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Abstract—To realize mobile Virtual Reality (VR) group gaming
services which are currently hampered by the prohibitive band-
width and the stringent delay requirements, we investigate the
problem of provisioning such services using the emerging Mobile
Edge Cloudlet (MEC) networks with a distributed content ren-
dering architecture. The underlying dynamic rendering-module
placement problem requires to optimize the service’s operational
cost and the users’ end-to-end performance, involving multiple
intertwined conflicting system objectives which are discrete,
nonconvex, and higher-degree polynomial functions, with coupled
decisions and arbitrary user dynamics over time. We solve
this online placement problem by leveraging Model Predictive
Control (MPC) and overcoming the aforementioned challenges
over each prediction window. We explore the connection between
the placement problem and the minimal s-t cut problem in graph
theory, and solve the former via solving a series of instances
of the latter. We formally prove the performance guarantee of
our approach. We also conduct extensive trace-driven evaluations
and demonstrate the superior practical performance of our MPC-
based approach compared to the de facto practices and the state-
of-the-art alternatives.

Index Terms—Virtual Reality; Group Gaming; Mobile Edge
Computing; Service Placement; Model Predictive Control; Graph
Cut.

I. INTRODUCTION

WHILE the global Virtual Reality (VR) gaming market

size is projected to reach $45 billion by 2025 [1],

provisioning VR gaming services “anywhere, anytime” to

large-scale untethered players (wearing Google Cardboard [2]

or Samsung Gear VR [3], for example) imposes significant

challenges to today’s mobile network infrastructures. The

prohibitive bandwidth for streaming panoramic VR frames and

the stringent delay for responding to players’ control actions

requires to push the gaming computation, especially the con-

tent rendering, close to players [25]. This seamlessly matches
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Fig. 1: An overview of the system architecture. u1 through u6

are players, where u1, u2, and u3 are in Group 1, and u4, u5,

and u6 are in Group 2. c1 through c4 are MECs with base

stations BS1 through BS4, respectively. CRM 1 is placed on

c1 for u1 and u2, and on c3 for u3. CRM 2 is placed on c4
for u4, u5, and u6.

the emerging paradigm of mobile edge computing [12], where

telecom carriers and service providers place Mobile Edge

Cloudlets (MECs), e.g., micro datacenters or servers, to run

computation at user neighborhoods, cellular base stations, and

WiFi hotspots.

Unlike existing research on exploiting the MEC to facilitate

single-user VR gaming [25], [26], in this paper, we consider

provisioning VR group gaming services using distributed MEC

networks to a large number of mobile players. Group gaming

allows multiple players to form a group and play a common

game, such as completing a task or having a battle, which is

extremely popular, occupying 8 seats out of the top 10 highest

earning games in 2017 [4]. For group gaming, we notice

that scenes of group players, such as the environments of the

avatars in the games, are often heavily overlapped. In fact, for

the Multi-player Online Battle Arena (MOBA) game “Arena of

Valor” [6] and the Role-Playing Game (RPG) “Onmyoji” [5],

we collected replays from 20 5v5 battles and 20 3v1 battles,

respectively, and analyzed their frame patterns. We replayed

the recordings, took screenshots every 2 minutes, and obtained

more than 4000 screenshots. We found that for Arena of Valor

the average ratio of the different pixels across all the players

was 12.25% and for Onmyoji was only 3.64%, confirming that

players in the same battle shared a large proportion of views.

We consider a distributed rendering architecture, as exhib-

ited in several existing efforts where the common background

environments and the player-specific foregrounds of VR games

can be rendered separately [25], [26]. We call the correspond-
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ing modules the Common Rendering Module (CRM) and the

Individual Rendering Module (IRM), respectively. For mobile

VR group gaming, we can use the MECs to run the CRMs

of the players while letting each player run the IRM on

one’s own mobile VR device. The benefits of such distributed

rendering are two-fold: for one, players in the same group

can share a common CRM at an MEC in order to reduce

the rendering workload on the infrastructure; for the other,

as the background views often contain large percentage of

infrequent changes between frames, video encoding/decoding

techniques can be leveraged to further reduce the network

workload. Figure 1 examplifies this system architecture, where

players send control actions to the MECs and receive frames

from them through nearby cellular base stations.

We focus on the fundamental problem of dynamically plac-

ing the CRMs over the distributed and heterogenous MECs in

order to optimize the service’ operational cost and the players’

service quality over a long time span. We consider a time-

slotted system. At each time slot, we decide on which MEC

to place each player’s CRM. Our optimization is characterized

by the multiple intertwined, conflicting objectives, including

the following: (1) the computational overhead of the CRM

execution, which encourages placing the CRMs on the most

computationally-efficient MECs; (2) the communication traffic

and delay of the in-group CRM synchronization (e.g., for

gaming information like avatar’s location, blood volume, and

score) and the pairwise player-to-player interaction (e.g., via

text, voice) regardless of groups, which encourages placing

the CRMs close to one another; (3) the colocation interference

due to CRM scheduling and computation slow-down, which

encourages placing each CRM on a different MEC; (4) the

migration traffic and delay of CRMs between MECs as players

move around, or join and leave the system, which encourages

keeping each CRM’s location unchanged over time. We col-

lectively call the first three types of cost the “service” cost, and

the last type of cost the “switching” cost. This optimization

problem features two primary challenges:

First, service cost involves nonconvex higher-degree func-

tions. Defined at every time slot, the service cost depends

on the joint placement of CRMs. For instance, CRM syn-

chronization depends on the placement of the CRMs of the

same group; inter-player interaction depends on the placement

of the CRMs of the pair of interacting players; colocation

performance degradation depends on the placement of all the

CRMs in the system. Such cost functions are discrete and

nonconvex, and can be higher-degree polynomials, collectively

hard to optimize [41]–[44]. With the service cost alone, the

problem is already NP-hard [41]–[44].

Second, switching cost couples decisions over time. Defined

across every pair of consecutive time slots, the switching cost

depends on the placement of every CRM over time. Each CRM

may need to be migrated across MECs to accommodate the

arbitrary player dynamics, while avoiding moving it back and

forth too frequently and incurring excessive costs. Placement

decisions at each time slot influence the migration cost be-

tween that current time slot and the future time slots; it is

particularly hard to make such decisions in an online manner

with zero or limited knowledge of future player dynamics

[19], [21], [24], [29], [32]–[34].
Existing works on mobile VR gaming [20], [22], [25], [26]

often focus on individual VR systems of a small and local user

scale, without considering the management of the distributed

infrastructure to provide VR services to large-scale mobile

users. In contrast, for non-VR services, despite previous efforts

have extensively studied large-scale online service placements

over clouds [15], [16], [31], they do not always capture user

dynamics and the associated switching cost; for those that

accommodate user mobilities via cloudlets [19], [21], [24],

[29], [32]–[34], they fail to capture the VR-gaming-specific

factors such as end-to-end user interaction, in-group multicast,

per-group common rendering, and user joining/leaving the

system. In addition, the works for non-VR services [15], [16],

[19], [21], [24], [29], [31]–[34] often target linear/convex costs

and other settings, and are thus inapplicable to our problem.
To overcome the aforementioned challenges, we propose

a combinatorial, polynomial-time algorithm based on “graph

cuts” for the problem over a prediction window, and embed it

into the Model Predictive Control (MPC) framework to con-

struct an online algorithm which solves our problem over time.

Our approach, at each time slot, leverages the predicted player

dynamics in a prediction window, solves the problem over

that prediction window via our graph-cuts-based combinatorial

algorithm, and applies the placement decisions for the current

time slot. Our main contributions are listed as follows:

• We propose techniques to transform the dynamic CRM

placement problem over the prediction window into the

graph model to connect to the graph-cut technique. To

be specific, (1) we show that the dynamic switching cost

can be considered as self-to-self interactions (versus inter-

player interactions) from a static view, and can be treated

uniformly as the static service cost; (2) we propose to

consider the same player at different time slots as differ-

ent players, in order to construct a single graph, rather

than multiple graphs, for the entire prediction window;

(3) we introduce a virtual MEC to host the CRMs of

all the players that are not in the system currently to

represent the player joining/leaving actions.

• We develop algebraic conversions to transform our place-

ment problem into the graph-theoretic minimal s-t cut

problem, and exhibit that our problem can be solved

via solving a series of corresponding graph cuts using

existing polynomial-time algorithms.

• We demonstrate the weighted graph construction, estab-

lish the problem equivalence, and rigorously prove that

within each MPC prediction window, the total cost of our

placement result is bounded by a constant approximation

factor times the theoretical optimum. We also derive the

time complexity of our proposed solution.

• We conduct extensive trace-driven experiments, con-

trast our approach to multiple algorithms, and observe

the following results: (1) our approach overwhelmingly

outperforms baseline dynamic placement methods such

as random placement and nearest placement, achieving

2.88× and 3.25× less cost; (2) compared to the “greedy”

approach which uses the state-of-the-art discrete opti-

mization solver Gurobi [8] to solve the problem optimally
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in each prediction window, our approach achieves around

20% more cost with around 60% less running time for

small-scale experiments, and more benefit for large-scale

experiments (as Gurobi takes an unacceptably long time

to finish); (3) as the prediction window size increases, our

approach rapidly approaches the offline optimum; (4) our

approach converges fast, scales well, and is robust when

using inaccurate predictions of player dynamics.

II. RELATED WORK

We summarize existing research from the following two

aspects: (1) mobile VR with gaming, and (2) dynamic service

placement on clouds and cloudlets. We point out how they fall

insufficient compared to our work in this paper.

A. Mobile Virtual Reality with Gaming

Several recent works focus on improving VR rendering to

offer immerse mobile VR experience via commodity unteth-

ered products such as Google Cardboard [2] and Samsung

Gear VR [3]. Flashback [20] pre-renders all possible scenes

for different user positions and orientations, and caches them

on the mobile device. MoVR [22] uses mmWave radios as the

transmit channel to enable multi-Gbps wireless communica-

tion between mobile VR devices and the server using mmWave

smart mirrors. Some other works explore mobile edge servers

to support VR rendering. CloudVR [27] proposes to use

the server-client paradigm to augment the VR rendering. To

reduce the network transmission delay, it directly uses the TCP

socket to transmit the H.264 stream after rendering, rather than

using the HTTP-based streaming protocols such as DASH and

HLS. Furion [25] uses edge servers to render the background

panorama of the VR game and transmits the compressed data

to the mobile devices. LTE-VR [26], on the other hand, renders

all the scenes on the edge server and uses side channels to

transmit the signaling operations to reduce the network delay.

