yijt � y∗ijt−1 , ∀i ∈ Ij , ∀j . That is, Ft increases

monotonically for xijt � x∗ijt−1 and yijt � y∗ijt−1, and drops

when we reduce xijt to x∗ijt from a value that is larger than

x∗ijt and reduce yijt to y∗ijt from a value that is larger than y∗ijt.
With

∑
j∈Ji

x∗ij0 = 0 � Ci and y∗ij0 = 0 � Bij , the value

of Ft is reduced when we reduce xij1 until
∑

j∈Ji
xij1 = Ci

holds and reduce yij1 until yij1 = Bij holds, i.e., we will

have
∑

j∈Ji
x∗ij1 � Ci and y∗ij1 � Bij , as required by (1b)

and (1c) at t = 1. Analogously, ∀t � 2, (1b) and (1c) hold.

C. Geometric Interpretation

To understand how the optimal decisions from P
(t)
2

, ∀t ac-

tually dictate the resource allocation, we consider a simplified

version of our smoothed online resource allocation problem at

a single data center with a time-varying workload, which is

formulated as

min
∑
t

atxt +
∑
t

b[xt − xt−1]
+

s. t. xt � λt , ∀t , (5a)

xt � C , ∀t . (5b)

Replacing b[xt − xt−1]
+, we have

atxt +
b

η

(
(xt + ε) ln

xt + ε

x∗t−1 + ε
− xt

)
(6)
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where η = ln(1+C/ε). The problem is further decoupled over

time slots. At each time slot t � 1, we minimize (6) subject

to (5a) and (5b) at the corresponding time slot, with x∗0 = 0.

By setting the derivative of (6) to zero, we get its constraint-

free minimizer x̃t as

x̃t =

(
1 +

C

ε

)− at
b

(x∗t−1 + ε)− ε � x∗t−1 . (7)

With constraints (5a) and (5b), we know that at t, if λt > x̃t,

then x∗t = λt; if λt � x̃t, then x∗t = x̃t.

Let us consider w + 1 (where w, and w′ in the following,

are integers) consecutive time slots t, t+1, ..., t+w with the

workload λt < λt+1 < ... < λt+w:

• In the case of λt > x̃t, we have x∗t+w′ = λt+w′ , ∀w
′,

where 1 � w′ � w. This is because λt > x̃t gives

x∗t = λt and further gives λt+1 > λt = x∗t � x̃t+1,

and afterwards, λt+1 > x̃t+1 gives x∗t+1 = λt+1. This

procedure can continue for any w′, where 1 < w′ � w.

Here, the resource allocation follows the workload.

• In the case of λt � x̃t, by applying the equation in (7)

iteratively, we have

x∗t+w′ = x̃t+w′ =

(
1 +

C

ε

)− 1
b

∑w′

t′=1
at+t′

(x̃t + ε)− ε,

if λt+w′ � x̃t+w′ , ∀w
′, where 1 � w′ � w. Here, if at

does not vary with t, the resource allocation follows the

exponential decay; if at varies but is bounded by some

constant, the resource allocation is also bounded by the

corresponding exponential decay curve.

Our online algorithm always tries to allocate resources

following an exponential decay curve (or a curve bounded

by the exponential decay as explained in the above) for an

arbitrarily time-varying workload. At a time slot, the actual

amount of allocated resources depends on which is larger: the

“expected” amount of resources calculated according to the

current exponential decay or the actual workload at the current

time slot. If the former is larger, then what has been calculated

is the amount to allocate; if the latter is larger, then it allocates

just enough resources to cover the workload. Note that in the

latter case, the decay curve changes correspondingly. At the

next time slot, our algorithm will calculate the “expected”

amount of resources following the new decay curve, and

compare it with the actual workload of the next time slot.

D. Competitive Analysis

Theorem 1. Our online algorithm produces a solution to

P1 with a competitive ratio of r = 1 + |I| (C(ε) +B(ε′)),
where C(ε) = max

i∈I

{
(Ci + ε) ln

(
1 + Ci

ε

)}
and B(ε′) =

max
i∈Ij ,j∈J

{
(Bij + ε′) ln

(
1 +

Bij

ε′

)}
.

