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Abstract—To fight against infectious diseases (e.g., SARS,
COVID-19, Ebola, etc.), government agencies, technology com-
panies and health institutes have launched various contact
tracing approaches to identify and notify the people exposed to
infection sources. However, existing tracing approaches can lead
to severe privacy and security concerns, thereby preventing their
secure and widespread use among communities. To tackle these
problems, this paper proposes CoAvoid, an edge-based, privacy-
preserved contact tracing system that features good dependability
and usability. CoAvoid leverages the Google/Apple Exposure
Notification (GAEN) API to achieve decent device compatibility
and operating efficiency. It utilizes Bluetooth Low Energy (BLE)
to detect close contact with other people and leverages GPS
with fine-grained matching algorithms to verify user information.
In addition, to enhance privacy protection, CoAvoid applies
fuzzification and obfuscation measures to shelter sensitive data,
making both servers and users agnostic to information of both
low and high-risk populations. The evaluation demonstrates good
efficacy and security of CoAvoid. Compared with four state-of-
the-art contact tracing applications, CoAvoid can reduce the size
of upload data by at least 90% and reduce the verification time
by 92%. More importantly, CoAvoid can preserve user privacy
and resist replay and wormhole attacks in all analysis scenarios.

Index Terms—Contact Tracing, Privacy Preserving, Attack
Prevention.

I. INTRODUCTION

C
ONTACT tracing is an effective approach to curb epi-

demics, letting people know that they may have been

exposed to a certain infectious disease (e.g., SARS, COVID-

19, Ebola, etc.). It can remind high-risk groups to take im-

mediate medical or quarantine measures, thereby interrupting

chains of disease transmission [1]. Typically, a contact tracing

application records contact histories between users and lever-

ages information of confirmed patients to determine whether

a user is at risk of infection.

Ever since the establishment of the modern public health

system, contact tracing has been widely studied. From tracking

through questionnaires [2] in the 20th century, it has gradu-

ally evolved into tracking using digital mobile devices after

2010 [3]–[5]. From 2020, to reduce COVID-19-associated

mortality, various tracing approaches have emerged [6]–[8].
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For example, BlueTrace [9] determines high-risk groups by

collecting and analyzing patient information in a central

server, which operates effectively, but may raise severe privacy

concerns. On the other hand, Epione [10] utilizes Private

Set Interaction Cardinality to conduct tracing; Whisper [11]

utilizes BLE to locally exchange anonymous and temporary

identities. These approaches can protect user privacy to a

certain extent. However, neither Whisper nor Epione can resist

replay attacks [12].

To standardize and promote developments of contact trac-

ing applications on mobile platforms, in April 2020, the

Google/Apple Exposure Notification (GAEN) API, a contact

tracing development tool based on Bluetooth Low Energy

(BLE), was proposed by joint efforts of Google and Ap-

ple [13]. The launch of GAEN has vitally evolved the design

of contact tracing applications, as it provides broad hardware

and software (IOS and Android) compatibility. Therefore, most

state-of-art contact tracing applications are based upon GAEN.

Nonetheless, due to inappropriate uses of GAEN API, many

GAEN-based applications have two major drawbacks regard-

ing privacy and security of contact tracing, preventing their

secure and widespread use among communities [14]–[16].

First of all, such applications tend to expose all the information

of confirmed patients to severs and relevant users [17], [18],

which enables some entities to gather multiple information

about patients to infer further their identities, daily routines,

or even social relationships [19], [20]. Besides, as a limitation

of Bluetooth, applications that only rely on GAEN can only

approximately estimate the distance between users [21], [22].

This flaw enables attackers to interfere with a user’s Bluetooth

device to carry out wormhole attacks [23]. Consequently, users

can receive an excess of false alarms, putting a severe strain

on the public health system and causing social panic.

As per the aforementioned missing gaps, we seek to

preserve the privacy protection of users while tracing their

contacts, which is not only limited to the low-risk population,

but also to prevent confirmed patients’ identities and social

relationships from disclosing. Additionally, the tracing system

should feature comprehensive security in its operations, gen-

erating legitimate outputs even in the absence of wormhole

and replay attacks. Furthermore, to operate in diverse network

and device environments, the proposed approach ought to have

high efficiency and board compatibility.

