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AbstractÐCompressed edge DNN models usually experience
decreasing model accuracy when performing inference due to
data drift. To maintain the inference accuracy, retraining mod-
els with continuous learning is usually employed in the edge.
However, online edge DNN inference with continuous learning
faces new challenges. First, introducing retraining jobs leads
to resource competition with the existing edge inference tasks,
which will affect the inference latency. Second, retraining jobs
and inference tasks exhibit significant differences in workload
and latency requirements. These two jobs cannot adopt the
same scheduling policy. To overcome the challenges, we propose
an Online scheduling algorithm for INference with Continuous
learning (OINC). OINC minimizes the weighted sum of the latency
of inference tasks and the completion time of retraining jobs
with limited edge resources, while ensuring the satisfaction of
the inference task’s service level objective (SLO) and meeting
the deadlines of retraining jobs. OINC first reserves a portion of
resources to complete all current inference tasks and allocates
the remaining resources to retraining jobs. Subsequently, based
on the reserved resource ratio, OINC invokes two sub-algorithms
to select edges and allocate resources for each inference task and
retraining job respectively. Compared with six state-of-the-art
algorithms, OINC can reduce the weighted sum by up to 23.7%,
and increase the success rate by up to 35.6%.

I. INTRODUCTION

A
N increasing number of artificial intelligence (AI) appli-

cations are being designed to run on devices, address-

ing various problems such as object recognition, augmented

reality, autonomous driving, and more. AI applications often

require significant computing and storage resources [1]. How-

ever, due to limitations in computing capacity, storage space,

and battery capacity, a single device is insufficient for handling

such tasks [2]. Meanwhile, traditional cloud-based approaches

are constrained by high transmission latency, bandwidth costs,

and the risk of privacy breaches [3]. Edge inference offloads

the inference tasks from devices to edge servers, enhancing the

processing capabilities of devices while meeting the latency

requirements of tasks.

Edge computing offers limited resources, necessitating the

deployment of compressed deep neural network (DNN) mod-

els [4]. However, compressed models have fewer weight
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parameters and shallower model structures, and struggle to

adapt to significant data variations. Because of the deviation of

input data from the training data, which is known as data drift

[5], compressed models experience decreasing model accuracy

when deployed in the edges [6]. For instance, in object

recognition tasks, variations in object pose, scene density, and

lighting over time can challenge edge DNNs in accurately

identifying the objects of interest. To address the challenges

posed by rapidly changing environments, continuous learning,

also known as model retraining, has been proposed. Contin-

uous learning collects real-time drift data and continuously

retrains a personalized compressed model based on the original

model for devices [6]. This approach enables edge DNN

models to maintain high accuracy when processing real-world

data streams, effectively adapting to the dynamic environment.

However, online edge DNN inference with continuous learn-

ing poses unique challenges. First, offloading retraining jobs

on edges will result in resource competition with existing

inference tasks. Allocating more resources to retraining jobs

can expedite model retraining while resulting in increased

inference latency because of fewer resources available for

inference tasks. On the other hand, the prompt completion of

model retraining facilitates timely improvements in inference

accuracy. Balancing the allocation of resources becomes chal-

lenging due to the interdependence between inference tasks

and retraining jobs. Second, there is a substantial difference

in the computing workload between retraining and inference

tasks. Given that the workload of inference tasks is signif-

icantly smaller than retraining jobs [7], [8], it is essential

to properly distinguish them when scheduling. Otherwise,

inference tasks may be allocated minimal resources, leading to

excessive inference latency. Similarly, the time scale for these

tasks differs as well, with inference tasks typically measured in

milliseconds and retraining jobs measured in minutes or hours.

There is a substantial difference in the impact of inference

latency and retraining completion time on minimizing the total

latency and completion time. Last but not least, in practice,

both retraining and inference tasks arrive online. While the

arrival rate of some inference tasks may be predicted based

on historical data, the generation of retraining tasks depends

entirely on the data drift, making it unpredictable. Therefore,

it is difficult to design efficient online scheduling algorithms

to quickly respond to dynamic changes while satisfying the



inference task’s service level objective (SLO) and meeting the

deadlines of retraining jobs.

Existing papers on continuous learning focus primarily on

how to perform retraining and when to update models on

edges to minimize costs and meet requirements for latency

and accuracy [7], [9]±[11]. They process retraining jobs on

the cloud or a fixed edge, resulting in excessive costs. Their

approaches hinder the timely completion of jobs, particularly

in the multi-task scenario. Existing schedulers in edges only

consider either inference tasks or retraining jobs individually

[12], [13], but the differences between these two types of jobs

make it difficult to schedule them together. Some approaches

use heuristic algorithms [14] or iterative algorithms [15], but

these methods often require long scheduling time and struggle

to meet the latency requirement of inference tasks. One

recent work [16] addresses the resource allocation problem

for inference tasks and retraining jobs on edge servers by

using a micro-profiler to estimate the accuracy and resource

requirements of different configurations for model retraining.

However, it does not consider the online arrival of inference

and retraining tasks. We will discuss this in detail in Sec. II.

To address the aforementioned challenges, to the best of our

knowledge, we are the first to propose an Online scheduling

algorithm for INference with Continuous learning (OINC) to

simultaneously schedule inference and retraining in multi-task

edge networks. Our approach aims to minimize the weighted

sum of the latency of inference tasks and the completion time

of retraining jobs while ensuring the inference SLO and the

deadline for retraining jobs.