The rest of this section, following the steps described in

Section III-A, analyzes why and how we get such a competi-

tive ratio, which also serves as the proof to the above theorem.

Step 1 has been addressed in Section III-B, so we start with

Step 2 and break every step into two substeps for clarity.

Step 2.1: By deriving (8d) from (2a), (2d) and (1b), and

deriving (8e) from (2b), (2d) and (1c), we relax P1 to P3:

min
∑
t

∑
i

∑
j∈Ji

aitxijt +
∑
t

∑
i

bivit

+
∑
t

∑
j

∑
i∈Ij

cijtyijt +
∑
t

∑
j

∑
i∈Ij

dijwijt

s. t. vit �
∑
j∈Ji

xijt −
∑
j∈Ji

xijt−1 , ∀i , ∀t , (8a)

wijt � yijt − yijt−1 , ∀i ∈ Ij , ∀j , ∀t , (8b)

vit � 0 , wijt � 0 , ∀i , ∀j , ∀t , (8c)

∑
k∈I
k �=i

∑
j∈Ji

xkjt �

⎡⎣∑
j

λjt − Ci

⎤⎦+

, ∀i , ∀t , (8d)

∑
k∈Ij
k �=i

ykjt � [λjt −Bij ]
+
, ∀i ∈ Ij , ∀j , ∀t , (8e)

(2a) , (2b) , (2d) , (2e) ,

where vit and wijt are auxiliary variables. Note xijt � 0,

yijt � 0 due to (2a), (2b), (2e), and thus we can apply [·]
+

to

the right-hand sides of (8d) and (8e).

Step 2.2: We derive the Lagrange dual problem of P3. Let

αit, βijt, δit, θijt be the dual variables associated with (8a),

(8b), (8d) and (8e), respectively; let ρijt, φijt, γjt be the dual

variables associated with (2a), (2b) and (2d), respectively. We

have the dual problem P4:

max D =
∑
t

∑
j

λjtγjt +
∑
t

∑
i

⎡⎣∑
j

λjt − Ci

⎤⎦+

δit

+
∑
t

∑
j

∑
i∈Ij

[λjt −Bij ]
+
θijt (9)

s. t. ait + αit − αit+1 − ρijt +
∑
k∈I
k �=i

δkt � 0 ,

∀i ∈ Ij , ∀j , ∀t, (9a)

cijt + βijt − βijt+1 − φijt +
∑
k∈Ij
k �=i

θkjt � 0 ,

∀i ∈ Ij , ∀j , ∀t , (9b)

ρijt + φijt − γjt � 0 , ∀i ∈ Ij , ∀j , ∀t , (9c)

bi − αit � 0 , ∀i , ∀t , (9d)

dj − βjt � 0 , ∀j , ∀t , (9e)

αit � 0 , δit � 0 , γjt � 0 , ∀i , ∀j , ∀t ,

βijt � 0 , θijt � 0 , ρijt � 0 , φijt � 0 ,

∀i ∈ Ij , ∀j , ∀t . (9f)

Step 3.1: We write the following KKT conditions that

characterize the optimal solution x∗ijt, y
∗
ijt of P

(t)
2

, where ρ′ijt,
φ′ijt, γ

′
jt are the dual variables associated with (4a), (4b), (4c),

respectively, δ′it, θ′ijt are the dual variables associated with

(4d), (4e), respectively, and pijt is the dual variable for (4f).

337



We will use these equations and inequalities later:

ait +
bi
ηi

ln

∑
j∈Ji

x∗ijt + ε∑
j∈Ji

x∗ijt−1 + ε
− ρ′ijt +

∑
k∈I
k �=i

δ′kt = 0 ,

∀i ∈ Ij , ∀j , (10a)

cijt +
dij
η′ij

ln
y∗ijt + ε′

y∗ijt−1 + ε′
− φ′ijt +

∑
k∈Ij
k �=i

θ′kjt = 0 ,

∀i ∈ Ij , ∀j , (10b)

ρ′ijt + φ′ijt − γ′jt − pijt = 0 , ∀i ∈ Ij , ∀j , (10c)