ITEM [29] provisions distributed VR services over the MEC

network with user interactions considered. EC+ [30] proposes

to facilitate Massively Multiplayer Online Games by using

MEC networks to handle the “view change event” rendering

in order to satisfy the low latency requirement of VR gaming.

Among these works, [20], [22], [25]–[27] focus on devel-

oping individual VR systems that leverage specific hardware

settings to enhance the VR experiences. They lack the consid-

eration of managing and provisioning the VR gaming services

as a whole over a large-scale distributed infrastructure in a

cost-efficient manner, as what we study in this paper. From

this perspective, ITEM [29] and EC+ [30] might be the most

related to our work. However, the problem space is different

in that we consider a group gaming scenario which introduces

the unique in-group synchronization and per-group common

rendering problem. [29] focuses on a static scenario and does

not account for the switching cost caused by user dynamics.

[30] addresses the dynamic service placement problem, but

only considers traffic migration with player movements. We

consider a more general case with multiple interwind, con-

flicting cost functions including computation cost, communi-

cation cost, colocation cost, and switching (migration) cost.

The unique in-group synchronization and per-group common

rendering problem also makes the Markov Decision Process

method in [30] inapplicable to our problem.

B. Dynamic Service Placement on Clouds and Cloudlets

Dynamic service placement has been extensively studied in

the cloud environment, involving virtual machine consolida-

tion [15], load balancing [16], network function chaining [31],

and so on. However, such studies do not typically target the

operational cost and/or service quality driven by user mobility,

and are thus insufficient compared to our work in general.

Recent research has started to focus on addressing the key

challenge of user dynamics in the MEC environment via

online service placement and migration. A branch of such

works require no prediction of user dynamics, but formulate

a Markov decision process based on the assumption that

user mobility can be approximated by Markov chains [19],

[21]. There also exist works that can accommodate arbitrary

user mobilities online without using prediction. For example,

Ouyang et al. [33] migrate services in the MEC network to

follow the users for optimal user-perceived latency, subject to

long-term cost budget constraints; Wang et al. [32] distribute

users’ workload in response to user movement around the

MEC network to optimize the operational and migration cost

over time; Chen et al. [34] place service instances over selected

MECs, “learn” the resulting benefit, and improve the place-

ment decisions over time; [35]–[37] consider virtual function

placement in the Evolved Packet Core to provide deployment

flexibility while reducing cost. In terms of exploring the usage

of the predictions of user dynamics, Wang et al. [24] might be

the closest to us, and propose an algorithm for each prediction

window and embed it into an online algorithm, despite both

their optimization objective and algorithms differ from ours.

This group of works lack the consideration of all the follow-

ing factors that feature our problem in this paper: user-to-user

interactions, in-group multicast, the MEC occupation effect,

and user joining/leaving. Moreover, their proposed algorithmic

techniques are also inapplicable to our problem due to the

two primary challenges (nonconvex, higher-degree functions

and time coupling switching cost) resulting from our unique

problem space. For example, [19] and [21] are restricted by

Markov assumptions; [24] and [33] target the time-averaged

limit of the total cost; [32], [35]–[37] work with linear cost

functions; [34] is dedicated to the cost-oblivious settings. Such

differences and insufficiencies all motivate us to design novel

predictive algorithms.

III. MODEL AND PROBLEM FORMULATION

A. Settings, Assumptions, and Notations

We consider a geographically distributed MEC network.

Since the VR gaming services that we study often handle

dynamic workloads and inputs, and require dynamic decisions

to orchestrate computing/communication resources, we model

our problem as a time-slotted system, where we use T to

denote the set of consecutive time slots under consideration.

We use I to represent the set of the MECs in the system.

We use Ut, ∀t ∈ T to represent the set of all the players
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in the system at the time slot t, and use the two terms

“user” and “player” interchangeably in this paper. Since we

are considering the group gaming scenario, the player set Ut

can be further represented as Ut =
⋃

j∈Jt
Uj,t, ∀t ∈ T , where

Uj,t is the set of the players in the group j at the time slot

t and Jt is the set of the groups in the system at the time

slot t. A player can only join one group at any time; we do

not consider the case where a player participates in multiple

groups simultaneously. It is common for modern games to

allow players to interact with each other (e.g., voice/text

chatting, “borrowing” avatars [5]) while playing the game even

if they are not in the same group. Thus, we use Lt ⊆ Ut×Ut,

∀t ∈ T to denote the set of the pairs of interacting users at

time t. We also use pu,t to denote the MEC that hosts the

CRM of player u at time t, and use p
†
u,t to denote the MEC

that is the closest to player u at time t, via which u connects

to the MEC network to access u’s CRM. Note that if there are

multiple players of the same group that have their CRMs on

the same MEC, we keep only one copy of the CRM on that

MEC for that group.
Table. I summarizes the notations that will be used through-

out this paper. In the following sections, we will continue to

explain the notations as we proceed to our formulations.

TABLE I: Notations

Symbol Definition

I the set of all the MECs
Ut the set of all the players at time (slot) t
Jt the set of all the groups at time t
Uj,t the set of all the players of group j at time t
Lt the set of all the pairs of interacting players at time t
pu,t the MEC that hosts the CRM of player u at time t

p
†
u,t the MEC that is the nearest to player u at time t

pαu,t the MEC for player u after the α expansion at time t

Rj,t the workload of the CRM of group j at time t
hi the processing capability of MEC i
d(p, q) the network delay between MECs p and q
fu,v,t the interaction rate between players u and v at time t
fu,t the frame rate of player u at time t
fj,t the synchronization rate of group j at time t
δi,j,t the binary indicator of whether there exists at least one

player u in Uj,t such that pu,t = i at time t
xu,t the binary variable of whether to place the CRM of player

u on MEC α in an α expansion at time t

B. Modeling Computation Overhead

We model the computation overhead of all CRMs in the

system. Such overhead is incurred by running CRMs at MECs

for rendering and encoding/decoding the VR frames. We let

Rj,t be the computation workload of the CRM of group j at

time t, and let hi be the processing capability of MEC i. δi,j,t
is a binary indicator to represent whether there is at least one

user of group j, who has the corresponding CRM placed on

MEC i at time t:

δi,j,t ,

{
1, ∃u ∈ Uj,t, pu,t = i ;

0, otherwise.

The total computation overhead over all MECs and over all

groups at t is thus calculated as

E1,t =
∑

i∈I

∑
j∈Jt

Rj,t

hi

δi,j,t.

C. Modeling Communication Delay

We model the total communication delay as the metric for

the end-to-end users’ quality of experience for mobile VR

gaming. Notice that in our system, one time slot is in the order

of minutes, while the network delay between two MECs, or

between MECs to end users should be under tens of millisec-

onds. Therefor, the time length of one time slot is much larger

than the delays.There are two types of communication in the

system. The first is the synchronization among the CRMs of a

group. Since players in the same group should communicate

and exchange data (e.g., realtime scores, blood volume, hits

and kills), all the MECs that host the CRMs for the same

group should thus keep synchronized. This is what we call

the in-group synchronization. Such in-group synchronization

could have various choices for implementation, such as peer-

to-peer and client-server. Here, we assume the client-server

pattern, which is adopted by the majority of current games on

the market [7]. We thus assume there is one “central server”1,

and CRMs are synchronized with one another via sending

traffic to and receiving traffic from this central server. The

central server is logically centralized, and can be implemented

as multiple distributed MECs or remote servers if needed.

The second type of communication is that the players can

interact with each other within or outside a group. Players can

do instant messaging, voice chatting, or some gaming-specific

interactions such as “borrowing” one’s avatar across groups.

This is what we call the pairwise interaction. Without loss of

generality, and to maintain a single service module for each

player, we assume such interactions are implemented as data

exchange between the CRMs of the two interacting players.

We denote the communication delay between two MECs p

and q as d(p, q), the interaction rate between two players u and

v at time t as fu,v,t, the frame rate of player u at time t as fu,t,

and the synchronization rate of group j at time t as fj,t. Since

we are considering VR gaming services, which is regarded as

the killer App in 5G era, the bandwidth from MEC to user

end can be considered large. As for the network that connects

the distributed MECs, which often adopts the huge bandwidth

optical network, the bandwidth is also huge. Therefore, we

assume the delay of two MECs does not change with the

transmission (interaction/frame/synchronization) rates, which

is reasonable under network conditions of sufficient band-

width. The total communication delay at t can be formulated

as

E2,t =
∑

(u,v)∈Lt

fu,v,td(pu,t, pv,t) +
∑

u∈Ut

fu,td(pu,t, p
†
u,t)

+
∑

i∈I

∑
j∈Jt

fj,td(i, c)δi,j,t,

where fu,v,td(pu,t, pv,t) is the total pairwise communication

delay between two interacting players u and v at time t;

fu,td(pu,t, p
†
u,t) is the total pairwise communication delay

between the MEC that has player u’s CRM and the MEC that

is closest to u at time t; fj,td(i, c)δi,j,t equals the in-group

synchronization delay between MEC i and the central server

1We assume the central server already exists and is selected before the
player groups are formed and CRMs are placed. The selection of the central
server is an orthogonal problem out of the scope of this paper.
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c if at time t the former holds the CRM of group j, and equals

zero otherwise.

D. Modeling Colocation Interference

When multiple CRMs are placed on the same MEC, the

system would slow down due to resource contention, and

the response time of each CRM would inflate due to CRM

scheduling. We model such interference effects among colo-

cated CRMs by the “dilation factor”, as introduced in [14],

generally defined as the makespan of the CRMs running

concurrently on the MEC divided by its individual completion

time without contention. The dilation factor is approximately

linear to the number of colocated CRMs [14]. Let ai,1 and

ai,2 be the parameters of the dilation factor of MEC i. We

can formulate the colocation interference at time t as

E3,t =
∑

i∈I

(
ai,1

∑
j∈Jt

δi,j,t + ai,2

)

=
∑

i∈I

∑
j∈Jt

ai,1δi,j,t +
∑

i∈I
ai,2.