To handle the differences between inference and retraining,

we propose a reservation algorithm that allocates resources

for both inference and retraining based on their respective

workloads. We devise distinct online scheduling algorithms

for inference tasks and retraining jobs respectively, employ-

ing spatial and temporal resource sharing strategies. In the

inference scheduling stage, OINC leverages a reinforcement

learning (RL) algorithm based on soft actor-critic with discrete

actions (SAC-D) to learn the coupling relationships between

two discrete decisions (i.e., task offloading and resource allo-

cation). By combining an actor-critic architecture with discrete

actions, the RL algorithm facilitates efficient adaptation to the

dynamic generation patterns of inference tasks. This approach

enables quick decision-making, thereby meeting the latency

requirements of inference tasks that are sensitive to response

time. In the retraining scheduling stage, retraining jobs are

characterized by their large computational requirements, un-

predictable duration, and high switching costs, making them

unsuitable for frequent adjustments of resource space allo-

cation. Therefore, we employ a resource time-sharing strat-

egy. OINC selects a retraining job to process in each edge

based on factors such as job weight, computing workload,

and completion deadline at each time slot. This approach

reduces preemption and job switching while ensuring the

timely handling of urgent jobs. When the reserved resources

for inference are insufficient, OINC prioritizes the completion

of inference tasks by temporarily pausing retraining jobs and

allocating the available computing resources to inference tasks.

We summarize our main contributions as follows:

i. Joint Online Scheduling of Inference and Retraining

Model. We analyze the characteristics of inference tasks and

retraining jobs, and explicitly model the inference latency

and retraining completion time in multi-task edge scenario.

Based on that, we formulate an online weighted latency and

completion time minimization problem.

ii. Online Scheduling Algorithm OINC. To solve the for-

mulated problem, OINC first reserves part of its resources for

inference tasks, and then decomposes the problem into two

subproblems, inference scheduling and retraining scheduling.

For the first subproblem, OINC utilizes the RL algorithm based

on SAC-D to determine task offloading and resource allocation

efficiently. For the second subproblem, the retraining schedul-

ing algorithm dispatches each job to an edge and determines

which retraining job will be processed on its edge at each time

slot. It can be proved that the retraining scheduling algorithm

is Op 1

ϵ
q-competitive with p1 ` ϵq-speed augmentation, where

ϵ P p0, 1q.

iii. We evaluate the effectiveness of OINC through extensive

experiments. The results show that: i) OINC achieves both

low inference latency and low retraining completion time,

compared to six baselines; ii) OINC reduces the weighted sum

by up to 23.7%. OINC improves the success rate by up to

35.6%.

II. RELATED WORK

A. Inference Scheduling in Edge Computing

Existing research on edge inference mainly focused on

inference latency minimization [8], [17], inference cost mini-

mization [18], and energy utility minimization [14], [19], etc.

Liu et al. [8] proposed an approach for edge-cloud orchestrated

computing to minimize the latency of tasks. Chu et al. [14]

jointly optimized service selection, resource allocation, and

task offloading to maximize users’ QoE. Liu et al. [17]

additionally considered the heterogeneity of edge resources

and proposed a jointly determined algorithm to minimize the

total latency. Eshraghi et al. [18] formulated the problem as a

mixed-integer program and designed an algorithm to minimize

the average cost. Jiang et al. [19] focused on task latency

and energy consumption, and used Lyapunov optimization to

solve the joint offloading and allocation problem. Moro et al.

[20] employed convex programming to maximize fairness and

diverse requirements of different inference services. However,

due to the differences between inference tasks and retraining

tasks, especially in terms of workload and processing time,

existing inference scheduling approaches cannot jointly handle

both tasks.

B. Continuous Learning and Model Updating

A common approach to update retraining models is using

new data [9], [10]. Chen et al. [9] addressed the requirement to

perform model retraining on the cloud server and subsequently

update the model to edges while minimizing the data transfer

volume for bandwidth limits. Zhang et al. [10] designed an



active learner to sample drift data for labeling and use labeled

data for continuous learning, which can reduce costs while

maintaining the accuracy of edge models. The timing of model

updates is also a hot topic. Tian et al. [7] provided two

update policies, best-effort, and cost-aware, to decide when to

update models to cope with dynamic data, with and without

considering training cost, respectively. Aleksandrova et al. [11]

designed the system for continuous learning and studied the

approach to update models based on the Optimal Stopping

Theory (OST) principles. However, they have not considered

the scheduling problem of retraining jobs, not to mention

jointly scheduling with inference tasks.

C. Retraining Scheduling in Edges

The previous ML scheduling methods [12], [13] are not

suitable for scheduling retraining jobs and inference tasks

together. Bhardwaj et al. [16] jointly allocated resources

for inference and retraining tasks to maximize the average

accuracy. However, their offline algorithm is not suitable for

the online multi-task edge environment. Bhattacharjee et al.

[21] presented a scheduler that reduces the total retraining

time while considering heterogeneity among the edges and the

resource interference caused by the colocation of the model

updating jobs and latency-critical tasks. But [21] only con-

sidered the inference tasks as a known background program,

and did not consider the resource allocation for both inference

tasks and retraining jobs. Therefore, an approach to handle the

joint online scheduling problem needs to be devised.

III. SYSTEM MODEL

A. System Overview

Fig. 1: System Overview.

As shown in Fig. 1, we consider a three-layer device-edge-

cloud system consisting of a cloud, multiple edges, and multi-

ple devices. Devices are equipped with radio access networks

to communicate with edges, while the cloud is connected

to the devices and edges through a wide area network. We

assume that the cloud has sufficient storage resources and

computing resources, and can assist the system in performing

high-precision inference. The edges, with different computing

capabilities (i.e., maximal CPU frequency) and wireless band-

width, store pre-trained compressed models for inference. The

devices receive input data online and generate inference tasks.

Each device is associated with a specific compressed DNN

model to process the inference task. Due to the insufficient

computing resources on devices and the high cost/latency

of data transmission to the cloud, devices rely on edges to

efficiently process inference tasks. Let rXs denote the set

t1, 2, ..., Xu. The set of devices is denoted as rIs, and the

set of edges is denoted as rJs. To facilitate the study of the

online system, we discretize time into equal-interval time slots,

denoted by rT s. Each time slot of t P rT s represents a decision

interval that matches the change of the system dynamics. In

practice, the length of a time slot (i.e., 1 second) is longer

than a typical end-to-end latency of DNN model inference.