To solve the above issues, we designed CoAvoid, an

edge-based contact tracing system that can efficiently track

and protect users’ security and privacy. Based upon the

GAEN API, CoAvoid can be deployed in both IOS and

Android systems equipped with Bluetooth and GPS, and
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this good compatibility is vital for deployment in a large

scale. To safeguard the tracing system, CoAvoid harnesses

several techniques in operations: (1) All the nodes record

and verify timestamps along with contact information, thereby

eradicating the threat of replay attacks. (2) More than just

obtaining relative location via BLE, CoAvoid also collects

the user’s geographic location via GPS and reliably verifies

the user’s location with a reliable lightweight algorithm that

enables the system to resist wormhole attacks. Furthermore,

CoAvoid enhances privacy protection for users from multiple

aspects: (1) Every node of CoAvoid system shelters its GPS

coordinates through hashing and fuzzification. (2) Confirmed

patients filter out uncorrelated contact data and only broadcast

essential information to servers. (3) The servers obfuscate

information uploaded by confirmed patients before storage and

analysis. (4) CoAvoid collects, processes, and stores all the

user information anonymously. Due to this nature, CoAvoid

is thereby general data protection regulation (GDPR) [24]

and California Consumer Privacy Act (CCPA) [25] compliant.

Consequently, neither patient’s nor ordinary people’s identi-

ties, daily routines, or social relationships can be leaked or

inferred by any entity inside or outside CoAvoid system.

Meanwhile, as the data users need to upload and download

has been significantly reduced, CoAvoid can achieve a rapid

velocity in data transmission.

Compared with existing contact tracing approaches,

CoAvoid makes the following contributions:

• While accurately conducting contact tracing, CoAvoid

can still protect privacy of both low and high-risk popu-

lations in a practical and efficient way. This was almost

unreachable through previous approaches, as they face a

conflict between data integrity and privacy preserving.

• Benefits from comprehensive security protection designs,

CoAvoid can resist replay and wormhole attack in

extreme scenarios, enabling the tracing system to properly

operate and contact data to be securely transmitted in the

absence of malicious users.

• By reducing the amount of data required for uploading

and analysis, CoAvoid can significantly increase the op-

erating efficiency. With lower bandwidth, storage space,

and device performance requirements, CoAvoid can be

deployed in regions with different levels of development,

promoting widespread use of contact tracing applications.

The evaluation results also demonstrate CoAvoid’s en-

hanced privacy protection in processing users’ contact histo-

ries, high efficacy in determining high-risk populations, com-

prehensive security in system operations, and rapid velocity

in data transmission. It can reach a 100% accuracy in contact

tracing, with the amount of patient-upload data reduced by

90% and verification time reduced by 92%. More importantly,

CoAvoid can preserve user privacy, and resist replay and

wormhole attacks in all the analysis scenarios.

The rest of this paper is organized as follows. After we

outline related work in Section II, we describe the operation

& threat model of contact tracing in Section III. Then, we

elaborate on the system design of the proposed approach in

Section IV, analyze and evaluate it in Section V, and conclude

the paper in Section VI.

II. RELATED WORK

Contact tracing is a vital control tool for infectious diseases

and has been developed for decades, with contact tracing

available for diseases such as tuberculosis and HIV. In the

early stages, when smart devices were not widely available,

health care workers collected information through question-

naires to determine people with possible diseases [2]. Later,

as technology evolved, tracing through portable computing

devices has emerged. For example, EbolaTracks [26] is a

short message service (SMS)-based system for monitoring

people who may have been exposed to EVD, including trav-

elers returning from Ebola-affected countries. Outbreaks Near

Me [27] work together as a large disease information exchange

platform by users uploading disease-related information on

their own. However, the information submitted is mixed and

data-intensive, and verification of the information is often

difficult. It is also difficult to manage the notification of the

public while protecting the privacy of those involved in the

event. ENACT [28] detects whether two users are in contact

through WiFi signal strength. ENACT dynamically scans the

user’s surroundings for wireless signals and access points and

logs them into the phone. The patient sends this information

to the server, alerting other users.

In 2020, the outbreak of COVID-19 led to widespread

interest and the rapid development of contact tracing technol-

ogy. A variety of methods for contact tracing have emerged,

including magnetic fields [29], NFC [30], IOT [31], WiFi [32],

[33], with Bluetooth Low Energy (BLE) [34] is the most

popular method because of privacy and granularity issues. In

the initial design of Ad Hoc networks, BLE is widely used for

distance measurement and indoor positioning [35]–[37]. It has

the characteristics of low power consumption, fast connection

speed and long distance. By reading the receiver’s Received

Signal Strength Indicator (RSSI), the distance between the

receiving device and the transmitting device can be measured,

enabling the convenient contact tracing application to measure

whether there is contact between two users. However, range

measurement based on RSSI can be affected by many factors

such as environment, transmitting power, receiver sensitivity

and so on. BTrack [38] introduced a new positioning system,

which combined the information of barometers and accelerom-

eters to estimate the user’s position. In addition, NOVID

[39] uses a combination of Bluetooth and ultrasound and is

calculated using sound propagation time. Radio Frequency

Identification (RFID) technology can also detect intimacy and

social interaction. Suppose an RFID reader is placed in each

house room, and everyone carries an RFID tag. The reader

can then locate the location by detecting the tag, but this

method is not feasible outside and is too expensive. In addition,

there are ways to keep track of users. In China, for example,

the health code system [40] is widely used, and it is an

epidemic prevention measure based on mobile phones, 3-

D face recognition, and population management on multiple

occasions.