ρ′ijt(s
∗
ijt − x∗ijt) = 0 , ∀i ∈ Ij , ∀j , (10d)

φ′ijt(s
∗
ijt − y∗ijt) = 0 , ∀i ∈ Ij , ∀j , (10e)

γ′jt

⎛⎝λjt −
∑
i∈Ij

s∗ijt

⎞⎠ = 0 , ∀j , (10f)

pijts
∗
ijt = 0 , ∀i ∈ Ij , ∀j , (10g)

ρ′ijt � 0 , φ′ijt � 0 , θ′ijt � 0 , pijt � 0 , ∀i ∈ Ij , ∀j ;

γ′jt � 0 , δ′it � 0 , ∀j , ∀i . (10h)

Step 3.2: We map x∗ijt, y
∗
ijt and the dual variables in the

KKT conditions to a solution that is feasible for P4 at t:

αit =
bi
ηi

ln
Ci + ε∑

j∈Ji

x∗ijt−1 + ε
, βijt =

dij
η′ij

ln
Bij + ε′

y∗ijt−1 + ε′
,

ρijt = ρ′ijt , φijt = φ′ijt , γjt = γ′jt , δit = δ′it , θijt = θ′ijt .

To see the feasibility, let us take the constraint (9a) as an

example. Putting them into the left-hand side of (9a), we get

ait + αit − αit+1 − ρijt +
∑
k∈I
k �=i

δkt

= ait +
bi
ηi

ln
Ci + ε∑

j∈Ji

x∗ijt−1 + ε
−

bi
ηi

ln
Ci + ε∑

j∈Ji

x∗ijt + ε
− ρ′ijt

+
∑
k∈I
k �=i

δ′kt � 0 .

The above holds due to (10a) and (10h). Analogously, (9b)

holds due to (10b) and (10h); (9c) holds due to (10c) and

(10h); (9d), (9e) hold due to x∗ijt � 0, y∗ijt � 0, as in (4a), (4b),

(4f). In (9f), αit � 0, βijt � 0 hold due to
∑

j∈Ji
x∗ijt � Ci,

y∗ijt � Bij , ∀t, as in Lemma 1; the others hold due to (10h).

Step 4: In this step, we demonstrate that, using the sequence

of {x∗1, y
∗
1 ,x∗2, y

∗
2 ,. . . ,x

∗
t , y

∗
t ,. . . ,x

∗
T , y

∗
T } as the solution to P1,

its objective function value is bounded by a constant (i.e., the

competitive ratio) times the objective function value of P4

evaluated with the constructed solutions αit, βijt, ρijt, φijt,

γjt, δit, θijt, ∀t. To this end, we bound the allocation cost and

the reconfiguration cost in P1’s objective, respectively.

Step 4.1: Firstly, we bound the allocation cost.∑
t

∑
j

∑
i∈Ij

aitx
∗
ijt +

∑
t

∑
j

∑
i∈Ij

cijty
∗
ijt (13)

=
∑
t

∑
j

∑
i∈Ij

x∗ijt

⎛⎜⎝ρijt −
bi
ηi

ln

∑
j∈Ji

x∗ijt + ε∑
j∈Ji

x∗ijt−1 + ε
−
∑
k∈I
k �=i

δkt

⎞⎟⎠

+
∑
t

∑
j

∑
i∈Ij

y∗ijt

⎛⎜⎜⎝φijt −
dij
η′ij

ln
y∗ijt + ε′

y∗ijt−1 + ε′
−
∑
k∈Ij
k �=i

θkjt

⎞⎟⎟⎠
(13a)

�
∑
t

∑
j

∑
i∈Ij

x∗ijtρijt +
∑
t

∑
j

∑
i∈Ij

y∗ijtφijt

−
∑
t

∑
j

∑
i∈Ij

x∗ijt
bi
ηi

ln

∑
j∈Ji

x∗ijt + ε∑
j∈Ji

x∗ijt−1 + ε

−
∑
t

∑
j

∑
i∈Ij

y∗ijt
dij
η′ij

ln
y∗ijt + ε′

y∗ijt−1 + ε′
(13b)