Inference Task Information. In this work, we consider

the online stochastic generation of heterogeneous inference

tasks from devices. Each device will continuously generate

or receive input data samples. At each time slot, devices

offload inference tasks to edges for completion. We assume

that tasks generated by each device i P rIs at each time slot

t P rT s have different input data and workload, denoted as

Taskti “ tdti, c
t
i, SLO

t
iu. Here, dti represents the input data

size of the task i (i.e., the amount of data to be delivered

to the edge in MB), cti indicates the computing workload

of the task i (i.e., the number of CPU cycles required in

total to complete the task), and SLOt
i represents the service-

level objective requirement (in terms of latency) of the task.

The SLOs for inference tasks may vary, but they all require

completion within a single time slot. Note that each device

only knows which task is generated in the current time slot,

without any information in the future.

Model Retraining. In dynamic environments, the data gen-

erated continuously in real time is referred to as data streams

[22]. In our system, each device has its own data stream,

and the distribution of these streams may vary over time. The

concept drift is used to represent the change of data streams

in data characteristics. The DNN models, which are hosted in

edges to process inference tasks, are compressed models due

to the limited storage resources of the edges. When confronted

with concept drift, the precision of compressed models tends to

deteriorate [6], leading to a compromised quality of inference.

Consequently, it becomes imperative to retrain the models.

To detect the concept drift, we utilize an unsupervised drift

detector IBDD [23] for each device. The drift detectors can

identify the sample with concept drift in data streams without

depending on labeled data or the outputs of DNNs. Since

manual labeling is not feasible for the continuous retraining

system, we deploy a teacher model in the cloud to label

the drift data used for retraining. The teacher model is a

highly accurate but computationally expensive model with a

deeper architecture and a large number of weights. The system

transfers the drift data samples from devices to the cloud,

and obtains the ground-truth labels of them from the teacher

model. Given that the communication between devices and the

cloud is costly and time consuming, the teacher model is used

only to label drift data samples, which are a small fraction of

the data streams of devices.

Let rKs denote the set of retraining jobs. The retraining job

k is denoted as Jobk “ tik, ak, wk, Dku, where i is the index of

the model, ak denotes the generated time, wk is the workload



of job (i.e., the number of CPU cycles required in total to

retrain the model i), Dk is the deadline to complete the job.

System Workflow. At time t, the system works as follows:

Step 1: Detection. Devices receive input data samples,

package them into an inference task at each time slot, and

offload them to an edge. Each device has a drift detector. If a

drift data sample is found, the device will also transmit it to

the cloud.

Step 2: Labeling. The drift data samples are labeled by the

teacher model in the cloud. The cloud compares whether the

ground-truth labels from the teacher model are consistent with

the inference results from the edge models, and calculates the

accuracy of each edge model. When the accuracy is lower

than the predefined threshold, the cloud will inform the edge

to start a retraining job. The drift data samples and labels will

be transmitted to the edge for retraining.

Step 3: Inference and Retraining. Both the inference tasks

and the retraining jobs are processed in edges. After a model

is retrained, the new parameters of the model will be updated

to each edge to continue inference.

Decision Variables. After the generation of inference tasks

and retraining jobs at time slot t, the decisions made include:

i) yti,j P t0, 1u, whether edge j is selected for inference task

i at t; ii) zti,j P r0, 1s, the proportion of computing resources

allocated to inference task i in edge j at t; iii) vti,j P r0, 1s, the

proportion of bandwidth allocated to device i in edge j at t.

iv) xtk,j P t0, 1u, whether edge j is selected for retraining job

k at t; v) ut
k,j P r0, 1s, the proportion of computing resources

allocated to retraining job k in edge j at t.

B. Inference Latency

The inference latency includes the time for uploading input

data, the computation time, and the time for transmitting the

output data back. Similar to some other works [24], we ignore

the output data of tasks due to their small size. Therefore, the

downlink transmission time for sending output back to devices

is omitted in our work.

Transmission Latency. The device communicates with the

edge via a wireless network connection. The transmission

interference can be ignored by exploiting the orthogonal fre-

quency division multiple access [25]. Then, the data transmis-

sion rate between device i and edge j at time slot t is obtained

by the Shannon formula as rti,j “ vti,jBj˚log
2
p1`

ρig
t
i,j

σ2 q, where

vti,j denotes the proportion of bandwidth allocated to model i

in edge j at time slot t, Bj indicates the wireless channel

bandwidth of edge j, ρi indicates the transmission power of

device i, gti,j represents the channel gain between device i and

edge j, and σ denotes the power of the Gaussian noise in the

device-to-edge channel. The input data transmission latency

between device i and edge j can be calculated by
dti
rt
i,j

.

Computation Latency. The computation latency is the ex-

ecution time of the DNN model in the edge, which can be

represented by
cti

zt
i,j

fj
, where zti,j stands for the computing

resource allocated to inference task i in edge j, and fj denotes

the computing capacity of edge j.

Therefore, the total inference latency of task from device i

in edge j at time slot t is calculated as: τ ti,j “
dti
rt
i,j

`
cti

zt
i,j

fj
.

C. Completion Time for Retraining

Due to the limited resources in edges, a retraining job

may not be processed immediately after being assigned to an

edge, and the processing may be interrupted by more urgent

retraining jobs or inference tasks. Therefore, our goal is to

minimize the completion time of retraining jobs, rather than

the processing latency, to avoid excessive waiting time. At

time slot bk, denoting as the completion time of job k, all the

workload of the job has been fully processed and finished, i.e.,

bk “ argmintąak
př

jx
t
k,ju

t
k,jfj ď 0q.