BlueTrace [9] was one of the first proposed digital con-

tact tracing protocols based on a centralized architecture.
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This protocol developed the TraceTogether [41] in Singapore

and the Covid-Safe application in Australia. Another proto-

col called ROBERT was proposed by Inria and Fraunhofer

AIESEC [42]. However, contact tracing applications based on

a centralized framework collect a large amount of personal

information about users. The back-end server can uniquely

associate anonymous identifiers with each user and monitor

users comprehensively. Therefore, due to privacy and security

concerns, all contact tracing applications developed today use

a decentralized architecture [43], [44]. Altuwaiyan et al. [45]

developed an EPIC system based on smartphones, servers, and

short-range wireless devices. However, this method collects

and even releases personal privacy data directly, which may

violate the privacy of individuals.

Since then, contact tracing apps have increasingly focused

on protecting users’ privacy [46]. Epione [10], for example,

utilizes a private set interaction base (PSI-CA) with strong pri-

vacy guarantees. When a user has tested positive, the patient’s

token is encrypted by the server’s public key and then sent

to Epione’s server. Other users use PSI to compare their own

token sets with patients’ tokens. Whisper [11] uses BLE to

exchange locally generated anonymous and temporary secure

identities. However, neither Epione nor Whisper takes into

account replay attacks. The Delayed Authentication mecha-

nism [47] may be applied to prevent such attacks after infected

people publish temporary identities, but it also brings a new

problem on undeniable evidence. Serge Vaudenay [15] has

proposed a protocol that uses two-way interaction rather than a

broadcast model to mitigate such attacks. The model requires a

challenge-and-response protocol between the broadcast device

and the receiving device to realize bidirectional communica-

tion. The model fundamentally changes the communication

architecture of the system, which can lead to various other

problems such as more power consumption or more commu-

nication problems in complex systems. Desire [48] is one of

the example protocols that follow a hybrid architecture, where

the server is responsible for performing the risk analysis and

notification process while the client manages the generation

of temporary identities. Desire creates and stores a Diffie-

Hellman key for each contact between two devices exchange,

posesing a high hurdle for resource-constrained devices.

Recently, Google and Apple have collaborated to develop

the GAEN API [13], which provides better device compat-

ibility and is supported by a wide range of device hard-

ware, making this API widely used by recent contact trac-

ing applications, such as SwissCOVID in Switzerland [49],

Immuni [50] in Italy, and COVIDWISE [51] in Virginia.

However, Baumgärtner et al. [23] pointed out proved ex-

perimentally that GAEN design is vulnerable to profiling

and possibly de-anonymizing infected persons, and wormhole

attacks that principally can generate fake contacts with the

potential of significantly affecting the accuracy of the contact

tracing system.

A comparison of our approach with prior work is outlined in

Table I. CoAvoid is an edge-based contact tracing approach

based on GAEN. Experiments have proved that CoAvoid

can protect the privacy of patients while resisting attacks.

Meanwhile, as the data users need to upload and download

TABLE I
COMPARISON OF CONTACT TRACING APPROACHES

Approaches Immuni DP-3T COVIDWISE TraceTogether CoAvoid

Privacy Protection ✗ ✗ ✗ ✓ ✓

Attack Prevention ✗ ✗ ✗ ✗ ✓

Data Upload DTK DTK All All RPI

Verification Rate Slow Slow Slow Medium Fast

GAEN-based ✓ ✗ ✓ ✗ ✓

Decentralized ✓ ✓ ✓ ✗ ✓

has been significantly reduced, CoAvoid can achieve a rapid

velocity in data transmission.

III. OPERATION & THREAT MODEL

In this section, we illustrate how existing GAEN-based

contact tracing applications operate by providing a COVID-19

running example. Besides, by demonstrating the threat models,

we point out that these applications have potential privacy and

security risks due to misuses of GAEN API.

A. Running Example

To illustrate how existing GAEN-based contact tracing

applications operate, we describe an running example in the

COVID-19 pandemic.

GAEN API utilizes BLE technology on mobile devices to

conduct contact tracings. The mobile device will randomly

generate a Daily Tracking Key (DTK) during the operations,

a unique device identifier that will change every 24 hours.