�
∑
t

∑
j

∑
i∈Ij

s∗ijt(ρijt + φijt) (13c)

=
∑
t

∑
j

∑
i∈Ij

s∗ijtγjt (13d)

=
∑
t

∑
j

λjtγjt (13e)

� D (13f)

(13a) follows from (10a) and (10b). (13b) follows from

(10h). (13c) follows from (10d), (10e) and these two

inequalities:
∑
t

∑
j

∑
i∈Ij

x∗ijt
bi
ηi

ln
∑

j∈Ji
x∗ijt+ε

∑
j∈Ji

x∗
ijt−1

+ε
� 0 and∑

t

∑
j

∑
i∈Ij

y∗ijt
dj

η′
ij

ln
y∗ijt+ε′

y∗
ijt−1

+ε′
� 0. (13d) follows from (10c)

and (10g). (13e) follows from (10f). (13f) follows from (9).

As an example, in the following we show that the latter

of the above two inequalities holds, and the former can be

shown analogously. Note that proving the latter inequality is

equivalent to proving that the sum of (14a) and (14e) is no

less than zero:∑
t

(y∗ijt + ε′) ln
y∗ijt + ε′

y∗ijt−1 + ε′
(14a)

�

(∑
t

(y∗ijt + ε′)

)
ln

∑
t

(y∗ijt + ε′)∑
t

(y∗ijt−1 + ε′)
(14b)

�
∑
t

(y∗ijt + ε′)−
∑
t

(y∗ijt−1 + ε′) (14c)

= y∗ijT − y∗ij0 (14d)

−
∑
t

ε′ ln
y∗ijt + ε′

y∗ijt−1 + ε′
(14e)

= (y∗ij0 + ε′) ln
y∗ij0 + ε′

y∗ijT + ε′
(14f)

� y∗ij0 − y∗ijT (14g)

(14b) follows from (15b) as below. (14c) and (14g) follow

from (15a) as below. (14f) follows due to y∗ij0 = 0. (15a) and
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(15b) are two facts that we exploit.

m− n � m ln
m

n
, ∀m,n > 0 , (15a)

(
∑

i
mi) ln

∑
i mi∑
i ni

�
∑

i
mi ln

mi

ni

, ∀m,n > 0 . (15b)

Step 4.2: Afterwards, we bound the reconfiguration cost. We

have the following two definitions for the index sets, ∀t � 1:

I+t � {i|
∑

j∈Ji

x∗ijt >
∑

j∈Ji

x∗ijt−1, ∀i ∈ I}, (16a)

{Ij × J }
+
t � {(i, j)|y∗ijt > y∗ijt−1, ∀i ∈ Ij , ∀j ∈ J }.

(16b)

We bound the first part of the reconfiguration cost:

∑
t

∑
i∈I

bi

⎡⎣∑
j∈Ji

x∗ijt −
∑
j∈Ji

x∗ijt−1

⎤⎦+

(17)

=
∑
t

∑
i∈I+

t

bi

⎛⎝∑
j∈Ji

x∗ijt −
∑
j∈Ji

x∗ijt−1

⎞⎠ (17a)

�
∑
t

∑
i∈I+

t

bi

⎛⎝∑
j∈Ji

x∗ijt + ε

⎞⎠ ln

∑
j∈Ji

x∗ijt + ε∑
j∈Ji

x∗ijt−1 + ε
(17b)

� max
i
{(Ci + ε)ηi}

∑
t

∑
i∈I+

t

bi
ηi

ln

∑
j∈Ji

x∗ijt + ε∑
j∈Ji

x∗ijt−1 + ε
(17c)

� C(ε)
∑
t

∑
i∈I+

t

ρijt

∣∣∣
j∈{j|x∗

ijt
>0,j∈Ji}

(17d)

= C(ε)
∑
t

∑
i∈I+

t
ρijt>0

(γjt + pijt − φijt)
∣∣∣
j∈{j|x∗

ijt
>0,j∈Ji}

(17e)

� C(ε)
∑
t

∑
i∈I+

t
ρijt>0

γjt

∣∣∣
j∈{j|x∗

ijt
>0,j∈Ji}

(17f)

� C(ε)|I|D (17g)

(17a) follows from (16a). (17b) follows from (15a). (17c)

follows, due to
∑

j∈Ji
x∗ijt � Ci . (17d) follows from (10a).