D. Problem Formulation

The objective of the system is to minimize the weighted sum

of the DNN inference latency and retraining job completion

time, subject to the SLOs of inference tasks, the deadline

of retraining jobs, and the limited resources of edges. We

use αt to denote the weights for inference tasks generated

at time t. βk is used to denote the weights for retraining job k.

We normalized the range of inference latency and retraining

completion time values based on their actual values obtained

from pertaining. The weights assigned to inference tasks and

retraining jobs are used to indicate their respective priorities.

The online problem for DNN inference and retraining can

be formulated as follows:

minimize P “
ř

t

ř

i

ř

jαty
t
i,jτ

t
i,j `

ř

kβkbk (1)

s.t.
ř

jy
t
i,jτ

t
i,j ď SLO

t
i , @i,@t, (1a)

ř

jy
t
i,j “ 1, @i,@t, (1b)

ř

iv
t
i,j ď 1, @j,@t, (1c)

ř

jx
t
k,j “ 1, @k,@t, (1d)

řbk
t“ak

ř

jx
t
k,ju

t
k,jfj ě wk, @k, (1e)

ř

iz
t
i,j `

ř

ku
t
k,j ď 1, @j,@t, (1f)

x
t
k,j P t0, 1u, ut

k,j P r0, 1s, @k,@j,@t, (1g)

y
t
i,j P t0, 1u, zti,j , v

t
i,j P r0, 1s, @i,@j,@t (1h)

Constraint (1a) means that the total inference latency of the

task cannot exceed its SLO. Constraint (1b) guarantees that

only one edge is selected for each generated inference task.

Constraints (1c) and (1f) ensure that the edge bandwidth and

computing resources allocated to retraining jobs and inference

tasks do not exceed the resource capacity. Constraints (1d)

means that each retraining job only can select one edge.

Constraint (1e) guarantees that each job is allocated sufficient

resources to retrain.

Challenge. Problem (1) in an online problem and a mix-

integer non-linear optimization problem, which is NP-hard. It

is different to solve the problem in the offline setting and will

be more challenging to solve in an online setting. Furthermore,

the interdependence among the decision variables of the prob-

lem (1), e.g., constraint (1f), introduces additional complexity,

making the problem more difficult to address.



IV. THE DESIGN OF OINC

A. Main Idea

In this section, we propose our online algorithm OINC,

followed by the theoretical analysis. OINC comprises the

following components:

i. When a retraining job is generated, OINC first checks

whether there are any edges that have not been utilized for

retraining jobs. If so, OINC invokes the reservation algorithm

(Alg. 2). It reserves a portion of computing resources for

inference tasks and calculates the proportion of resources that

can be used for retraining. Otherwise, OINC proceeds to the

next stage.

ii. OINC invokes the inference scheduling algorithm (Ainf

in Alg. 3) to process inference tasks and allocate resources

to tasks from reserved resources. Ainf is based on an actor

network.

iii. For retraining jobs, OINC employs the retraining

scheduling algorithm (Aret in Alg. 4) to schedule them based

on the reserved proportion of resources. Aret calculates the

weighted density for each job, and then dispatches the job

based on it. Each edge sorts the assigned retraining jobs and

decides which job to process at each time slot.

Design of OINC. Our online algorithm framework OINC

is presented in Alg. 1. At each time slot, OINC receives

the information of retraining jobs Jobk “ ti, t, wt
i , D

t
iu and

inference tasks Taskti “ tdti, c
t
i, SLO

t
iu (line 3). According

to the information, OINC updates the number of retraining

jobs numjob and the number of edges without retaining

jobs numedge (line 4). Next, OINC invokes the reservation

algorithm (Alg. 2) to allocate the resource for retraining in

each edge when there are edges that have not been deployed

with retraining jobs (line 7). prj represents the proportion of

resources available for retraining jobs in edge j, and then the

total proportion of resources allocated to inference tasks in

edge j is 1´prj . Finally, OINC invokes the inference scheduling

algorithm (Alg. 3) and calls the retraining scheduling algo-

rithm (Alg. 4) with prj as input (lines 10-11).

B. Resource Reservation

The reservation algorithm partitions resources for retraining

jobs while reserving a portion of resources for inference tasks.

The workflow of the reservation algorithm is as follows:

First, Alg. 2 obtains the minimum computing resource

required by inference tasks resmin based on the historical

input patterns and the current workload of tasks (line 1).

num is set as the minimum of numjob and numedge, where

numjob is the number of retraining jobs generated at t and

numedge is the number of edges without retraining jobs (line

2). Then Alg. 2 greedily selects the num edges with maximum

computing capacity into rJ 1s in line 3. For each j1 P rJ 1s,

j1 “ argmaxjPrJszrJ1s,pr
j

“0pfjq, where tprjujPJ is the proportion

of resources allocated to retraining jobs in each edge. We allo-

cate resources evenly from the remaining available resources

for edges in rJ 1s. The retraining resource of edge j1 P rJ 1s can

be calculated as:

p
r
j1 “

βkpř

jpfj ´ prj q ´ resminq

pαt ` βkq ˚ num ˚ fj1

,@j. (2)

We denote rRs as a set of possible weight ratios. Then

the weight ratio between inference and retraining is selected

from set rRs, aiming to find the ratio αt{βk that minimizes

the overall latency at the current time slot (lines 4-9). After

getting αt and βk, Alg. 2 calculates the value of prj1 , j1 P rJ 1s,

and returns prj for each edge. Note that prj is not fixed, it

returns to 0 when there are no retraining jobs to be processed

in edge j. Once all edges have been deployed with retraining

jobs, subsequent jobs are distributed to an edge according to

Aret, rather than allocating additional resources in the edge.