For a particular period i of a day, the device uses some

common deterministic function f based on the DTK to derive

the Rotating Proximity Identifiers (RPIs), privacy-preserving

identifiers that are sent in Bluetooth Advertisements, which

will be replaced every 10 to 20 minutes. In other words

RPI = f(DTK, i). The device only needs to store the DTK

with this operation because the actual temporary proximity

identifier can always be reconstructed from DTK. A device

with GAEN-based contact tracing enabled will broadcast RPIs

to the surrounding users from time to time. Simultaneously,

it collects and stores other devices’ RPIs locally in a list

L. Generation, propagation, and collection of RPIs occur

automatically at the operating system level. Still, they are

only allowed if the user notifies the application by installing

exposure and setting the necessary permissions. Apple and

Google don’t allow exposure notification apps to access spe-

cific locations on users’ devices. By default, public notification

is disabled on both IOS and Android. When enabled, the

database of DTKs and the received identifiers are stored in

the operating system layer, ensuring that any applications the

user installs cannot access the data directly.

If a user has tested positive for COVID-19, GAEN-based

contact tracing will upload its DTK to the central server with

the user’s permission. A central server will aggregate DTKs

of confirmed COVID-19 patients and store such information

in a list LDTK openly for 14 days. Other users can easily

download LDTK and reconstruct the corresponding RPI list

Lp. By comparing list Lp and list L, GAEN-based contact
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Fig. 1. How GAEN-based contact tracing applications operates and two
security & privacy threats towards these schemes.

tracing applications can calculate a risk score based on many

different factors (e.g., contact time, distance between the two

devices) to quantify the possibility of COVID-19 infection.

If the risk score breaches a threshold, the contact tracing

application will raise a warning for COVID-19 exposure.

Although this operation model is effective for contact

tracing, it has several potential vulnerabilities: (1) When the

user downloads the DTKs of the patient on the server for

risk assessment, the geographical location cannot be used

to verify whether the user has been in contact with the

patient. That is, the authenticity of the information cannot

be verified, and thus wormhole attacks may occur; (2) The

server stores DTKs of patients openly, leading to invasions of

patients’ privacy; (3) This running example assumes all users

are benign, without any security designs to tackle malicious

operations. We elaborate on the threat models in Section III-B

to demonstrate how attackers can exploit these vulnerabilities.

B. Threat Model

In our system, we assume that the central servers are

considered as semi-trusted, in other words, honest but curious.

More specifically, these servers execute specific protocols but

are curious about the content of user data. Moreover, all users’

devices can be divided into two classes: one is trustworthy

devices and the other is malicious devices used to attack the

naive devices of the users. Thus, according to the information

view to the malicious devices, i.e., adversaries, we consider

two types of attacks as following:

• Wormhole attack. A wormhole attack is a particular type

of relay attack. An adversary A can pretend to be naive

devices and actively collect RPIs from the surrounding

environment of one physical location and send them to the

other end of the tunnel, namely, A cooperative adversary

B at another physical location. Then, B propagates this

information locally, misleading nearby devices as if two

physical areas were merged into one logical area, making

two groups of unrelated users seem to have touched.

In addition, if a directional gain antenna is used on the

attacking device, the attacker can target specific users,

showing them in different physical locations across the

network. For example, an attacker can transmit a large

number of false identifiers to users so that a specific user

can collect a large amount of contact information and

have many false contacts, which ultimately leads to a high

probability that the user will be identified by the system as

a high-risk user and may be self-isolated due to warnings.

In addition, victims may undergo unnecessary medical

tests due to the warning, which puts testing pressure on

the capacity of medical centers. Using a wormhole device

again, an attacker can create a significant virtual spread

terror attack. While this has no direct impact on individual

users, it is important for social stability. It also strains

existing testing capacity and distracts government health

workers from actual cases running in parallel.

• Privacy analysis attack. Patients can be analyzed and

identified, which is a risk for those who wish to remain

anonymous. Because of the specific purpose of contact

tracing applications, it is impossible for any application to

avoid distance-based identification, even in the previous

manual tracing of patient infection chains, especially

now that GAEN exposes patient information on back-

end servers that may identify patients. For example, a

malicious party can receive broadcasts simultaneously

in multiple different locations, including those that the

positive patients visited. Using this information and the

DTKs of all recently submitted diagnostic users publicly

available on a central server, malicious users can analyze

the historical times and locations of active citizens to

obtain information such as a patient’s workplace, home

address, and identity. In addition, since the DTK changes

every 24 hours, it does not seem possible to track users

for long periods of time. However, because patients need

to upload DTKS for 14 days and some users have typical

travel patterns, there are obvious similarities even on

different days. For example, a user with a stable job has a

fixed time and travel route from home to work every day,

so it is possible to link and track some patients in this

situation. This will reveal more personal information and

activities of the target user and provide ample opportunity

to use the additional public information that may be avail-

able to remove the anonymity of the user concerned. In

addition, de-anonymization is made easier if an adversary

has access to additional information about a user’s social

relationships, such as the social graph of an online social

network. Moreover, the semi-trusted central servers also

have chances to monitor and analyze diagnosed data of

users for privacy mining.