Note that in (17d), for any given i ∈ I+t , we can choose to

use any ρijt, j ∈ Ji; however, we choose the particular ρijt
that has the corresponding x∗ijt > 0. Such a j always exists,

because i ∈ I+t indicates
∑

j∈Ji
x∗ijt >

∑
j∈Ji

x∗ijt−1 � 0
and thus there exists at least one j ∈ Ji such that x∗ijt > 0
holds. We continue to (17e) only for those i where ρijt > 0;

if ρijt = 0, ∀i ∈ I+t , we can directly reach (17g) from (17d).

(17e) follows from (10c). (17f) follows, because of pijt = 0.

Applying x∗ijt > 0, ρijt > 0 to (10d), we have s∗ijt > 0;

applying s∗ijt > 0 to (10g), we have pijt = 0. (17g) follows,

because of (9), γjt > 0 and λjt � 1. γjt > 0 is due to (10c),

ρijt > 0 and pijt = 0. λjt > 0 is due to (10f), γjt > 0 and

s∗ijt > 0; λjt � 1 holds becasue λjt is an integer.

We bound the second part of the reconfiguration cost:∑
t

∑
j∈J

∑
i∈Ij

dij [y
∗
ijt − y∗ijt−1]

+
(18)

=
∑
t

∑
(i,j)∈{Ij×J}

+

t

dij(y
∗
ijt − y∗ijt−1) (18a)

�
∑
t

∑
(i,j)∈{Ij×J}

+

t

dij(y
∗
ijt + ε′) ln

y∗ijt + ε

y∗ijt−1 + ε′
(18b)

� max
i,j
{(Bij + ε′)η′ij}

∑
t

∑
(i,j)∈{Ij×J}

+

t

dij
η′ij

ln
y∗ijt + ε

y∗ijt−1 + ε′

(18c)

� B(ε′)
∑
t

∑
(i,j)∈{Ij×J}

+

t

φijt (18d)

= B(ε′)
∑
t

∑
(i,j)∈{Ij×J}

+

t

φijt>0

(γjt + pijt − ρijt) (18e)

� B(ε′)
∑
t

∑
(i,j)∈{Ij×J}

+

t

φijt>0

γjt (18f)

� B(ε′)|I|D (18g)

(18a) follows from (16b). (18b) follows from (15a). (18c)

follows, due to y∗ijt � Bij . (18d) follows from (10b). We

continue to (18e) only for those (i, j) such that φijt > 0; if

φijt = 0, ∀(i, j) ∈ {Ij × J }
+
t , we can directly reach (18g)

from (18d). (18e) follows from (10c). (18f) follows, because

of pijt = 0. Applying y∗ijt > y∗ijt−1 � 0, φijt > 0 to (10e), we

have s∗ijt > 0; applying s∗ijt > 0 to (10g), we have pijt = 0.

Finally, (18g) is analogous to (17g).

IV. GENERALIZATION

Our models, online algorithm, and competitive analysis can

be generalized to arbitrary N � 2 tiers of clouds. We can,

in fact, bound the allocation cost and the reconfiguration cost

in the N -tier problem, and thus prove the following theorem

for the competitive ratio, where In denotes the set of clouds

at the n-th tier, Ci is the capacity of cloud i, and Bij is the

capacity of the network between clouds i and j:

Theorem 2. For arbitrary N � 2 tiers of clouds, the com-

petitive ratio is r = 1 +
∑N

n=1 |In| (Cn(εn) +Bn,n−1(ε
′
n)),

where Cn(εn) = max
i∈In

{
(Ci + εn) ln

(
1 + Ci

εn

)}
, ∀n � 1;

Bn,n−1(ε
′
n) = max

i∈In,j∈In−1

{
(Bij + ε′n) ln

(
1 +

Bij

ε′n

)}
, ∀n�2;

B1,0(ε
′
1) = 0.