Algorithm 1 OINC Algorithm

Input: I, J, T,Bj , fj , rJobsst, rTasksst,@t,@j
Output: xtk,j , u

t
k,j , y

t
i,j , z

t
i,j , v

t
i,j ,@t,@i,@j,@k

1: Initialize numjob “ 0, numedge “ J, prj “ 0, Qj “ H,@j;
2: for t “ 1 to T do
3: Receive rJobsst and rTasksst;
4: Update numjob, numedge based on rJobsst and prj , j P rJs;
5: if numjob ‰ 0 then
6: if numedge ‰ 0 then
7: prj “Alg. 2(t, numjob, numedge);
8: end if
9: end if

10: invoke Ainf (Alg. 3) with prj to schedule inference tasks;
11: invoke Aret (Alg. 4) with prj to schedule retraining jobs;
12: end for

Algorithm 2 Reservation Algorithm

Input: t, numjob, numedge

Output: prj ,@j P rJs
1: Obtain resmin with the historical and current workload;
2: Calculate num “ minpnumjob, numedgeq;
3: Select the num edges with maximum computing capacity into

rJ 1s;
4: for α{β P rRs do
5: Calculate prj1 , j

1 P rJ 1s with Eq. (2);
6: Calculate the latency of inference tasks and retraining jobs
lα{β at time t;

7: Store plα{β , α, βq into rLts;
8: end for
9: Select αt, βk in rLts with minimize lα{β ;

10: Calculate prj1 , j
1 P rJ 1s with (2) based on given αt, βk;

11: return prj ,@j P rJs;

C. Inference Scheduling

Recall that prj denotes the proportion of resources allocated

to retraining jobs in edge j. f t
j is the proportion of resources

that can be utilized by inference tasks in edge j at t, f t
j “ 1´prj .

The inference scheduling sub-problem can be formulated as:

minimize P
1 “

ř

t

ř

i

ř

jy
t
i,jτ

t
i,j (3)

s.t.
ř

iz
t
i,j ď f

t
j , @j,@t, (3a)

(1a),(1b),(1c),(1h)

Problem Transformation. For the inference tasks, we re-

formulate the scheduling problem into a Markov Decision

Process (MDP). An MDP can be denoted by the tuple

tS,A,P,R, γu, where S indicates the state space, A denotes

the action space, P represents the state transition probability,



R denotes the reward, and γ P r0, 1s is the discount factor. In

our scenario, the MDP can be defined as follows.

i) State. The controller observes the state information from

edges and devices at each time slot t. The state is formulated as

St “ tdti, c
t
i, f

t
j uiPI,jPJ , where tdtiuiPI and tctiuiPI respectively

represent the data size and computing workload of the tasks

generated by each device at t, and tf t
j ujPJ indicates the

proportion of computing resources of each edge that can be

used for inference tasks.

ii) Action. Given the observed state St, the controller

determines the action At of the scheduling results for all

inference tasks at time t, i.e., the edge selection tyti,juiPI,jPJ ,

the proportion of computing resources tzti,juiPI,jPJ and the

proportion of bandwidth tvti,juiPI,jPJ . Therefore, the action At

can be defined as At “ tyti,j , z
t
i,j , v

t
i,juiPI,jPJ .

iii) Reward. Given the state and action at t, the controller

will receive a reward Rt from the environment to evaluate the

quality of action At. Based on the objective of minimizing

total latency, the reward function follows the principle that

actions that mitigate latency are associated with higher re-

wards. Moreover, considering the constraint (1a), we develop

a reward to impose penalties on actions that fail to meet the

required SLO. The reward function is defined as follows:

Rt “
1

It

ř

iPIt
Ri,t,where (4)

Ri,t “

#

´ τ
t
i , constraint (1a) is satisfied,

´ pτ ti ` ψq, otherwise.

Ri,t denotes the reward of task from device i at t, and

ψ indicates the penalty factor. When the constraint (1a) is

satisfied, the reward is the negative value of the task latency;

otherwise, an augmented penalty ψ is appended to the reward.

Note that the value of ψ must significantly exceed the average

latency of tasks, enabling the controller to select actions that

satisfy the constraint. The parameters are listed in Sec. V.

Design of RL Training Algorithm. Reinforcement Learning

(RL) has emerged as a promising approach for solving this

MDP problem. The selection of an RL network is crucial for

fast training and exploration in MDP problems with high-

dimensional states and multiple discrete actions. In our RL

training algorithm, we exploit SAC-D to handle the inference

scheduling MDP problem (3). The RL training algorithm

includes an actor-critic architecture with an actor network,

evaluative critic networks, and target critic networks. The actor

network makes action decisions from the current state based on

its policy π. In the output layer of the actor network, decision

elements are addressed via discretization. Both evaluation

critic networks and target critic networks use the clipped

double Q-networks technique to mitigate the problem of Q-

value overestimation and speed up training [26], and critic

networks output the Q-value of each possible action rather

than simply providing the action as input. The evaluation critic

networks output a pair of Q-values (Qµ1
, Qµ2

) to evaluate

the actor’s actions, while the target critic networks calculate

(Qµ1
1
, Qµ1

2
). For the algorithm, the goal of the controller is to

find a policy π˚ that maximizes the maximum entropy ob-

jective: π˚ “ argmaxπ
ř

tPTEpSt,Atq„ξπ rγtpRt ` λHpπp.|Stqqqs,

where λ denotes the temperature parameter that balances the

reward and entropy, ξπ indicates the distribution of trajectories

induced by policy π, and Hpπp.|Stqq represents the entropy of

the policy π at state St. The transitions of the networks (i.e.,

tSt,At, Tt,St`1utPT ) are stored into a replay buffer, which will

be sampled randomly to train the networks later.

The details of the SAC-D based RL training algorithm for

inference tasks can be found in our technical report [27].

Inference Scheduling Algorithm. We employ an RL train-

ing algorithm to train an actor network πδpSq based on

historical information of inference tasks. This actor network

is utilized to make decisions regarding task offloading and

resource allocation for current inference tasks. Ainf works as

follows: Ainf gets the state St from the information of tasks

and edges (line 2). Then the policy πδ is used to get the action

At for tasks scheduling (line 3).