IV. SYSTEM DESIGN

To protect patients’ privacy (including their personal infor-

mation and social relationships) and to resist attacks that create

false contact information to disrupt the system mechanisms,
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we proposes an edge-based, practical, and privacy-preserved

system for contact tracing.

A. Approach Overview

CoAvoid is an edge-based contact tracing system based on

GAEN. It can efficiently protect the privacy of users and pa-

tients. CoAvoid can also resist wormhole attacks and achieve

high accuracy on dynamic user trajectory matching with low

system and time overhead, which fixes the deficiency of most

GAEN-based contact tracing applications. Figure 2 illustrates

the framework of CoAvoid. Moreover, the tracing procedure

of our system mainly consists of three main steps: Location

Hiding, Data Filtering & Upload, and Data Obfuscation &

validation.

First, our approach anonymously collects the location data

and pre-processes it to hide private information. Users save the

timestamps, RPIs received from others, and their geographic

locations in local devices when they generate a DTK and

frequently send RPIs to surrounding users. To ensure the safety

of patient location information, we obtain the longitude and

latitude information through GPS (Step 1) and leverage the

H3 geospatial indexing system 1 to fuzz the location (Step

2). Next, to make reverse operations that cannot obtain the

original geographic locations of the users, we use fSHA256 to

hash the previous step (Step 3).

Location Hiding Data ObfuscationFiltering & Upload

Obtain location

Fuzzification (H3)
Assign random 

numbers

Sort by random 
numbers

Verification

Download

Fig. 2. CoAvoid system overview.

Moreover, to reduce the exposure of positive COVID-19

cases information, CoAvoid only uploads the selected RPIs.

When a user has tested positive for COVID-19, CoAvoid

filters out the timestamps and hashed H3 location index of

contact information between the patients and other users (Step

4). After comparing the timestamps between the broadcasting

and contact information, CoAvoid selects the RPIs in the

broadcasting information (Step 5) and combines them with

location to upload the new joint information to the edge server

(Step 6).

Finally, the edge server will obfuscate the stored information

to reduce the possibility of attackers analyzing the patients’

data. The server will then distribute a random serial number

to all the data uploaded by the patient before other users

1https://h3geo.org/docs

download the information (Step 7). Furthermore, the server

reorders the serial number and stores the data to complete the

obfuscation (Step 8). Other users download the obfuscated data

for verification, ensuring the privacy of patients is not leaked

while accurately matching users’ locations(Step 9).

In this section, we elaborate CoAvoid system according to

the main three steps and describe the inner relationships. We

also give the algorithms of our approach to explain it in detail.

B. Location Hiding

The DTKs are generated every day on the user’s device, and

the RPIs to be broadcast during the day are calculated based

on DTKs. Each DTK is generated independently by the cipher

random number generator, and the RPI needs to be updated

every 15 minutes. Specific operations such as encryption

technology can refer to official documents 2. The device will

periodically broadcast RPIs to surrounding users every two

minutes according to the GAEN scheme. Surrounding users

will receive RPIs and save the timestamps, received RPIs,

and location information locally for subsequent verification.

Besides, users also need to save Bluetooth signal strength data

for further risk rate calculation.

For privacy reasons, users will not use GPS coordinate l

(l = (x, y)) directly for verification. The location information

l′ uploaded and verified by patients was obtained by the

Equation (1), where fH3 represents a Geospatial division

system, and fSHA256 [52] refers to hash using the SHA-256

hash algorithm.

fH3(l) = Hindex({B|(x, y) ∈ B ∧B ⊊ LH3}),
l′ = fSHA256(fH3(l)).