E. Modeling Switching Cost

To accommodate the dynamics of player’s moving, joining

and leaving, the system incurs cost. For example, as a player

moves from one location to another within the system at two

consecutive time slots, her CRM may need to be migrated

from the old MEC to a new MEC correspondingly, where

the new MEC would need to be reconfigured to host that

CRM. We adopt the term “switching cost” to represent such

migration and configuration cost incurred by CRMs between

two consecutive time slots. We calculate the total switching

cost at time t as

E4,t =
∑

u∈Ut

g(pu,t, pu,t−1),

where g(pu,t, pu,t−1) is defined as

g(pu,t, pu,t−1) ,

{
gu, pu,t 6= pu,t−1;

0, pu,t = pu,t−1,

where gu is the cost of migrating the CRM for player u.

F. Problem Formulation and Challenges

We consider a comprehensive cost model that incorporates

the above four types of costs. The total cost at time t is

Et(pu,t) = E1,t + E2,t + E3,t + E4,t,

where the variables are the placement decisions pu,t for each

player u at each time slot t. We minimize the total cost over

time:

min
pu,t

∑T

t=1
Et(pu,t). (1)

In equation (1), all the costs depend on the place-

ment decisions, and are essentially related to computa-

tion/communication delays so we can add them up together.

Nevertheless, our model is actually more general than only

capturing delays, e.g., the switching cost can be easily adjusted

to capturing the migration traffic. In this case, the costs are of

different dimensions (e.g., units), and one can associate dif-

ferent weights to different costs, which is a common approach

to handle multi-objective optimizations (note that the weights

can be set according to the operator’s preferences/policies, and

can be tuned using standard approaches and are thus out of

the scope of our paper). Having the weights does not affect

the core design of our proposed algorithms.
The problem of (1) is difficult to solve due to the following

challenges:

1) E1,t, E2,t and E3,t are discrete, nonconvex, and higher-

degree functions.

For one, E1,t, E2,t and E3,t all contain the binary

indicator δi,j,t, which can be rewritten as

δi,j,t = 1−
∏

u∈Uj,t

1 (pu,t 6= i) ,

where 1(·) is a binary function that equals 1 if the

specified condition holds and 0 otherwise. Thus, δi,j,t
depends on the production of multiple binary functions

which further depend on the joint placement of the

CRMs of the users in a group, often considered as a

“higher-order clique” [42] and hard to optimize. For the

other, E2,t is not easy to optimize on its own, even

without the term that involves δi,j,t, as the function

d(·, ·) also depends on the joint placement of the CRMs

of a pair of users, and varies for different user pairs. The

primary obstacle is where to place each CRM cannot be

independently determined. This challenge escalates if we

consider the exponentially-many possibilities to place all

CRMs over all MECs in the system. We can prove that

our problem is NP-hard (in Section IV-C).

2) E4,t couples the decisions over time.

E4,t is the fundamental challenge for solving the prob-

lem online. Without E4,t, the problem of minimizing

E1,t + E2,t + E3,t over time would be equivalent to

minimizing them at each individual time slot t; with

E4,t, the decisions pu,t−1 made at one time slot t−1 will

influence the total cost by influencing the cost at both

time t− 1 and t. Note that we will make the decisions

sequentially as time goes. Due to such coupling, any

decisions made at t will influence the decisions that are

to be made at t+ 1.

IV. THE APPROACH OF MODEL PREDICTIVE CONTROL

To construct an online algorithm, we leverage the frame-

work of Model Predictive Control (MPC). Applying MPC

requires to solve the problem of (1) over every prediction

window. Thus, the aforementioned challenges still exist. In this

section, we describe the general approach of MPC, introduce

our virtual MEC idea for arbitrary user dynamics, and show the

problem over each prediction window and its NP-hardness; in

the next section, we will focus on solving the problem over the

prediction window with performance-provable approximation

algorithms.

A. Model Predictive Control with Virtual MEC

MPC is not about how to do prediction, but about how to

exploit prediction to make online decisions. As time goes, at
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each time slot, MPC uses the predicted information or inputs

in a “prediction window” to make better decisions for the

current time slot, compared to the decisions that could have

been made using no prediction at all. This is true, particularly

as we have the switching cost in our problem. As decisions at

the current time slot will influence the switching cost between

it and the next time slot, having the predicted information

about the future enables us to avoid making bad decisions

blindly for the current time slot. Specifically, MPC solves the

problem over each prediction window based on the predicted

inputs, and applies the decisions only for the first time slot, i.e.,

the current one, while dropping the decisions for the rest time

slots of the prediction window. Given that substantial existing

studies have demonstrated that user mobilities are largely

predictable via various means [17], [28], [48]2,we consider

MPC a reasonable framework for us to construct an online

algorithm for our problem. Noting that MPC often assumes

accurate predictions, we also assume so in this paper, while

as we conduct evaluations as described later, we will evaluate

the case of inaccurate predictions as well.
We introduce additional notations here. Let W be the

length of the prediction window. Then, at t, the time slots

in the prediction window are t, t+ 1, ..., t+W . Let Ũt′ be

the set of players that are predicted to appear in the system

at t′, where t′ ∈ {t+ 1, ..., t+W}. We define Ũt..t+W ,

Ut

⋃
Ũt+1

⋃
Ũt+2...

⋃
Ũt+W . Ũt..t+W is the set of players

that will appear in the system in the prediction window.

Ũt..t+W \Ut is the set of players that are not present at t but

will appear in the rest time slots of the prediction window;

Ũt..t+W \Ũt′ , t
′ = t+ 1, ..t+W is the set of players that are

not present at t′ but will appear in the other time slots of the

prediction window.
To represent the player dynamics such as joining and leaving

the system, we introduce a virtual MEC F to host the CRMs

of all the players that are in Ũt..t+W but are not present at

the time slot in question. That is, for time t, the virtual MEC

hosts Ũt..t+W \Ut, while for time t′, t′ = t+ 1, ..., t+W , the

virtual MEC hosts Ũt..t+W \Ũt′ . For the virtual MEC, let its

processing speed be infinity, i.e., hF =∞, the delay between

it and any real MEC p be 0, i.e., d(F , p) = 0, and its dilation

factors be 0, i.e., aF ,1 = 0, aF ,2 = 0. Thus, the cost of hosting

CRMs of absent players at the virtual MEC is 0. Setting

these parameters like this enables to model player joining and

leaving the sytem the same way as moving within the system,

i.e., moving from the virtual MEC to a real MEC or vice versa,

so that we can treat all player dynamics of joining, leaving,

and moving in a unified manner in our models and algorithms.

B. Problem over a Prediction Window

At each t, MPC makes the placement decisions to minimize

the cost over the current prediction window, given all the user

2User joining and leaving should be predicted and serve as input to our
work. Details of prediction method can be found in [17], [28], [48]. For
example, [48] groups users into interpretable clusters based on their activities
on the platform and ego-network structures; afterwards, it designs a novel
deep learning pipeline based on Long Short-Term Memory (LSTM), a popular
Recurrent Neural Network (RNN) technique, to accurately predict user churn
by leveraging the correlations among users activities and the underlying user
types.

dynamics in that window. We have this optimization problem:

min
pu,t′

∑t+W

t′=t
Et (pu,t′) . (2)

Note that the cost of hosting non-present players on the virtual

MEC is 0 at any time t′ ∈ {t, ..., t+W}. From now on, we

write EW (pu,t′) ,
∑t+W

t′=t Et (pu,t′) for simplicity.

C. Problem Hardness

Theorem 1 For each t, the minimization problem of (2) is

NP-hard.

Proof. The problem in (2) can be easily transformed in

polynomial time to the uncapacitated facility location (UFL)

problem [40]. The UFL problem considers the placement of

multiple facilities to minimize the opening and the transporta-

tion cost to a set of sites. The UFL problem is NP-hard and

can be reduced to the set cover problem, which is one of

the NP-complete problem [39]. To reduce (2) to UFL, one

can keep the computation and the communication cost from

CRM to player’s nearest MEC and set all the other part of the

objective in (2) to zero. Note that (2) contains (1) as a special

case when the length of the prediction window is the entire

time horizon, so the problem of (1) is also NP-hard.

V. COST MINIMIZATION VIA GRAPH CUTS

For the problem over each prediction window, we propose

a polynomial-time approximation algorithm with a provably

bounded performance guarantee. We design an iterative al-

gorithm that consists of multiple rounds and performs an

operation called “α expansion” [41] which updates the place-

ment decisions of the CRMs in each round in batch. We

exhibit the equivalence between α expansion and the graph-

theoretic minimal s-t cut problem, elaborate the construction

of such a corresponding graph, and prove the approximation

performance guarantee.

A. α Expansion and Algorithm

An “α expansion” is a binary optimization that tries to move

each CRM from its current MEC pu,t to the MEC α, thus

trying to “expand” the number of CRMs placed on the MEC

α if such expansion leads to cost reduction. We use pαu,t to

denote the MEC for player u after α expansion, then pαu,t
equals either α or pu,t. We propose Algorithm 1 to iterate

through all the MECs, and implement the optimal α expansion

that minimizes EW (pu,t′). To solve the α expansion in Line 5

of Algorithm 1, we first reformulate the problem using binary

variables in Section V-B. In Section V-C, we use an example

to illustrate how to construct a graph from the binary variables.