Algorithm 3 Inference Scheduling Algorithm (Ainf ) ,@t

Input: Bj , fj , p
r
j , rTasksst,@j

Output: yti,j , z
t
i,j , v

t
i,j ,@i,@j

1: Calculate f t
j “ 1 ´ prj ;

2: Update state St “ tdti, c
t
i, f

t
j uiPrIs,jPrJs;

3: Get action from the actor network At „ πδpStq,
At “ tyti,j , z

t
i,j , v

t
i,juiPrIs,jPrJs;

D. Retraining Scheduling

For retraining jobs, OINC will make decisions regarding job

dispatching and resource allocation at each time slot.

Job Dispatching. The goal is to dispatch a job to the edge

that brings the least increase to the total completion time. We

assume edge j as the edge to which job k is dispatched. Set

skjptq fi lkptq{hkjptq as the weight density of job k at time slot

t if it is dispatched to edge j. Here, lkptq is the weight of job

k, which is inversely proportional to the length of time until

the deadline at time t. And hkjptq is the remaining processing

time of job k in edge j at time t, which can be calculated as:

hkjptq “
wk ´ řt

t1“at

ř

jx
t1

k,ju
t1

k,j

prjfj
(5)

Assuming that no jobs will arrive in the future, the increase

in total weighted completion time consists of three parts: i)

the weighted waiting time of job k, due to the other jobs with

larger density than k (in the set of Q1

kjptq); ii) the weighted

processing time of job k; iii) the weighted time of jobs with

smaller density than k (in the set of Q2

kjptq). Then we can

calculate the increase in completion time Ckjptq of job k in

edge j:

Ckjptq “
1

1 ` ϵ
tlkptq

ř

k1PQ1

kjptqhk1jptq ` lkptqhkjptq

`
ř

k1PQ2

kjptqlk1 ptqhk1jptqu
(6)

1

1`ϵ
is the speed augmentation factor. The dispatching algo-

rithm is to assign the job k to edge j which minimizes Ckjptq.

Job Processing Queue. Each edge maintains a queue of

retraining jobs. In each time slot, each edge can process at

most one retraining task. The edge determines the retraining

jobs to be processed based on the scheduling algorithm,

thereby ensuring that more urgent and weighted tasks are

processed first. Let Qjptq denote the jobs in edge j, which



have been dispatched but not completed at time t. Each edge

sequences the jobs in Qjptq according to their density skjptq,

and selects the job with the largest density to process at the

current time. Note that, if a job k1 has a higher density than

another job k2 at time t, k1 will always have the higher density

at a later time in the same edge. This avoids frequent switching

of jobs processing in the edge.

Retraining Scheduling Algorithm. For retraining jobs, Aret

first calls the dispatching algorithm, which distributes each

job to an edge with the minimum increased completion time

Ckjptq (lines 1-4). Then sequencing algorithm is invoked to

select a retraining job to process for each edge at the current

time (lines 6-7). Finally, the remaining process time hkjptq is

updated based on the decisions xtk,j , uk,j (line 8). The edge j

removes Jobk if hkjptq ď 0 (line 9-12).

Algorithm 4 Retraining Scheduling Algorithm (Aret) ,@t

Input: Bj , fj , p
r
j , Qj , rJobsst,@j

Output: xtk,j , u
t
k,j ,@j,@k

1: for Jobk P rJobsst do /*Job Dispatching*/
2: Dispatch Jobk to edge j˚, j˚ “ argminjPrJsCkjptq;
3: Qj˚ ptq “ Qj˚ ptq Y tku;
4: end for
5: for j P rJs do /*Job Sequencing*/
6: Select Jobk˚ to process, k˚ “ argminkPQjptqskjptq;

7: xtk˚,j “ 1, ut
k˚,j “ prj ;

8: Update hk˚jptq with Eq. (5);
9: if hk˚jptq ď 0 then

10: bk˚ “ t;
11: Remove Jobk˚ from edge j;
12: end if
13: end for

E. Theoretical Analysis

First, we analyze the competitive ratio of the retraining

scheduling algorithm (Aret) by Theorem 1. The competitive

ratio is defined as the largest possible ratio between the

performance of the online algorithm and the offline optimal

algorithm for any possible set of jobs. We use it as a metric

to evaluate our online algorithm OINC. Then, we analyze the

feasibility and time complexity of OINC in Theorem 2 and

Theorem 3, respectively.

In order to analyze the competitive ratio, we offline the re-

training job scheduling problem, which has all the information

of jobs beforehand. We adopt the dual fitting technique to find

the lower bound of the total weighted completion time of the

offline problem.

i) LP Relaxation. We first derive an LP (Linear Program-

ming) relaxation of the offline problem and prove that the LP

relaxation has a lower bound. In the LP relaxation problem,

time slots can be divided into different parts and allocated to

process different jobs. We use mt
kj to denote the proportion

of time slot rt, t` 1s used by job k in edge j. For each job k,

we define ϕ as:
ϕkpmq “

ř

j,tlkm
t
kjp

t´ ak

hkj

`
1

2
q (7)

where m is the collection of all mt
kj . The LP relaxation of

the offline problem is shown as P1:
min P1 “

ř

kϕkpmq (8)

s.t.
ř

j

ř

t

mt
kj

hkj

@k, (8a)

ř

km
t
kj ď 1, @j,@t, (8b)

m
t
kj ě 0, @k,@j, t ě ak, (8c)

The constraint (8a) means each job must be completed.

Constraint (8b) guarantees that each edge can only process

at most one retraining job at one time slot. We set F as the

feasible solution of the offline problem, which can be uniquely

translated to the feasible solution mF of problem P1.