(1)

To fuzz the geographical positions of users and to solve

the problem of inaccurate GPS location, we use Uber H3

(fH3) to fuzz the geographical position. The H3 geospatial

scale system is a multi-precision hexagonal spherical scale

system with hierarchical linear indexing, whose core library

provides functions for converting between coordinates and

H3 geospatial indexes. The H3 system assigns a unique

hierarchical index to each unit. Each level corresponds to a

different resolution, with 16 resolutions of 0-15. The higher

the resolution, the smaller the range corresponding to each

H3 index, which means the range of hexagon region division

is more accurate. As is shown in Figure 3, at a specific

resolution, the geographic location information will have a

corresponding H3 index. Under the high resolution, different

GPS information under the H3 system corresponding index

area will be similar but not corresponding. However, under

the appropriate H3 resolution, two neighboring users can be

calculated by the geospatial scaling system and generate the

same hexagon index, which can be used for matching. When

patients upload information, we use H3 index to replace GPS

information of users to blur location information. This can

normalize the coordinates of adjacent GPS points so that the

factual position information can be hidden.

2https://covid19-static.cdn-apple.com/applications/covid19
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Fig. 3. H3 index conversion diagram.

Although coarse-grained GPS coordinates can already pre-

vent users’ specific coordinates from being leaked or analyzed,

the risk of reversing conversion and abuse still remains. There-

fore, to prevent the privacy problem caused by information

disclosure, we use the SHA-256 hash function to hash the

generated H3 index. Due to the use of a one-way hash function

for encryption cannot be easily reversed to expose the user’s

exact location information. In this way, the user can match the

hashed data directly to the patient data on the server to verify

whether the two users are close or have had contact.

Algorithm 1: Location Hiding

Input: Latitude lat and longitude lon in GPS

information

Output: Encrypted location information Lhide

1 Lh3 = GeoCoord(lat, lon);
2 Lh3Index = geoToH3(Lh3, resolution);
3 Lhide = SHA-256(Lh3Index);
4 return Lhide

The complete process is shown in Algorithm 4. The times-

tamp and geographic location information are saved when

the user receives the surrounding RPI information while the

system runs. Before uploading patient information, the device

obtains the longitude and latitude coordinates of the user. After

that, it obtains the geospatial index at a suitable resolution

based on these GPS coordinates, and finally, the index is

hashed using the SHA-256 function, and the final uploaded

geographic location information is the hashed data.

C. Data Filtering and Upload

When a user has tested positive for COVID-19, the device

needs to upload information from the last 14 days to a edge

server after the user’s authorization. The information must be

filtered to prevent privacy from leaking. The main idea of the

filtering approach is that it must upload the RPIs of patients

who have contact with other users. There are three main steps

of the filtering scheme, which is illustrated in Figure 4:

Fig. 4. Data filtering and upload.

• Step 1: We need to screen out the RPIs that have been

exchanged and stored in the patient’s device. If the same

RPI information has been recorded one time, the user

corresponding to the RPI is identified as having potential

infection risk. Then, the time stamps ti and location

information Li corresponding to the RPI is extracted. The

location at this time is the information hashed by SHA-

256.

• Step 2: Our approach compares these time stamps ti
with the RPI generated by the device of the COVID-19

patient. Then, we need to determine the time period Ti

corresponding to these timestamps ti and record the RPI

of the patient corresponding to this period.

• Step 3: We integrate the location information Li corre-

sponding to the time stamp ti in Step 1 with the RPI of

the patient selected in Step 2 to form the new RPI, which

will be uploaded to the server.

Algorithm 2: RPI Filtering and Upload

Input: The RPIs ER = {er1, er2, ..., eri} generated

by the patient and other users exchanged,The

RPIs GR = {gr1, gr2, ..., gri} generated by

patient equipment, gri = {T ime||RPI}
Output: Reorganized RPI information

RR = {rr1, rr2, ..., rri}
1 for each eri ∈ ER do

2 if The records of eri ≥ 1 then

3 Extract the timestamp ti and location Li in eri;

4 for T = each gri.T ime() do

5 for each ti ∈ t do

6 if ti ∈ T then

7 Extract the RPIi in gri;

8 for each ti ∈ t and each Lj ∈ L do

9 if i = j then

10 rri = [The RPI RPIk corresponds to the

timestamp ti || Lj];

11 return RR

Compared with directly uploading DTK in the GAEN

scheme, our approach can reduce patient information leakage

and privacy analysis risk. In other GAEN-based applications,

anyone can use DTK to calculate all the RPI used by a patient

in a day. That is, the patient RPI is public data. If the attacker

has collected enough RPI information in advance at different

locations, he can compare the patient’s RPI with the RPI infor-

mation collected to get the time and location of the patient’s

encounter with the attacking device. Therefore, he could figure

out the patient’s residence, workplace, occupation, and social

relations. So attackers can use DTK to de-anonymize patients.