A sketch of the proof is that, in a N -tier problem, we have

additional constraints and thus more KKT conditions that we

can exploit for deduction. For every two consecutive tiers,

there exists a particular KKT equation that involves the dual

variables of both tiers, enabling us to reformulate an upper-tier

problem in terms of a lower-tier problem. The details of the

proof are not presented here due to the page limit.
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V. NUMERICAL EVALUATION

We evaluate our online algorithm using real-world data

traces. The evaluation has two purposes. Firstly, having proved

the worst-case guarantee, we investigate the performance of

our online algorithm in a realistic case and compare it with oth-

er approaches. Secondly, to understand the difference between

the results, we characterize how the resources are actually

allocated and reconfigured over time by different approaches.

A. Inputs

Clouds I, J and SLA Ij , Ji: We use the 18 AT&T North

American data center locations [2] as the locations of tier-2

clouds, and use the locations of the capital cities of the 48

continental US states as the locations of tier-1 clouds. Having

the location of each cloud, we use the geographic distance to

define SLA [9], [15]: for a tier-1 cloud, we assume that the k
tier-2 clouds that are geographically closest to this tier-1 cloud

can satisfy the SLA requirement. For different tier-1 clouds,

these k closest tier-2 clouds can be different.

Workload λjt: We use the workload of Wikipedia in Oc-

tober 2007 [18] and the workload of the HTTP servers from

April to July 1998 during the World Cup’98 period [3]. The

former has more regular dynamics and the latter is more bursty,

as shown in Fig. 3a and 3b, respectively. While the original

workload files record the URL requests at a second granularity,

we aggregate the number of requests by hour and treat one

hour as one time slot in our evaluations. There are 500 hours

for Wikipedia. There are 2089 hours for the original World

Cup workload, however, in our evaluations we only adopt the

most bursty 600 hours, starting at the 901st hour and ending

at the 1500th hour. We replicate the workload across all tier-1

clouds to simulate the workload of each cloud.
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(b) World Cup

Fig. 3: The time-varying workload

Operating Price ait, cijt: We use energy and WAN band-

width prices respectively. Energy and bandwidth are among the

most significant operating expense for data centers. In the w-

holesale electricity markets in US, prices vary temporally and

spatially. The hourly real-time electricity prices of different

states, administered by different RTOs (Regional Transmission

Organizations), follow Gaussian distributions with different

means and standard deviations [15]. In our case, across all

18 tier-2 cloud locations, for those where there is an hourly

real-time electricity market, we synthesize the dynamic price

for each hour following the Gaussian distribution with the

mean and the standard deviation of the corresponding market,

as shown in Table I; for those without an hourly real-time

electricity market, we assume the price is fixed and equals the

mean price of its geographically closest real-time market [16].

Cloud WAN bandwidth price is estimated based on network

capacity [14], [24]. We estimate the price of a given network

capacity by the tiered pricing scheme of Amazon EC2 [1],

summarized as Table II. Bandwidth price does not vary much

with time in a short term, and is thus considered a constant.

TABLE I: Electricity price statistics [15]

Location State RTO
Mean StDev

($/MWh) ($/MWh)
Annapolis MD

PJM 40.6 26.9Chicago IL
Washington DC DC
San Francisco

CA CAISO 54.0 34.2
San Jose
Albany

NY NYISO 77.9 40.3
New York City

Boston MA ISONE 66.5 25.8

TABLE II: Bandwidth price [1]

Network Capacity (TB/month) Price ($/GB)
� 10 0.09

10 – 50 0.085
50 – 150 0.07

150 – 500 0.05

Cloud and Network Capacities Ci, Bij : Cloud capacity and

network capacity are estimated based on workload [12], [14].

We assume the cloud capacity is provisioned so that the peak

workload consumes 80% of it. If every tier-1 cloud uses its

closest tier-2 cloud to satisfy the SLA, then the capacity of a

tier-2 cloud is set to 1.25 times its peak workload which is the

sum of the peak workloads of those tier-1 clouds that use this

tier-2 cloud as their closest cloud; if every tier-1 cloud uses

its k closest tier-2 clouds to satisfy the SLA, then we evenly

split the peak workload of every tier-1 cloud across its tier-2

clouds, and thus the capacity of a tier-2 cloud is set by the

same approach as above while replacing 1.25 with 1.25/k. We

set the capacity of the network between a tier-1 and a tier-2

clouds to the capacity of the incident tier-2 cloud.