The following lemma claims problem P1 gives a lower

bound of the offline problem. The missing proofs can be found

in our technical report [27].

Lemma 1. The total weighted completion time of any feasible

solution F for the offline problem is at least ϕkpmFq.

Therefore, ϕkpmFq is the lower bound of the total weighted

completion time of feasible solution F in the offline problem.

ii) Dual LP. The dual LP of the LP relaxation problem is

given as:
max P2 “

ř

kθk ´
ř

j,tηjt (9)

s.t.
θk

hkj

´ ηjt ď skjpt´ akq `
lk

2
, @k,@j, t ě ak, (9a)

θk ě 0, ηjt ě 0, @k,@j,@t, (9b)

where θk and ηjt are the dual variables.

Theorem 1. (Competitive Analysis) There exists a feasible

solution to P2, such that the objective value (i.e.
ř

kθk´ř

j,tηjt)

is ΩpϵF q.

Given that the objective value of the dual problem is a

lower bound of the total weighted completion time of the

offline problem. It can be proved that the retraining schedul-

ing algorithm (Aret) is Op 1

ϵ
q-competitive with p1 ` ϵq-speed

augmentation.

Theorem 2. (Feasibility Analysis) Our online algorithm

framework OINC produces a feasible solution to the optimiza-

tion problem (1).

Theorem 3. (Time Complexity) The time complexity of the

algorithm OINC is OpKJR ` T pI ` J ` IJqq.

V. EXPERIMENT EVALUATION

A. Evaluation Settings

System Setup. The number of edges is set within r10, 15s
(default J “ 12), and the number of devices varies between

20 to 50 with an increment of 10 (default I “ 40). Similar

to [28], the computing capability of edges is r5, 9s GHz, and

the wireless bandwidth is set to r2, 3s MHz. Each edge has

a different computing capacity and bandwidth. The channel

gain gti,j is modeled as 140.7` 36.7 ˚ log
10

pdisq ` 4, where dis

denotes the transmission distance between edges and devices

[29], which is randomly set from 0.15 to 0.45 in km [8]. The

transmission power ρi is set within r80, 100s mW [30], and

the Gaussian noise is set to ´40 dbm/Hz.

Inference Tasks. Similar to [31], we adopt the 24-hour

traces of the Alibaba production cluster to simulate the genera-

tion and workload of tasks from different devices [32]. Specif-

ically, we randomly select I different jobs from the traces



within 10 seconds, and expand each of them in reasonable

proportions to the total runtime of the system, according to the

real-world situation. The data size of inference tasks is within

r0.8, 1.6s MB, while the computing workload is set from 100

to 200 Megacycles. The SLO of tasks varies according to the

devices. For retraining jobs, the workload is determined by

the batch size, the number of retraining epochs, and the size

of the retraining dataset. We set the batch size as 8 [16] and

the default size of the retraining set as 1024. We consider 1

second as a single time slot, and the number of total time slots

T is set as 200.

DNNs and Datasets. We demonstrate OINC’s effective-

ness using five compressed DNNs [16]: ResNet18 [33], Mo-

bileNetV2 [34], ShuffleNet [35], TinyYOLOv2 [36], AlexNet

[37]. As explained in Sec.III-A, We use ResNeXt-101 [38] as

the teacher model to label drift data in the cloud. Both infer-

ence and retraining stages utilize the widely used ImageNet

dataset [39] and a specialized dataset CORe50 [40], which is

designed for continuous learning to simulate data drift.

RL Networks. In the RL training algorithm, the actor

network and critic networks are all four-layer neural networks,

which consist of an input layer, an output layer, and two hidden

layers. The number of neurons in the hidden layers is 1024

and 512, respectively. The penalty factor of reward ψ is set to

3. Other parameters of RL networks are listed in our technical

report [27].

Baselines. To evaluate the performance of the OINC algo-

rithm, we compare it with the following six baselines.

1) Ekya [16]: Ekya is a heuristic algorithm that makes

inference and retraining scheduling jointly. In this approach,

inference tasks and retraining jobs are treated as the same kind

of tasks when scheduling.

2) Kalmia [41]: Kalmia schedules urgent and non-urgent

tasks to guarantee deadlines and improve throughput. We

assume inference tasks as urgent tasks and retraining jobs as

non-urgent tasks.

3) Greedy: Greedy sorts inference tasks according to SLOs

and greedily selects an edge for tasks in order. Then it uses a

convex optimization solver to determine resource allocation.

4) Liu [8]: Liu offloads edge inference tasks based on a

primal-dual approximation algorithm and allocates resources

by utilizing the Lagrangian multiplier method.

5) Dedas [12]: Dedas dispatches and schedules jobs greedily

to satisfy deadlines as much as possible.

6) Zhang [13]: Zhang schedules jobs in batches and config-

ures a weight for each job in the batch.

Among the six baselines, Ekya and Kalmia are two algo-

rithms to jointly schedule both inference tasks and retraining

jobs. They are used to compare with OINC for performance

evaluation. Among the remaining four baselines, Greedy and

Liu are inference task scheduling algorithms, while Dedas and

Zhang are retraining job scheduling algorithms. We conduct

ablation experiments using these four algorithms to demon-

strate the significance of our two sub-algorithms (Ainf and

Aret) in Sec. V-B.

B. Evaluation Results

Evaluation Metrics. Considering the limitations of edge

resources and the requirements of inference task SLO and

retraining job deadlines, not all tasks and jobs can be success-

fully completed. Therefore, we consider the following metrics

to evaluate the performance of OINC. i) Weighted sum, which

is the weighted sum of the latency of inference tasks and the

completion time of retraining jobs. ii) Success rate, which is

calculated as the number of successfully completed tasks over

the total number of tasks. Inference tasks that meet the SLOs in

terms of latency and retraining jobs that are completed within

the deadlines are both considered as successfully completed

tasks.
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Convergence of RL. The convergence performance of the

RL algorithm is presented in Fig. 2. The light blue region rep-

resents the standard deviation of the reward. It can be observed

that the reward value rises gradually as the number of training

episodes increases until it reaches a relatively stable value.