Our approach screens out RPIs of patients who have long

periods of contact with other users to upload. First of all,

it reduces the number of RPI uploads by patients, i.e., it

fundamentally reduces the amount of data disclosed by pa-

tients and makes the RPI information disclosed by patients

discontinuous in time by this method. Filtering RPI reduces the
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risk of attackers tracking patient contact information through

the timeline and compensates for the disadvantages of direct

DTK uploads. For example, suppose an attacker collects RPI

information at multiple locations, and the patient visits these

locations in a single day. In this case, after multiple days, the

attacker can identify the patient by matching the RPI computed

with the patient’s publicly available DTK, but when the patient

uploads a filtered discrete RPI, the attacker cannot assume

that these matched RPI’s belong to the same patient, thus

reducing the risk of identifying the patient. Secondly, the RPI

information of all patients will be confused in the edge server.

Once the RPI information of multiple people is mixed, the

adjacent RPI stored will not belong to the same patient. Even

if the attacker obtains the discrete point of the time and place

of the patient group, it cannot connect the historical action

trajectory of a single patient and obtain the social circle of

a single patient. It protects the patient’s privacy and achieves

the purpose of preventing the attacker from anonymizing the

patient. Algorithm 11 describes the filtering approach to the

RPIs of positive patients.

D. Obfuscation and Verification

The RPIs of all patients will be uploaded to the edge server.

To prevent attackers from analyzing all public data, the edge

server obfuscates all the received data by disrupting the default

upload order stored in the server. This makes the adjacent

stored data not the same as the information uploaded by the

same patient.

Algorithm 5 shows the data obfuscation method. When

the patient uploads RPIs, the edge server assigns a random

sequence number Si for each message. Before other users

download all the data, the edge server reorders the RPIs

according to Si, which completes the information shuffle. This

process will only be executed on the server side. After data

obfuscation, the random serial number Si will be deleted.

Thus, the user application will only get the RPI and geographic

location information.

Algorithm 3: RPI Obfuscation on Server

Input: The RPIs RR = {rr1, rr2, ..., rri} uploaded

after screening and reorganization

Output: Obfuscated RPI information

CR = {cr1, cr2, ..., cri}
1 for each rri ∈ RR do

2 Generate a random number S;

3 rri = [S || rri];
4 CR = RR sort by S;

5 return CR

The user’s apps will periodically download data from the

edge server for information verification. Once matching the

same RPI and geographic information, this indicates that the

user has likely been exposed to confirmed COVID-19 cases.

A more precise lightweight cryptographic matching is later

performed to determine the user’s location with respect to the

patient, it is necessary to determine whether the user is within

the threshold radius, as shown in Figure 5. This requires the

patient and user to push cryptographic parameters to each

other, calculate the vector point product consisting of the

user and patient security circle diameter endpoints, and then

determine whether the user is in the same physical area by the

cosine value positive or negative.

Fig. 5. Lightweight cryptographic matching method.

1) Before performing the algorithm for each step, CoAvoid

makes the following preparations. The first step is to

generate bilinear pairing parameters q, g,G,GT , e by

choosing bilinear mapping e : G × G = GT , where

G is a group of order q, q is a large prime, and g

is the generator of G. The patient then generates the

private key SKs ∈ Z∗
q , the public key PKs = gSKs ,

and security parameters k1, k2, k3, k4. The selection of

parameters needs to satisfy Equation (2)’s correctness

condition so that data integrity can be maintained before

and after the data forwarding (e.g., k1 = 800, k2 = 300,

k3 = 128 and k4 = 128). The patient generates large

prime numbers α ∈ {0, 1}k2 , p ∈ {0, 1}k1 and random

numbers sm ∈ Z∗
q , amj

∈ {0, 1}k3 . The user gener-

ates random numbers rk||m ∈ {0, 1}k4 , the private key

SKp ∈ Z∗
q , and the public key PKp = gSKp . Finally,

the patient and the user negotiate the session key.

k4 +max((2 · k2 + 44 + 2), (k2 + 22 + k3 + 2)) < k1

k4 +max((2 · k2 + 44 + 2), (k2 + 44 + 1 + k3)) < k1

k4 + k3 + 44 + 2 < k2
(2)

2) From the patient’s true location coordinates

PIPm
(xIPm0

, yIPm0
), two points PIPm1

(xIPm1
, yIPm1

),
PIPm2

(xIPm2
, yIPm2

) are generated according to the

distance threshold, satisfying the following conditions.

2 · xIPm0
= xIPm1

+ xIPm2

2 · yIPm0
= yIPm1

+ yIPm2

(3)

3) The patient device generates a random number sm, amj

and calculates the encrypted information. amj
should be

replaced after each generated ENm, to ensure that amj

is not repeated.