Algorithms for Comparison: We compare our online algo-

rithm, which solves P
(t)
2

at every time slot, the sequence of

one-shot optimizations, which solves the one-shot slice of P1

at every time slot, and the offline optimum, which solves P1

assuming the workload of the entire future is known in prior.

We use AMPL [6] for formulations and invoke IPOPT [21],

the interior point method, for the three algorithms.

B. Control Knobs

Reconfiguration Price bi, dij : We vary bi, dij to reveal

a spectrum of how different reconfiguration prices may in-

fluence the results. Instead of estimating an absolute value

of the reconfiguration price, we use a relative weight over

the operating price. For instance, a weight of 10 means the

absolute reconfiguration price is an order of magnitude larger

than the absolute operating price in value. In our evaluations,

we always set bi = dij , ∀i, j. We denote this value simply as b

in our figures and vary it as 10, 102, 103 and 104, respectively.
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(a) Wikipedia (b) World Cup

Fig. 4: Total cost comparison for different reconfiguration prices
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Fig. 5: Actual competitive ratios

Other Parameters ε, ε′, k: We set ε = ε′, where ε, ε′ > 0
are parameters of our online algorithm, and vary ε from 10−3

to 103 in a logarithmic scale so that we see how it may affect

the results and how to tune its value to achieve the largest

benefit for a workload. We also vary k as 1, 2, 3, 4, meaning

that the number of the closest clouds chosen by every tier-1

cloud varies, and see how this variation may affect the results.

C. Results

Fig. 4 demonstrates the normalized total cost over time

when the cloud and the network resources are allocated and

reconfigured by one-shot optimizations, our online algorithm,

and the offline optimal approach for the Wikipedia workload

and the World Cup workload, respectively. In this figure we

set ε = 10−2, k = 1 and vary the reconfiguration price.

It is natural that if the reconfiguration price is low one-

shot optimizations perform quite close to the offline opti-

mum. For a low reconfiguration price, our online algorithm

preserves the same performance as one-shot optimizations.

As the reconfiguration price increases, one-shot optimizations,

which essentially neglect the reconfiguration cost, have much

larger total cost than the offline optimum, while our online

algorithm has the total cost just moderately larger than the

offline optimum. Note the jumps (marked red) in the vertical

axes that show the comparison on the lower end of the scale

and also capture the larger values. This figure indicates that

our algorithm behaves consistently well for the two workloads.

Fig. 5 visualizes how the “actual” competitive ratio, i.e., the

ratio of the total cost incurred by our online algorithm over

what is incurred by the offline optimal solution in the realistic

case, varies along with the algorithmic parameter ε for the

two workloads. In this figure we set k = 1. Firstly and overall,

this ratio is reasonably good for both workloads as it is always

below 3. Secondly, this ratio does not always increase with the

reconfiguration price, e.g., the reconfiguration price of 104 has

smaller ratios than 103. This is because the offline optimum in

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

Hour

A
llo

ca
te

d 
R

es
ou

rc
es

 

 

Offline
One−shot
Online,−3
Online,3

400 450

0.2

0.3

 

 

(a) Allocation

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

Hour

R
ec

on
fig

ur
ed

 R
es

ou
rc

es

 

 

Offline
One−shot
Online,−3
Online,3

400

0.1

 

 

(b) Reconfiguration
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Fig. 7: Total cost comparison for different SLAs

the former case is larger than in the latter (cf. Fig. 4). Thirdly,

the curve of the actual competitive ratio has a valley. Note that

our worst-case theoretical competitive ratio always decreases

as ε grows, but this figure implies that in practice a lower ε
may achieve a lower actual competitive ratio.