After that, we construct the graph for our MPC-based CRM

placement problem of equation (2). In order to better illustrate

the whole structure of the solution, we show how to solve the

α expansion via minimal cut in Algorithm 2 in Appendix.
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Algorithm 1 The α-Expansion Algorithm

Input:

I: the set of all the MECs;

pu,t′ : current placement at time t′ before α expansion,

∀u ∈ Ũt..t+W , t′ ∈ {t, ..., t+W}.
Output:

pu,t′ : updated placement at time t′ after α expansion,

∀u ∈ Ũt..t+W , t′ ∈ {t, ..., t+W}.
1: flag ← 1
2: while flag == 1 do

3: flag ← 0
4: for each α ∈ I do

5: pαu,t′ ← α expansion of pu,t′ ,

∀u ∈ Ũt..t+W , t′ ∈ {t, ..., t+W}
6: pα∗u,t′ ← argminpα

u,t′
EW

(
pαu,t′

)
, ∀u ∈ Ũt..t+W ,

t′ ∈ {t, ..., t+W}
7: if EW

(
pα∗u,t′

)
< EW (pu,t′) then

8: flag ← 1, pu,t′ ← pα∗u,t′ , ∀u ∈ Ũt..t+W ,

t′ ∈ {t, ..., t+W}
9: end if

10: end for

11: end while

B. Problem Reformulation via α Expansion

We highlight that EW (pu,t′) essentially contains three types

of costs: the unary cost of Ea (pu,t′), the pairwise cost of

Eb1 (pu,t′ , pv,t′) and Eb2 (pu,t′), and the occupation cost of

Ec (pu,t′). The unary cost refers to the type of cost that relies

on the placement the CRM of a single player. The pairwise

cost refers to the type of cost that relies on the joint placement

of the CRMs of a pair of players at the same time slot, i.e.,

Eb1 (pu,t′ , pv,t′), or the joint placement of the CRM of a

single player at two consecutive time slots, i.e., Eb2 (pu,t′).
The occupation cost refers to the type of cost that relies on the

total number of the MECs that have been currently occupied to

host the CRMs of all the players. We reformulate EW (pu,t′)
in terms of the three types of costs, where A1 , W ·

∑n

i=1 ai,2.

EW (pu,t′) =

t+W∑

t′=t

∑

u∈Ũt..t+W

fu,td(pu,t′ , p
†
u,t′)

︸ ︷︷ ︸
Ea(pu,t′)

+

t+W∑

t′=t

∑

(u,v)∈Lt′

fu,v,td(pu,t′ , pv,t′)

︸ ︷︷ ︸
Eb1(pu,t′ ,pv,t′)

+
t+W∑

t′=t

∑

u∈Ũt..t+W

g(pu,t′ , pu,t′−1)

︸ ︷︷ ︸
Eb2(pu,t′ )

+

t+W∑

t′=t

∑

i∈I

∑

j∈Jt′

[Rj,t′

hi

+fj,td(i, c)+ai,1
]
δi,j,t′

︸ ︷︷ ︸
Ec(pu,t′ )

+A1

We also note that α expansion can be represented by

a set of binary variables x = {x1,t, x2,t, ..., xM,t, ...,

x1,t+W , x2,t+W , ..., xM,t+W }, where M is the total number

of players in Ũt..t+W and xu,t′ is defined as

xu,t′ ,

{
1, pαu,t′ = α ;

0, pαu,t′ 6= α
(
i.e., pαu,t′ = pu,t′ ∧ pαu,t′ 6= α

)
.

Therefore, we can further reformulate EW (pu,t′) us-

ing binary variables. First, let us represent Ea (pu,t′),
Eb1 (pu,t′ , pv,t′), and Eb2 (pu,t′) using xu,t′ and x̄u,t′ , where

we define x̄u,t′ , 1− xu,t′ . We have

Ea (pu,t′) =

t+W∑

t′=t

∑

u∈Ũt..t+W

fu,td(pu,t′ , p
†
u,t′)

=
t+W∑

t′=t

∑

u∈Ũt..t+W

fu,t
[
d(α, p†u,t′)xu,t′+d(pu,t′, p

†
u,t′)x̄u,t′

]
,

Eb1 (pu,t′ , pv,t′) =

t+W∑

t′=t

∑

(u,v)∈Lt′

fu,v,td(pu,t′ , pv,t′)

=
t+W∑

t′=t

∑

(u,v)∈Lt′

fu,v,t
[
d(pu,t′ , pv,t′)x̄u,t′ x̄v,t′+

d(α, pv,t′)xu,t′ x̄v,t′ + d(pu,t′ , α)x̄u,t′xv,t′
]
,

Eb2 (pu,t′) =

t+W∑

t′=t

∑

u∈Ũt..t+W

g(pu,t′ , pu,t′−1)

=

t+W∑

t′=t

∑

u∈Ũt..t+W

[
g(pu,t′ , pu,t′−1)x̄u,t′ x̄u,t′−1+

g(α, pu,t′−1)xu,t′ x̄u,t′−1+g(pu,t′, α)x̄u,t′xu,t′−1

]
.

Next, let us represent Ec (pu,t′) using xu,t′ and x̄u,t′ , with

θi,j,t′ ,
Rj,t′

hi
+ fj,td(i, c) + ai,1:

Ec (pu,t′) =

t+W∑

t′=t

∑

i∈I

∑

j∈Jt′

θi,j,t′δi,j,t′ ,

where, based on the definition of δi,j,t′ , we can rewrite

δi,j,t′ =

{
1−

∏
u∈Uj,t′ ,pu,t′=i xu,t′ , i 6= α;

1−
∏

u∈Uj,t′ ,pu,t′=i x̄u,t′ , i = α.
(3)

In (3), we consider whether there exists at least one player

in group Uj,t′ , who moves her CRM from MEC i to MEC

α. When i 6= α, if all players in group Uj,t′ are not using

i, then
∏

u∈Uj,t′ ,pu,t′=i xu,t′ = 1 and δi,j,t′ = 0; otherwise,

suppose the player u in group Uj,t′ leaves her CRM on i,

then
∏

u∈Uj,t′ ,pu,t′=i xu,t′ = 0 and δi,j,t′ = 1. When i = α,

if ∃u ∈ {u|u ∈ Uj,t′ , pu,t′ = i}, then δi,j,t′ = 1; otherwise,

δi,j,t′ = 1.

Last, we further introduce some auxiliary binary variables to

(3) in order to transform the product of binary variables to the

sum of binary variables for the purpose of graph construction,

as described later. We introduce yi,j,t′ , 1 ≤ i ≤ n, 1 ≤ j ≤
mt′ , t

′ ∈ {t, ..., t+W} and use |Ci,j,t′ | to denote the number
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of players in group Uj,t′ that have their CRM on MEC i before

the α expansion. Then, for (3), we have

−
∏

u∈Uj,t′ ,pu,t′=i

xu,t′ = min
yi,j,t′∈{0,1}

[
(|Ci,j,t′ |− 1) yi,j,t′−

∑

u∈Uj,t′ ,pu,t′=i

xu,t′yi,j,t′
]
.

(4)

Here is a brief proof for (4). If there is at least one xu,t′ = 0,

then the left-hand side of (4) equals 0; on the right-hand side,

we have
∑

u∈Uj,t′ ,pu,t′=i xu,t′ ≤ |Ci,j,t′ | − 1 and further have

the entire right-hand side equal 0 as yi,j,t′ = 0. On the other

hand, if all xu,t′ = 1 and the left-hand side of (4) equals

-1 correspondingly, then we have
∑

u∈Uj,t′ ,pu,t′=i xu,t′ =

|Ci,j,t′ | and further have the entire right-hand side equal -1

as yi,j,t′ = 1.

C. Binary Optimization and Graph Cut: A Mini Example

We observe that, after reformulating EW (pu,t′) in the

previous section, we are minimizing a function of binary

variables, where Ea (pu,t′) corresponds to a weighted sum of

binary variables; Eb1 (pu,t′ , pv,t′) and Eb2 (pu,t′) correspond

to a weighted sum of the products of pairs of binary variables;

and Ec (pu,t′) corresponds to a weighted sum of the products

of multiple binary variables. If we consider the simplest cases,

then Ea (pu,t′)+Eb1 (pu,t′ , pv,t′)+Eb2 (pu,t′) may correspond

to βxuxv + ρxu + φxv , and Ec (pu,t′) may correspond to

γ(1− xuxvxk), where xu, xv, xk are binary variables, β ≤ 0
and γ ≥ 0. We will see in Section V-D that “β ≤ 0, γ ≥ 0” are

indeed satisfied in our CRM placement problem. We note that

for γ(1 − xuxvxk), the product can contain as many binary

variables as desired, but we only consider three as an example.

We demonstrate how we minimize βxuxv + ρxu + φxv

and γ(1 − xuxvxk), respectively but uniformly, via “graph

cut”. The basic idea is that we construct a graph and seek the

minimal cut of the graph, which is a polynomial-time solvable

problem, and satisfies two requirements: (1) the sum of the

weights of the edges being cut equals the corresponding value

of the objective function to be optimized, and (2) the nodes on

one side of the cut correspond to the binary variables that take

the value of 0 and those on the other side of the cut correspond

to the binary variables that take the value of 1. Below, we show

how to construct such a graph for our example.

First, we consider the graph construction for βxuxv+ρxu+
φxv . For each variable, we have a corresponding node; then,

we additionally have the source node and the terminal node.

To construct the edge, we reformulate the expression

βxuxv + ρxu + φxv

=β
2xuxv +

β
2xuxv + ρxu + φxv

=− β
2xu (1−xv)−

β
2 (1−xu)xv+

(
β
2 +ρ

)
xu+

(
β
2+φ

)
xv.

For the first two terms, as β ≤ 0, an edge between u and

v with weight −β
2 would satisfy the above mentioned two

requirements. For the last two terms, there are four cases:

(
β
2 +ρ

)
xu=





(
β
2 +ρ

)
xu, if β

2 +ρ ≥ 0 ;

−
(

β
2 +ρ

)
(1−xu)+

(
β
2 +ρ

)
, if β

2 +ρ < 0.

(
β
2 +φ

)
xv=





(
β
2 +φ

)
xv, if β

2 +φ ≥ 0 ;

−
(

β
2 +φ

)
(1− xv) +

(
β
2 +φ

)
, if β

2 +φ < 0.

Case 1: β
2 + ρ ≥ 0 and β

2 + φ ≥ 0, an edge between u and

s with the weight β
2 + ρ, and an edge between v and s with

the weight β
2 + φ would satisfy the two requirements.

Case 2: β
2 + ρ ≥ 0 and β

2 + φ < 0, an edge between u and

s with the weight β
2 + ρ, and an edge between v and t with

the weight −β
2 − φ would satisfy the two requirements.

Case 3: β
2 + ρ < 0 and β

2 + φ ≥ 0, an edge between u and

t with the weight −β
2 − ρ, and an edge between v and s with

the weight β
2 + φ would satisfy the two requirements.

Case 4: β
2 + ρ < 0 and β

2 + φ < 0, an edge between u and

t with the weight −β
2 − ρ, and an edge between v and t with

the weight −β
2 − φ would satisfy the two requirements.