The results show that the RL training algorithm converges

after parameter iterations for 2000 episodes. Specifically, we

plot the success rate and the average inference latency under

each epoch in Fig. 3. It illustrates that the average inference

latency decreases and the success rate rises gradually as the

number of episodes grows, which further proves that the RL

training algorithm has a good convergence effect.

TABLE I: Average latency for inference and retraining with

different algorithms
Algorithms / Latency (s) Inference Retraining Sum

OINC (Ainf&Aret) 0.250 96.209 96.459

Ekya 0.277 101.691 101.968

Kalmia 0.262 98.372 98.634

Greedy & Aret 0.479 100.684 101.163

Liu & Aret 0.271 100.684 100.955

Ainf & Dedas 0.256 101.286 101.542

Ainf & Zhang 0.256 144.326 144.582

Performance Detail. To verify the performance of OINC,

we compare it with two baselines: Eyka and Kalmia. The

average inference latency, average retraining completion time,

and the sum of them are listed in TABLE I. Eyka allocates

resources to both inference tasks and retraining jobs without

distinguishing between them. Additionally, once the resources

are allocated, they remain unchanged. Kalmia prioritizes the

allocation of resources to inference tasks and allocates remain-

ing resources in each time slot to retraining jobs. However,

OINC takes into account both the SLOs of inference tasks

and the deadlines of retraining jobs simultaneously. The results

show that OINC can effectively reduce the average latency of

the entire system compared with the Eyka and Kalmia.



Ablation Result. We further combine the inference schedul-

ing algorithm (Ainf ) and the retraining scheduling algorithm

(Aret) with four comparison algorithms respectively, which

aim to separately explore the impact of the two scheduling

algorithms on latency. The ablation experiment result is also

listed in TABLE I. When Ainf and Aret are used with

other algorithms, we simply divide the computing resources

into two parts based on the weight of inference tasks and

retraining jobs. Then we use scheduling algorithms to allocate

resources to inference tasks and retraining jobs respectively.

The results illustrate that the lack of any one of the two

scheduling algorithms, Ainf and Aret, will increase the latency

of inference and retraining. In addition, the experiment also

demonstrates that our reservation algorithm (Alg. 2) performs

better than just allocating resources according to weights.
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Impact of Device Number. Fig. 4 and Fig. 5 respectively

illustrate the weighted sum and the success rate of three

algorithms in terms of the number of devices (I), when the

number of edges is fixed. The results show that the weighted

sum increases gradually as the number of devices increases,

while the success rate decreases. This is attributed to the

increase in the number of inference tasks as the number of

devices increases. With a constant number of edges, indicating

a fixed total computing resources, the computing latency

increases and the success rate decreases. As evident from

the figures, even with limited edge resource capacity, OINC

enhances the success rate by up to 33.2% while reducing the

weighted sum by up to 23.7%.
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Impact of Edge Number. Fig. 6 and Fig. 7 respectively

investigate the weighted sum and the success rate of three

algorithms in terms of the number of edges (J). As the number

of edges increases, the total capacity of computing resources in

the system also increases, resulting in lower latency and higher

success rates for both inference and retraining tasks. As can be

seen from Fig. 6, to obtain the same weighted sum as OINC

under 10 edges, Ekya requires 14 edges and Kalmia requires

12 edges. Similarly, Ekya and Kalmia need additional edges

and computing resources, to achieve an equivalent success rate

as OINC.

Impact of Retraining Workload. Fig. 8 and Fig. 9 re-

spectively visualize the weighted sum and success rate as

the size of the retraining dataset varies, which is directly

proportional to the workload of retraining jobs. As the size

of the retraining dataset increases, both Ekya and Kalmia tend

to disregard the impact of increased retraining workload on

scheduling priorities for retraining and inference, resulting in

an increase in latency and a significant decrease in success

rate. In contrast, OINC consistently produces a low weighted

sum and maintains a high success rate through the explicit

consideration of the weight of inference and retraining based

on their workload in the reservation algorithm (Alg. 2).

Specifically, OINC can boost success rate by up to 35.6%

while reducing latency by 21%.
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Impact of Wireless Bandwidth. Fig. 10 shows the weighted

sum as the wireless bandwidth (Bj) varies. For instance,

a value of ´20% in the figure denotes that the wireless

bandwidth of each edge decreases to 0.8 times its initial

value. The figure illustrates the stability of our algorithm

when faced with changing wireless transmission environments.

OINC performs better than other algorithms with different

wireless bandwidths.
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with different Bj .
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with different algorithms.

Execution Time. Fig. 11 compares the execution time of

the algorithms as the number of devices increases. We run

all the algorithms 5 times and calculate the average as the

execution time. The results show that OINC runs at a slightly

slower pace than Kalmia, but faster than other algorithms.

The total duration of the system is set as 200 seconds. The

total execution time of OINC is less than 5 seconds, which

is 2.5% of each time slot. Considering the low latency and

high success rate of OINC in limited computing resources

and heavy workload, our execution time is deemed acceptable

compared with the other six algorithms.



VI. CONCLUSION

Online edge DNN inference with continuous learning brings

new challenges to scheduling both inference tasks and retain-

ing jobs on edges. To this end, we propose a new online

algorithm, OINC, to simultaneously schedule inference tasks

and retraining jobs in edge networks, aiming to minimize

the weighted total latency of these two types of tasks. OINC

first reserves resources for inference and retraining according

to the workload. Next, OINC leverages an RL algorithm to

offload inference tasks and designs a preemptive algorithm

for scheduling retraining jobs. Both theoretical analysis and

experiment results validate the superiority of OINC.
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