Fig. 6 depicts the normalized amount of resources allocated

and reconfigured over time at one of the tier-2 clouds for the

World Cup workload. We compare the offline approach, one-

shot optimizations, and our online algorithm with ε = 10−3

and ε = 103, respectively. In this figure we set k = 1, and

the reconfiguration price is 102. First, the offline optimum

tends to stay (cf. Fig. 6a) for workload valleys so that the

corresponding reconfiguration cost is zero (cf. Fig. 6b) during

these time slots. Second, one-shot and online approaches are

quite close in total cost (cf. Fig. 4b), but the cost breakdown is

different: the former allocates resources no more than the latter

(cf. Fig. 6a) at every time slot but reconfigures resources no

fewer than the latter (cf. Fig. 6b) at every time slot. Last, this

figure shows that a large ε allocates resources no fewer than

a small ε (cf. Fig. 6a), but the corresponding reconfiguration

is no more than the small ε case (cf. Fig. 6b). The allocation

and the reconfiguration compensate for each other and the

total cost is approximately the same, about 1.3× the offline

optimum (cf. Fig. 5b) for the reconfiguration price of 102.

Fig. 7 verifies the performance of our online algorithm for

different SLAs. In this figure we set ε = 10−2, and the

reconfiguration price is 103. When every tier-1 cloud uses

more tier-2 clouds to satisfy the SLA, there is also more room

for optimization, both online and offline. The trend is that the

total cost achieved by our online algorithm gets closer to the

offline optimum as the SLA involves more tier-2 clouds.

VI. RELATED WORK

Reconfiguration-oblivious Resource Allocation: Hao et al.

[7] designed an online optimization algorithm to allocate VMs

at distributed clouds for revenue maximization while satisfying
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the dynamic demands for VMs and a diversity of resource con-

straints. Hu et al. [8] made online decisions of buying cloud

contracts of different prices, resource rates, and durations to

accommodate the unpredictably varying demand, based on a

multi-dimensional version of a classic parking permit problem.

Liu et al. [12] optimized the energy cost and the end-to-end

user delay over time with consideration of energy price and

network delay diversity by allocating capacities across data

centers via distributed algorithms. Zhang et al. [25] treated

the cloud provider as the auctioneer who leased resources

and users as bidders who bade for VMs of different types,

and designed an online, randomized combinatorial auction to

maximize the economical efficiency upon bid arrivals.

Reconfiguration-aware Resource Allocation: Lin et al.

[10], [11] might be among the first few to study the dynamic

resource allocation in the cloud context with smoothing the

reconfiguration cost as part of the objective, and proposed the

“lazy” capacity provisioning for the single cloud case [11]

and the averaged fixed horizon control for the multi-cloud

case [10]. Zhang et al. [27] investigated a similar problem

in the geo-distributed scenario where server number changes

incurred the reconfiguration cost and applied model predic-

tive control to reduce system dynamics. Zhang et al. [26]

developed the randomized fixed horizon control to route big

data from sources to selected data centers for aggregation and

processing and Wu et al. [23] exploited Lyapunov optimization

to distribute social media to clouds to satisfy time-varying

demands, where in both cases the reconfiguration cost was

caused by data movement across locations over time.

Our work differs from both categories of existing work.

Firstly, the previous dynamic optimization research does not

capture the joint, smoothed resource allocation in a multi-tier

cloud and network infrastructure. Besides, the first category

of work has no reconfiguration cost considered, i.e., switching

from one decision to another across time slots is free. With

the reconfiguration cost, it is unclear whether it is possible

and how to adapt such reconfiguration-oblivious approaches,

which also motivates this paper. The second category of work

often assumes the lookahead into future time slots and their

results largely depend on the future information, while our

work does not assume any lookahead beyond the current time

slot and is different in that it is derived via the primal-dual

approach based on regularization.

VII. CONCLUSION

The problem of jointly allocating and reconfiguring cloud

and network resources in an online setting is increasingly

important as the cloud computing paradigm shifts to a multi-

tier hierarchic structure. In this paper, we take a regularization-

based method to design an online algorithm. We overcome

the major challenge stemming from reconfiguration-induced,

coupled decisions by constructing a series of subproblems,

each of which is solvable at the corresponding time slot. We

formally prove that this algorithm can produce a solution with

a parameterized competitive ratio for any arbitrary workload

and operating price. Evaluations based on real-world data also

confirm that our algorithm performs well in practice.
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