β

2
+ ρ

−β

2

source

terminal

u

v

source

terminal

u

v

source

terminal

u

v
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terminal
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γ

2
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γ

2
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2 γ

2
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2

3γ

2
− γ

− 3γ

2
+ γ

Fig. 2: Graph construction. The first four figures correspond

to βxuxv + ρxu + φxv; the last figure corresponds to γ(1 −
xuxvxk). For the latter, there is also a constant − γ

2 , i.e., the

cut result needs to be added to this constant to obtain the

corresponding objective function value.

The first four figures in Fig. 2 illustrate the above four cases,

respectively.
Next, we consider the graph construction for γ(1−xuxvxk).

According to what we have described previously, we introduce

an auxiliary node y as in (4):

− xuxvxk = min
y∈{0,1}

[
2y − (xu + xv + xk) y

]
.

There are only two possible results for −xuxvxk: when xu =
0, or xv = 0, or xk = 0, then y = 0 and γ(1− xuxvxk) = γ;

or, when xu = 1, xv = 1, xk = 1, then y = 1 and γ(1 −
xuxvxk) = 0. We consider the two cases, respectively.

When xu = 0, or xv = 0, or xk = 0, then y = 0, γ(1 −
xuxvxk) = γ. It means that if any of xu, xv, xk is on the

same side of the cut with source, y is also on that side. This

result indicates that the connection between xu, xv, xk and

source is through y. Therefore, the cut is between xu or xv

or xk, and y; or, between xu or xv or xk , and terminal. As

γ(1−xuxvxk) equals the same value for all the possible cuts,

the weights between xu, xv, xk and y and the weights between

xu, xv, xk and terminal should be identical. Let’s denote this

identical weight as η1, then

3η1 + η0 = γ,

where η0 is a constant to make the cut of the graph equals the

cost (to satisfy requirement (1)).
When xu = 1, xv = 1, xk = 1, then y = 1, γ(1 −

xuxvxk) = 0. In this case, the cut is between source and

y. Let η2 be the weight between source and y, then

η2 + η0 = 0.
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Therefore, any η0 < 0, η1 > 0, η2 > 0 that satisfy the above

equations could be the weights of our graph. In this paper, we

take the values as in the last figure of Fig. 2 to satisfy the

above two equations, i.e., η0 = − γ
2 and η1 = η2 = γ

2 .

D. Solving α Expansion via Graph Cut

We transform α expansion into graph cut. Here, the nodes

on one side of the cut correspond to xu,t′ = 0, meaning that

these CRMs stay at their current MECs, and the nodes on

the other side of the cut correspond to xu,t′ = 1 meaning

that these CRMs move to the MEC α. We show how to

construct such a weighted, undirected graph so that the sum

of the weights of the edges being cut equals the total cost

incurred by the the corresponding placement decisions. Thus,

any α expansion pα∗u,t′ in each iteration within Algorithm 1

can be solved by any existing polynomial-time minimal cut

algorithm. Below, we construct the nodes and the weighted

edges, respectively. Fig. 3 is an example.

…… ……

Fig. 3: Graph construction for our problem in a prediction

window of two time slots. x1,1, x2,1, x3,1, x1,2, x2,2, x3,2 rep-

resent the users, where users 1 and 2 are in the same group at

both t = 1 and t = 2. User 3 is in a different group from users

1 and 2 at t = 1, and leaves the system at t = 2. Here, we

consider two MECs. y1,1,1, y2,2,1, y,1,2 are the auxiliary nodes

for the MECs. F represents the virtual MEC. Note that we do

not show all the auxiliary nodes (i.e., y2,1,1, y1,2,1, y2,1,2) and

the edge weights for the ease of presentation.

1) Construction of Nodes: We construct a graph G =

(V , E) that has
∣∣∣Ũt..t+W

∣∣∣ nodes corresponding to the play-

ers and Ũt..t+W , n
∑t+W

t′=t mt′ nodes corresponding to the

auxiliary binary variables yi,j,t′ , one node F correspond-

ing to the virtual MEC, one source node source, and

one destination node terminal. That is, V =
{
xu,t′

∣∣u ∈
Ũt..t+W

}⋃{
yi,j,t′

∣∣1 ≤ i ≤ n, 1 ≤ j ≤ mt′ , t
′ ∈

{t, ..., t+W}
}⋃ {

F
}⋃{

source, terminal
}

.

2) Construction of Edges and Weights: We associate the

node source with the meaning of each CRM’s current MEC

(except for the CRMs that the current MEC is already α), and

also associate the node terminal with the meaning of being on

the MEC α. In the following, we work with Eb1 (pu,t′ , pv,t′),
Eb2 (pu,t′), Ec (pu,t′), and Ea (pu,t′), respectively, to elabo-

rate the construction of the edges and their weights.

Firstly, we encode the quadratic terms into the graph. We

have

Eb1 (pu,t′ , pv,t′)

=

t+W∑

t′=t

∑

(u,v)∈Lt′

fu,v,t (B1,u,t′xu,t′ +B2,v,t′xv,t′)+

t+W∑

t′=t

∑

(u,v)∈Lt′

fu,v,t
d(α, pv,t′) + d(pu,t′ , α)− d(pu,t′ , pv,t′)

2
×

(xu,t′ x̄v,t′ + x̄u,t′xv,t′) +A2,

where B1,u,t′ =
d(α,pv,t′ )−d(pu,t′ ,α)+d(pu,t′ ,pv,t′ )

2 , B2,v,t′ =
d(pu,t′ ,α)−d(α,pv,t′)+d(pu,t′ ,pv,t′ )

2 , and analogously, we have

Eb2 (pu,t′)

=

t+W∑

t′=t

∑

u∈Ũt..t+W

(B3,u,t′xu,t′ +B4,u,t′−1xu,t′−1)+

t+W∑

t′=t

∑

u∈Ũt..t+W

g(α, pu,t′−1) + g(pu,t′ , α)− g(pu,t′ , pu,t′−1)

2
×

(xu,t′ x̄u,t′−1 + x̄u,t′xu,t′−1) +A3,

where B3,u,t′ =
g(α,pu,t′−1)−g(pu,t′ ,α)+g(pu,t′ ,pu,t′−1)

2 ,

B4,u,t′−1 =
g(pu,t′ ,α)−g(α,pu,t′−1)+g(pu,t′ ,pu,t′−1)

2 . A2 and

A3 are constants that can be calculated very easily and will

not be encoded into the graph, which does not affect the

placement decision of the α expansion algorithm.

The weight of the edge between xu,t′ and xv,t′ is thus
1
2fu,v,t

[
d(α, pv,t′ )+d(pu,t′ , α)−d(pu,t′ , pv,t′)

]
. Assuming tri-

angle inequality, i.e., d(α, pv,t′)+d(pu,t′ , α)−d(pu,t′ , pv,t′) ≥
0, the weight is nonnegative. Similarly, for Eb2 (pu,t′), which

is the pairwise cost between nodes xu,t′ and xu,t′−1, we

add an edge between xu,t′ and xu,t′−1 with the weight of
1
2

[
g(α, pu,t′−1) + g(pu,t′ , α)− g(pu,t′ , pu,t′−1)

]
.

Secondly, we encode the higher-degree term of

Ec (pu,t′). Note that, for each θi,j,t′δi,j,t′ , we only need

to consider encoding min
yi,j,t′∈{0,1}

θi,j,t′
[
(|Ci,j,t′ | − 1) yi,j,t′ −

∑
u∈Uj,t′ ,pu,t′=i xu,t′yi,j,t′

]
into the graph, since the rest part

is a constant and won’t affect the placement decision. To

minimize this expression, there are two cases as mentioned

earlier. The first case is that ∀xu,t′ = 1, u ∈ Uj,t′ , pu,t′ = i,

then the minimum is obtained when yi,j,t′ = 1. In

this case, θi,j,t′δi,j,t′ = 0. The second case is that

∃xu,t′ = 0, u ∈ Uj,t′ , pu,t′ = i, then the minimum is

obtained when yi,j,t′ = 0. In this case θi,j,t′δi,j,t′ = θi,j,t′ . It

means that when ∃xu,t′ that remains on its current MEC after

the α expansion, i.e., when ∃xu,t′ = 0, u ∈ Uj,t′ , pu,t′ = i

is on the same side of the cut with source, yi,j,t′ is also on

that side. In other words, if we only consider the occupation

cost, there is no direct edge between xu,t′ and source, i.e.,

the connection between xu,t′ and source is through auxiliary

node yi,j,t′ . Therefore, we add one edge between xu,t′ and

yi,j,t′ , ∀xu,t′ = 0, u ∈ Uj,t′ , pu,t′ = i, and one edge between

yi,j,t′ and source. Then, we add one edge between xu,t′

and terminal, since for ∀xu,t′ , u ∈ Uj,t′ , pu,t′ = i, it can
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be assigned 1 without affecting the value of yi,j,t′ (unless

∀xu,t′ , u ∈ Uj,t′ , pu,t′ = i, xu,t′ = 1).

Now, we consider how to configure the weights of the

subgraph that involves the occupation cost for group Uj,t′

on MEC i. The requirement is that when ∀xu,t′ = 1, u ∈
Uj,t′ , pu,t′ = i, then yi,j,t′ should be 1 and the occupation

cost is 0. Otherwise ∃xu,t′ = 0, u ∈ Uj,t′ , pu,t′ = i, then

yi,j,t′ = 0 and the occupation cost is θi,j,t. Since occupation

cost is the same when ∃xu,t′ = 0, therefore all the weights of

the edges between xu,t′ and yi,j,t′ as well as between xu,t′

and terminal are identical. Let’s denote this identical weight

between xu,t′ and yi,j,t′ (i.e., between xu,t′ and terminal)

as η1i,j,t′ , and the weight between source and yi,j,t′ as η2i,j,t′ .

Then, we have

|Uj,t′ |η
1
i,j,t′ = θi,j,t′ + η2i,j,t′ .

The total cost is the sum of weights on the cut minus η2i,j,t′ .

Actually, there are many settings of weights that could satisfy

the above equation. In this paper, we select the configuration

of weights as suggested in [44], where η1i,j,t′ = 1
2θi,j,t′ ,

and η2i,j,t′ = 1
2θi,j,t′ |Uj,t′ | − θi,j,t′ . The subgraph needs to

add a constant value − 1
2θi,j,t′ |Uj,t′ | + θi,j,t′ to adjust to the

occupation cost. As a result, the second part of the weight

of the edge between xu,t′ and terminal is the sum of η1i,j,t′
over all MECs i, which is

∑n

i=1
1
2θi,j,t′ . The above subgraph

of the occupation cost also explains the weights of the edges

between source and yi,j,t′ , and between xu,t′ and yi,j,t′ .

Thirdly, we encode the linear terms. At this circumstance,

we not only need to consider the linear terms in unary cost

Ea (pu,t′), but also take the linear terms produced by the

former transformation in the encoding process of the pairwise

cost into account,

Ea (pu,t′) =

t+W∑

t′=t

∑

(u,v)∈Lt′

fu,v,t
[
B1,u,t′xu,t′ +B2,v,t′xv,t′

]
+

t+W∑

t′=t

∑

u∈Ũt..t+W

[ (
fu,td(α, p

†
u,t′) +B3,u,t′

)
xu,t′+

fu,td(pu,t′ , p
†
u,t′)x̄u,t′ +B4,u,t′−1xu,t′−1

]
.

When accumulated over time, B4,u,t′ would be added to

the coefficient of xu,t′ . Since we assume triangle inequality,

then B1,u,t′ ≥ 0, B2,v,t′ ≥ 0, B3,u,t′ ≥ 0, B4,u,t′ ≥ 0.

As a result, ∀xu,t′ , u ∈ Ũt..t+W , t′ ∈ {t, ..., t+W}, we

add an edge between xu,t′ and source with the weight of

fu,td(α, p
†
u,t′) +B3,u,t′ +B4,u,t′ , and add the weight of edge

between xu,t′ and terminal by fu,td(pu,t′ , p
†
u,t′). Therefore,

the entire weight of the edge between xu,t′ and terminal is

then fu,td(pu,t′ , p
†
u,t′) +

∑n
i=1

1
2θi,j,t′ considering all costs.

Furthermore, ∀(u, v) ∈ Lt′ , t
′ ∈ {t, ..., t+W}, the weight

between xu,t′ and source needs to add fu,v,tB1,u,t′ , and that

between xv,t′ and source needs to add fu,v,tB2,v,t′ .

E. Time Complexity Analysis

Since Algorithm 2 is a module invoked by Algorithm 1

for N times, where N is the number of iterations times the

number of MECs, we firstly investigate the time complexity

of Algorithm 2 which is provided in the Appendix.

Algorithm 2 contains two parts. It constructs the graph

first and then invokes the s-t min-cut algorithm using the

constructed graph as input. As can be seen from Algorithm

2, the time complexity for the graph construction is O(WM ·
max {Nmt′ ,M}), where W is the length of the prediction

window, M is the total number of players in Ũt..t+W , and mt′

is the number of groups at time slot t′. Let |V| be the number

of vertices and |E| be the number of edges in the constructed

graph. The time complexity of the s-t min-cut is O(|V|
2
|E|)

according to [45]. In our specific case, |V| = W+WNmt′+3
is bounded by O(WNmt′); |E| = 3WM + WMNmt′ +
WM2 +WNmt′ is bounded by O(WM ·max {Nmt′ ,M}).
As a result, the complexity of Algorithm 2 is dominated by

the s-t min-cut. Therefore, the complexity of Algorithm 2 is

O(|V|2|E|) = O(W 3N2mt′
2M ·max {Nmt′ ,M}).

Besides Line 5, the other part in Algorithm 1 is O(1),
and therefore, the overall time complexity of our algorithm is

O(W 3N3m̂2M ·max {Nm̂,M}), where m̂ is the maximum

number of groups.

F. Performance Analysis

Theorem 2 If p∗u,t′ is the optimal solution to minimize

EW (pu,t′) in the prediction window, Ec (I) is a constant

representing the occupation cost when all MECs in I are

occupied, and p̂u,t′ is the solution found by Algorithm 1,

then we have EW (p̂u,t′) ≤ 2λEW

(
p∗u,t′

)
+ Ec (I), where

λ , max {λ1, λ2}, with

λ1 = max
(u,v)∈Lt′





max
α1,β1:pu,t′=α1,pv,t′=β1

Eb1(α1, β1)

min
γ1,ǫ1:pu,t′=γ1,pv,t′=ǫ1

Eb1(γ1, ǫ1)



 ,

λ2 = max
u∈Ũt..t+W





max
α2,β2:pu,t′=α2,pu,t′−1=β2

Eb2(α2, β2)

min
γ2,ǫ2:pu,t′=γ2,pu,t′−1=ǫ2

Eb2(γ2, ǫ2)



 .

Proof. Let’s first fix an α ∈ P and define the set Pα as

Pα ,
{
u ∈ Ũt..t+W : p∗u,t′ = α

}
.

Let pαu,t′ be an α expansion to the solution p̂u,t′ in the

following way:

pαu,t′ =

{
α, 〈u, t′〉 ∈ Pα;

p̂u,t′ , otherwise.

Since p̂u,t′ is a feasible solution, we have EW (p̂u,t′) ≤
EW

(
pαu,t′

)
.

We divide Ea (pu,t′), Eb1 (pu,t′ , pv,t′), Eb2 (pu,t′ , pu,t′−1)
into three areas w.r.t. Pα, namely, internal area, external area
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and boundary area:

Iα = Pα,

ILα = {(u, v) ∈ Lt′ ,∧〈u, t
′〉, 〈v, t′〉 ∈ Pα} ,

IMα = {〈u, t′〉, 〈u, t′ − 1〉 ∈ Pα} ,

Oα = P \ Pα,

OL
α = {(u, v) ∈ Lt′ ,∧〈u, t

′〉, 〈v, t′〉 6∈ Pα} ,

OM
α = {〈u, t′〉, 〈u, t′ − 1〉 6∈ Pα} ,

Bα = ∅,

BL
α = {(u, v) ∈ Lt′ ,∧〈u, t

′〉 ∈ Pα, 〈v, t
′〉 6∈ Pα} ,

BM
α = {〈u, t′〉 ∈ Pα, 〈u, t

′ − 1〉 6∈ Pα} .

Let E(·)|A,Ea(u)|u∈A+Eb1(u, v)|(u,v)∈AL+Eb2(u)|u∈AM ,

then the following equations hold:

E
(
pαu,t′

)
|Iα

= E
(
p∗u,t′

)
|Iα

,

E
(
pαu,t′

)
|Oα

= E (p̂u,t′) |Oα
,

E
(
pαu,t′

)
|Bα
≤ λE

(
p∗u,t′

)
|Bα

.

Hence,

∵ EW (p̂u,t′) ≤ EW

(
pαu,t′

)

∴ E (p̂u,t′) |Iα
+E (p̂u,t′) |Oα

+E (p̂u,t′) |Bα
+ Ec (p̂u,t′)

≤ E
(
pαu,t′

)
|Iα

+E
(
pαu,t′

)
|Oα

+E
(
pαu,t′

)
|Bα

+Ec

(
pαu,t′

)

≤ E
(
p∗u,t′

)
|Iα

+E(p̂u,t′) |Oα
+λE

(
p∗u,t′

)
|Bα

+Ec

(
pαu,t′

)

∴ E (p̂u,t′) |Iα
+E (p̂u,t′) |Bα

+Ec (p̂u,t′)

≤ E
(
p∗u,t′

)
|Iα

+λE
(
p∗u,t′

)
|Bα

+Ec

(
pαu,t′

)

∴
∑

α∈P

[E (p̂u,t′) |Iα
+E (p̂u,t′) |Bα

]+Ec (p̂u,t′)

≤
∑

α∈P

[
E
(
p∗u,t′

)
|Iα

+λE
(
p∗u,t′

)
|Bα

]
+Ec

(
pαu,t′

)
.

When accumulated over all MECs,
∑

α∈P E (p̂u,t′) |Iα
=

Ea (p̂u,t′) +Eb1 (p̂u,t′ , p̂v,t′) |⋃ Iα
+Eb2 (p̂u,t′ , p̂u,t′−1) |⋃ Iα

,

while
∑

α∈P E (p̂u,t′) |Bα
= 2Eb1 (p̂u,t′ , p̂v,t′) |⋃Bα

+
2Eb2 (p̂u,t′ , p̂u,t′−1) |⋃Bα

. The first equation is obvious. As

for the second equation, it is because when summed over the

boundary area
⋃
Bα (i.e. when p̂u,t′ 6= p̂v,t′ , (u, v) ∈ Lt′

and p̂u,t′ 6= p̂u,t′−1, u ∈ Ũt..t+W ), each pairwise cost

between two players with different placement decisions is

added up twice, once on the p̂u,t′ side and once on the

p̂v,t′ or p̂u,t′−1 side. We also have
∑

α∈P E
(
p∗u,t′

)
|Iα

=

Ea

(
p∗u,t′

)
+Eb1

(
p∗u,t′ , p

∗
v,t′

)
|⋃Iα

+Eb2

(
p∗u,t′ , p

∗
u,t′−1

)
|⋃ Iα

,

and
∑

α∈P λE
(
p∗u,t′

)
|Bα

= 2λ
[
Eb1

(
p∗u,t′ , p

∗
v,t′

)
|⋃Bα

+Eb2

(
p∗u,t′ , p

∗
u,t′−1

) ]
|⋃Bα

. Therefore,

Ea (p̂u,t′) + Eb1 (p̂u,t′ , p̂v,t′) |⋃Iα
+Eb2 (p̂u,t′ , p̂u,t′−1) |⋃ Iα

+

2Eb1 (p̂u,t′ , p̂v,t′) |⋃Bα
+ 2Eb2 (p̂u,t′ , p̂u,t′−1) |⋃Bα

+Ec (p̂u,t′)

≤ Ea

(
p∗u,t′

)
+Eb1

(
p∗u,t′ , p

∗
v,t′

)
|⋃ Iα

+Eb2

(
p∗u,t′ , p

∗
u,t′−1

)
|⋃ Iα

+

2λ
[
Eb1

(
p∗u,t′ , p

∗
v,t′

)
|⋃Bα

+Eb2

(
p∗u,t′ , p

∗
u,t′−1

)
|⋃Bα

]
+Ec

(
pαu,t′

)
.

Since,

Ea(p̂u,t′) + Eb1(p̂u,t′ , p̂v,t′) |⋃ Iα
+Eb2(p̂u,t′ , p̂u,t′−1) |⋃ Iα

+

Eb1(p̂u,t′,p̂v,t′)|⋃Bα
+Eb2(p̂u,t′,p̂u,t′−1)|⋃Bα

+Ec(p̂u,t′)=E(p̂u,t′)

Ea

(
p∗u,t′

)
+Eb1

(
p∗u,t′ , p

∗
v,t′

)
|⋃ Iα

+Eb2

(
p∗u,t′ , p

∗
u,t′−1

)
|⋃ Iα

+

Eb1

(
p∗u,t′,p

∗
v,t′

)
|⋃Bα

+Eb2

(
p∗u,t′,p

∗
u,t′−1

)
|⋃Bα

+Ec

(
p∗u,t′

)
=E

(
p∗u,t′

)

We have,

E (p̂u,t′) + Eb1 (p̂u,t′ , p̂v,t′) |⋃Bα
+ Eb2 (p̂u,t′ , p̂u,t′−1) |⋃Bα

≤ E
(
p∗u,t′

)
+ (2λ− 1)

[
Eb1

(
p∗u,t′ , p

∗
v,t′

)
|⋃Bα

+

Eb2

(
p∗u,t′ , p

∗
u,t′−1

)
|⋃Bα

]
+ Ec

(
pαu,t′

)
− Ec

(
p∗u,t′

)
.

Since pαu,t′ is an α expansion to the solution p̂u,t′ , it would

use no more MECs than the p̂u,t′ , thus Ec

(
pαu,t′

)
≤ Ec (p̂u,t′).

Then, we have

E (p̂u,t′) ≤2λE
(
p∗u,t′

)
+ Ec (I) .

G. α Expansion with Capacity Constraint

We have focused on the uncapacitated version of the dy-

namic placement problem so far, which indeed works if the

number of CRMs placed at an MEC, depending on the number

of groups rather than the number of users, is obviously smaller

than the capacity of that MEC. If it is desired that the capacity

of each MEC needs to be explicitly respected, then we can still

do our α-expansion algorithm and construct the graph—the

only difference is that we do not seek the minimal s-t cut, but

seek the k-size minimal s-t cut [47] which ensures the number

of nodes on one side of the cut not to exceed k. The execution

of the α expansion algorithm for the CRM placement problem

with capacity constraints is the same as the problem without

capacity constraints, except that in the capacity constraint case,

we invoke the k-size s-t min-cut algorithm to replace the s-t

min-cut algorithm in Line 24 of Algorithm 2. Unlike the s-t

min-cut problem which can be solved in polynomial time, the

k-size s-t min-cut is NP-hard [46]. The algorithm in [47] keeps

the set of the source under the size of k on an undirected

graph with approximation ratio of k+1
k+1−k∗

, where k∗ is the

size of the source side of an optimal solution. Since it works

on an undirected graph, we can restrict our terminal side

size under k and regard it as the source in [47]. This way,

the algorithm and properties in [47] can still be applied to our

problem, which ensures that the number of CRMs on MEC α

is under k after each α expansion. Since we traverse for each

MEC (Line 4 in Algorithm 1), the number of CRMs on the

original MEC is also restricted to less than k during execution.

In this case, we may lose our performance analysis; how-

ever, through evaluations, we show that our algorithm still

works well practically.

VI. EVALUATION

A. Data and Settings

1) User Dynamics and MECs: For user dynamics, we use

anonymized data traces provided by one of the largest telecom

carriers in China. We have obtained the permission to use the

data in our research, on the condition that the carrier’s name

is anonymized. The dataset contains 5,000 users’ signaling

data logs in the city of Guangzhou, one of the largest cities

in China, during the week of November 15th through 21st,

2015. Each log entry contains an anonymized user ID, user’s

joining time, leaving time, connected cell (i.e., base station)

ID, uplink/downlink throughput, etc.
For the MECs, we extract all unique cell IDs from the same

data traces, and view each cell as an MEC, following the
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5G standard and the mobile edge computing paradigm [11].

We get 358 unique cells, and for each cell, we also get its

associated longitude and latitude. In our data, the longest

distance between two cells is 27.03 km, and the majority of

such inter-cell distances are less than 10 km. We assume the

transmission delay d between two MECs is proportional to the

distance between the two cells, calculated by the longitudes

and latitudes. We assume MECs’ processing capabilities are

at three levels: high, medium, and low. For each MEC, the

processing capability hi is drawn from a normal distribution

with an expectation (representing the processing capability

level) and a standard deviation (allowing the heterogeneity of

MECs). We treat 5 minutes as a time slot, and have about

2000 consecutive time slots in total.
2) User Groups and VR Gaming: We consider 5v5 MOBA

games, where each group contains 10 players at the beginning,

and organize users in groups by the ladder tournament match-

making algorithm [9], [10] that has been used in real-world

games such as StarCraft II, DOTA, and League of Legends.

The matchmaking algorithm for game group formation [23]

takes into account the factors such as player geo-location,

network latency, waiting time, and fairness. To use the match-

making algorithm, we randomly assign each player with a level

of junior, middle, senior, or ultimate [23]. At each time slot,

the matchmaking algorithm runs to form the groups.
We also assign the gaming parameters. We assume that

the CRM workload Rj,t follows a uniform distribution. The

switching cost g between two consecutive time slots of a single

CRM is also drawn from a uniform distribution. The frame rate

fu,t is drawn from a uniform distribution of [50, 70] frame-

per-second [20]. The in-group synchronization rate fj,t is set

to be equal to the frame rate. The interaction rate fu,v,t of

two players of different groups is of 99% probability to be 0,

and of 1% probability to be drawn from a uniform distribution

of (0, 3] times per second; the interaction rate fu,v,t of two

players of the same group is drawn from a uniform distribution

of [0, 10] times per second. All our simulations are conducted

on a DELL PowerEdge R740 server with 32 GB RAM and a

2.1 GHz Intel Xeon Silver 4110 CPU.
The initial (in the first time slot) CRM placement is shown

in Fig. 4. The dots on the map are the locations of MECs.

There are 1983 players active in this time slot. We zoom

in to 5 selected MECs and list their group settings and user

connections to other users of different groups.

B. Evaluation Results

We note that we conduct two scales of experiments. As for

“small scale” experiments, the number of users is under 2000.

As for “large scale” experiments, the number of users is above

4000. We state at the caption of each figure the scale at which

the simulation is conducted; otherwise, the simulation is done

at both scales and the result shows similar trends.
1) Running Time and Cost Comparison: We compare

our MPC-based and α-expansion-based approach to four other

placement approaches: greedy placement (i.e., placing CRMs

optimally using the prediction information within the predic-

tion window), random placement (i.e., placing each CRM ran-

domly on an MEC at each time slot), nearest placement (i.e.,

MEC #172 , # of CRMs = 3

User 1873, group 049, connect Null

User 2247, group 131, connect Null

User 2525, group 083, connect Null

User 2682, group 131, connect Null

User 2931, group 083, connect Null

User 3856, group 131, connect Null

User 4507, group 083, connect Null

User 4729, group 083, connect Null

MEC #175 , # of CRMs = 4

User 0098, group 131, connect Null

User 2313, group 112, connect Null

User 3095, group 058, connect Null

User 3096, group 058, connect Null

User 3352, group 083, connect Null

User 4046, group 112, connect Null

User 4336, group 112, connect Null

MEC #308 , # of CRMs = 2

User 0069, group 162, connect Null

User 4657, group 102, connect to User 2313

MEC #029, # of CRMs = 4

User 0158, group 125, connect Null

User 0160, group 125, connect Null

User 1029, group 095, connect Null

User 1162, group 036, connect Null

User 1265, group 095, connect Null

User 1279, group 125, connect Null

User 1428, group 036, connect Null

User 1525, group 174, connect Null

User 1531, group 174, connect Null

User 1685, group 174, connect Null

User 2251, group 036, connect Null

User 4116, group 036, connect Null

User 4159, group 036, connect Null

User 4658, group 125, connect Null

MEC #241, # of CRMs = 1

User 0112, group 134, connect Null

User 4112, group 134, connect Null

Fig. 4: The initial CRM placement. Users of the same color

are in the same group. “Connect Null” means that the user

does not have communication to users of a different group;

otherwise, we directly show the ID(s) of her connected user(s).

placing the CRM of u to her nearest MEC p
†
u,t at each time

slot, or “following the user”), and offline optimal placement

over the entire time horizon (i.e., placing CRMs optimally over

time as if it was an offline optimization problem), where both

greedy and offline optimum are obtained using the Gurobi [8]

optimization solver.

Fig. 5 compares the running time and Fig. 6 compares the

total cost over time, respectively. The y-axis of Fig. 5 is the

actual time our algorithms takes to run in our test environment,

with units of milliseconds. The y-axis of Fig. 6 is the normal-

ized total cost w.r.t. the offline optimal solution. T represents

the length of the total time horizon, and W represents the

length of the prediction window. Here, we set each prediction

window as 20 time slots with accurate predictions with total

time horizon of 100 time slots. Due to randomness in our

inputs, each result in Fig. 5 and Fig. 6 is averaged over 5

runs. We show weekdays and weekends separately in Fig.

6, due to the different mobility and traffic patterns [18]. We

make the following observations. Despite random and nearest

methods run faster, our approach performs overwhelmingly

better than both of them in terms of the total cost. When the

user size is at small scale, our approach achieves around 1.2×
the cost on both weekdays and weekends with around 60% less

running time compared to greedy solution, and can achieve

around 27% cost degradation on weekdays and around 23%

cost degradation on weekends compared to the offline optimal

method which runs around 12 hours. When the user population

is large, both greedy and offline optimum cannot return any

result within a reasonable amount of time, and thus we are not

able to show their running time in Fig. 5. In Fig. 6, no matter

on weekdays or weekends with different user dynamics, our

approach achieves consistent results.

2) Capacity Constraint: Fig. 7 and Fig. 8 visualize the

total cost when it is desired to strictly enforce MECs’ ca-

pacity constraints. In order to observe the impact of capacity

constraint compared to offline optimal solution, we conduct

the simulation at small user scale. We assume all MECs

are homogeneous, and in both two figures, the x-axis is the

capacity of the MEC. In Fig. 7, we assume the size of the

CRM is always 1, while in Fig. 8 the size of the CRM is

drawn randomly from uniform distribution of (0, 2]. As can

be seen, even without any theoretical performance guarantee

in this case, our proposed algorithm can still effectively reduce
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CRM Size (Small Scale)
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Cost Break Down, W=20,T=100
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the total cost. We start from the MEC capacity of 2. In this

case, the normalize total cost for both the fixed CRM size

(i.e., size = 1) and the random CRM size is less than 2;

the percentage of MECs that are full (represented by orange

line) is around 75% for the case of the fixed CRM size and

around 80% for the random CRM size. As the capacity of

each MEC becomes larger, we reduce more cost as there is

more room for optimization. When the MEC capacity reaches

10, the percentage of MECs that are full approaches 0, and

the normalized total cost for both cases is around 1.2. The

trends in the two figures are similar, while the fixed CRM

size setting always shows a little better performance than the

random CRM size setting in terms of both the total cost and

the percentage of full MECs.

3) Cost Breakdown: Fig. 9 breaks down the total cost for

our approach and digs into the impact of each type of the

cost, where “MPC” represents the optimization of all types

of costs, “MPC1” only optimizes computation, “MPC12”

optimizes both computation and communication, “MPC123”

optimizes computation, communication, and colocation, and

“MPC124” optimizes computation, communication, plus the

switching cost. E1, E2, E3, E4 and E represent the cost of

computation overhead, communication delay, colocation inter-

ference, switching cost and total cost, respectively. The y-axis

is the normalized ratio of the corresponding cost of each target

solution (i.e., MPC, MPC-1, MPC-12, MPC-123, MPC-124)

w.r.t. the cost of using the overall optimization (i.e., MPC). As

can be seen, our approach allows for optimizing different types

of costs selectively, and the overall optimization achieves the

best performance when all types of costs are considered.

4) Convergence: Fig. 10 and Fig. 11 illustrate the conver-

gence speed of our approach. In Fig. 10, we normalize the

total cost w.r.t. the solution provided by our algorithm when it

become stable (i.e., after several rounds of iterations). In order

to not confuse with the term of “normalized total cost” (used

in other figures), which is normalized to the offline optimal

solution, we choose to use the term “ratio” for the y-axis

of Fig. 10 instead.In Fig. 10, we see that our α-expansion

algorithm reduces most of the cost in the first few iterations,

and terminates only after a smalle number of iterations. In our

experiments, the total cost does not decrease after 6 iterations

at most; in other words, our algorithm converges very fast.

In Fig. 11, the lines of T=50, T=100, and T=100 align with

the left y-axis, which illustrate the normalized total cost; the

line of time/ms aligns with the right y-axis, which shows

the computation time.We vary the length of the entire time

horizon, normalize the total cost over the corresponding offline

optimal cost, respectively, and observe that our algorithm

has better total cost over time, as the size of the prediction

window becomes larger. This aligns with the expectation for

the MPC framework: the result becomes better as more future

information is known.

5) Scalability: Fig. 12 demonstrates the scalability of our

algorithm. In particular, we show the amount of running time

it takes to execute our algorithm to compute the placement

decisions (the y-axis) as the size of the prediction window and

the number of users vary (the x-axis).The cases of the enlarged

number of users are done by concatenating different pieces of

data traces and treating it as a single day with different users.

The result exhibits that in general our algorithm scales well—

just a little bit superlinear in the execution time as the number

of users increases.

6) Robustness: Fig. 13 depicts the total cost achieved by

our MPC-based algorithm when fed with inaccurate predic-

tions. MPC often assumes accurate predictions of the input

data in each prediction window; however, in reality, it may

not be easy to get perfect predictions, and one may only

have inaccurate ones, depending on the methods of prediction
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Fig. 13: Results of Inaccurate Predictions, Small Scale

and the statistical nature of the inputs. To simulate inaccurate

predictions, we randomly select players, disturb the location

and the joining/leaving time within a geo-error range and a

time-error range, and feed such disturbed predictions into each

prediction window. Fig. 13 shows the total cost with various

error ranges. The total cost of our MPC-based placement is

still much better than the random and nearest placements, even

when the prediction accuracy is 60% with the error range

of (10 km, 60 s), i.e., 2.1× improvement compared to random

and 1.8× improvement compared to nearest. Besides, in each

subfigure, as the prediction becomes more accurate, and across

subfigures, as the error range decreases, we all obtain more

cost benefit by leveraging the inaccurate predictions.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we investigate the dynamic service placement

problem for VR group gaming in the distributed mobile edge

cloudlets environment. As in our models, this problem is

an optimization problem involving discrete, nonconvex, and

higher-order objectives with coupled decisions over time,

which is very challenging to solve. While adopting the model

predictive control framework to construct an online algorithm,

we focus on designing approximation algorithms for the

problem over each prediction window, where we solve the

problem via solving a series of α-expansion-based binary

optimizations by graph-theoretic minimal cuts and prove the

bounded performance guarantee with this approach. Through

extensive evaluations with real-world data, we validate the

effectiveness, the efficiency, the scalability, and the robustness

of our proposed scheme.

The scope of our work can be recapped as follows. Our

work is focused on the mathematical modeling, the formal

algorithm design, and the theoretical performance analysis for

the problem of the predictive online placement of the CRMs

over edge cloudlets for the mobile VR group gaming services.

Our current paper is a self-contained piece of theoretical

work with simulated numerical results. We also have ongoing

engineering efforts on placing our algorithm implementations

into real-world systems for measurement and validation, and

we would like to postpone any discussion there to the future.

Within this scope, we have identified two limitations of

our work as follows. First, our current provable performance

guarantee is for every prediction window alone; we have

not been able to prove the overall performance guarantee,

if it exists, for the MPC framework that invokes our al-

gorithm repetitively over overlapped prediction windows as

time goes. Fortunately, via extensive numerical evaluations,

we have found that the overall empirical performance of our

algorithm is already advantageous compared against existing

methods. Second, our current provable performance guarantee

assumes exact predictions; we have not been able to prove

the corresponding performance guarantee, if it exists, for

inexact or error-prone predictions. Doing so would require

incorporating error models into our algorithm design and can

be of future interest. Analogously, through evaluations, we

have demonstrated that our approach is empirically robust to

prediction errors and can still be better than existing methods

when evaluated under the same error-prone predictions.
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APPENDIX

Algorithm 2 Solving α-Expansion via Min s-t Graph Cut

Input:

Lt: the set of all the pairs of interacting players at time t;

Rj,t: the workload of the CRM of group j at time t;

hi: the processing capability of MEC i;

d(p, q): the network delay between MECs p and q;

g(pu,t, pu,t−1): switching cost of player u at time t;

fu,v,t: interaction rate between players u and v at time t;

fu,t: the frame rate of player u at time t;

fj,t: the synchronization rate of group j at time t;

ai,1: the parameters of the dilation factor of MEC i;

θi,j,t′ =
Rj,t′

hi
+ fj,td(i, c) + ai,1;

B1,u,t′ =
d(α,pv,t′ )−d(pu,t′ ,α)+d(pu,t′ ,pv,t′ )

2 ,

B2,v,t′ =
d(pu,t′ ,α)−d(α,pv,t′ )+d(pu,t′ ,pv,t′ )

2 ,

B3,u,t′ =
g(α,pu,t′−1)−g(pu,t′ ,α)+g(pu,t′ ,pu,t′−1)

2 ,

B4,u,t′−1 =
g(pu,t′ ,α)−g(α,pu,t′−1)+g(pu,t′ ,pu,t′−1)

2 .

δi,j,t: binary indicator of whether ∃u ∈ Uj,t s.t. pu,t = i .

Output:

xu,t′ : binary variable of whether to place the CRM of

player u on MEC α at time t′ in α expansion, ∀u ∈
Ũt..t+W , t′ ∈ {t, ..., t+W};
yi,j,t′ : auxiliary binary variables, 1 ≤ i ≤ n, 1 ≤ j ≤
mt′ , t

′ ∈ {t, ..., t+W};
G = (V , E): the constructed graph.

1: V =
{
xu,t′

∣∣u ∈ Ũt..t+W

}⋃{
yi,j,t′

∣∣1 ≤ i ≤ n, 1 ≤ j ≤
mt′ , t

′ ∈ {t, ..., t+W}
}⋃ {

F
}⋃{

source, terminal
}

2: for each t′ ∈ {t, ..., t+W} do

3: for each u ∈ Ũt..t+W do

4: Weight of edge between xu,t′ and xu,t′−1 ←
1
2

[
g(α, pu,t′−1) + g(pu,t′ , α)− g(pu,t′ , pu,t′−1)

]

5: Weight of edge between xu,t′ and source ←

fu,td(α, p
†
u,t′) +B3,u,t′ +B4,u,t′

6: Weight of edge between xu,t′ and terminal ←

fu,td(pu,t′ , p
†
u,t′) +

∑n
i=1

1
2θi,j,t′

7: for each 1 ≤ i ≤ n do

8: for each 1 ≤ j ≤ mt′ do

9: Weight of edge between xu,t′ and yi,j,t′ ←
1
2θi,j,t′

10: end for

11: end for

12: end for
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13: for each (u, v) ∈ Lt′ do

14: Weight of edge between xu,t′ and xv,t′ ←
1
2fu,v,t

[
d(α, pv,t′) + d(pu,t′ , α)− d(pu,t′ , pv,t′)

]

15: Add weight of edge between xu,t′ and source by

fu,v,tB1,u,t′

16: Add weight of edge between xv,t′ and source by

fu,v,tB2,v,t′

17: end for

18: for each 1 ≤ i ≤ n do

19: for each 1 ≤ j ≤ mt′ do

20: Weight of edge between source and yi,j,t′ ←
1
2fu,v,t

[
d(α, pv,t′) + d(pu,t′ , α)− d(pu,t′ , pv,t′)

]

21: end for

22: end for

23: end for

24: s-t min cut of G = (V , E)
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