ENm = ENm1
∥ENm2

∥ENm3
∥ENm4

∥ENm5
∥ENm6

∥ENm7

(4)
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ENm1
= sm · (xIPm1

· α+ am1
) mod p

ENm2
= sm · (yIPm1

· α+ am2
) mod p

ENm3
= sm · (xIPm2

· α+ am3
) mod p

ENm4
= sm · (yIPm2

· α+ am4
) mod p

ENm5
= sm · (xIPm1

· xIPm2
· α+ am5

) mod p

ENm6
= sm · (yIPm1

· yIPm2
· α+ am6

) mod p

ENm7
= sm · (α+ am7

) mod p

(5)

4) The patient device is signed using Equation (6) and

encrypted using Equation (7), after which the server

pushes the information to all users who have undergone

coarse-grained screening. The user receives the message

and obtains p, α, ENm by decrypting the message and

verifies that the data satisfies Equation (8). Where H() is

the hash function, E() is a secure encryption algorithm

such as SM4, SKp, PKp is the public-private key pair

used for encryption and decryption, and SID is the

session key ID number.

Sigp = H(p∥α∥ENm∥timestamp∥SID)SKp (6)

message = E(p∥α∥ENm∥timestamp∥SID∥Sigp)
(7)

e(g, Sigp) = e(PKp, H(p∥α∥ENm∥timestamp∥SID))
(8)

To ensure that the user’s location information is not

fraudulently obtained after the server is compromised by

a malicious attacker, it is necessary to verify the encrypted

information received. The patient location encrypted in-

formation that needs to be obtained satisfies Equation (9).

ENm1
+ ENm3

̸= 0

ENm2
+ ENm4

̸= 0

ENm7
̸= 0

(9)

5) The user obtains each value of ENmj
through ENm,

generates a random number rk∥m, and calculates the user

location encryption information Ak∥m = Ak∥m1
∥Ak∥m2

.

Where (xu, yu) is the GPS coordinate point of the user.

Ak∥m1
= rk∥m · α · (xu · (ENm1

+ ENm3
)

+yu · (ENm2
+ ENm4

)) mod p

Ak∥m2
= rk∥m · α · (ENm5

+ ENm6
(x2

u+

y2u) · ENm7
) mod p

(10)

6) The user sends this information to the patient, and the

patient device calculates the location relationship infor-

mation Ck∥m = Ck∥m1
−Ck∥m2

. The calculation process

is as follows.

Bk∥m1
= s−1

m ·Ak∥m1
mod p

Bk∥m1
= s−1

m ·Ak∥m2
mod p

(11)

Ck∥m1
=

Bk∥m1
− (Bk∥m1

mod α2)

α2

Ck∥m2
=

Bk∥m2
− (Bk∥m2

mod α2)

α2

(12)

7) Determine if Ck∥m < 0 holds and if so, the user has had

contact with the patient.

Information verification can eliminate the influence of

wormhole attacks and relay attacks. RPI information is the

only information that an attacker can touch and change. If

an attacker changes the patient’s RPI and broadcasts it to the

surrounding devices in another place, the attacker creates a

non-existent RPI. It cannot cause serious consequences, and

the relay attack is invalid. If the attacker happens to modify

the RPI of a patient, the attack can be resisted according to the

wormhole attack. Furthermore, the user will verify information

if the attacker transmits the RPIs from location LA to LB .

Although the same RPI is detected, the geographic location

information does not match. Finally, the verification will not

pass, and the wormhole attack can be invalid.

When a user has tested positive for COVID-19, the approach

can use the Bluetooth strength data to calculate the exposure

risk value. Using parameters to calculate the exposure risk

value is to narrow the range of contacts who may be infected

and to increase the accuracy of the application in identifying

potential contacts to avoid the unnecessary panic of risk-free

users. If a user passes by the patient, the application will not

warn it. If the risk is high, the system will notify the user

with further instructions. The calculation of the exposure risk

value refers to the GAEN design 3. There are four parameters

involved in calculating the risk score, which is shown in

Equation (13).

RiskScore = TRV ·DuRV ·DaRV ·ARV (13)

• Transmission Risk V alue (TRV ): It reflects the pa-

tient’s condition and his impact on transmission risk. This

value depends on the patient’s symptoms, the time these

symptoms first appeared, the level of disease diagnosis,

or other judgments of the authority.

• Duration Risk V alue (DuRV ): Cumulative contact

time between the user and the confirmed COVID-19 case.

• Days Risk V alue (DaRV ): The number of days since

the last contact with the confirmed COVID-19 case.

• Attenuation Risk V alue (ARV ): Signal strength

changes during contact to the confirmed COVID-19 case.

Therefore, when the attenuation value is greater than 0,

the weighted calculation will be performed according to

the duration of each risk level, and the average of the

total duration will be taken.

Each parameter is divided into nine levels: 0-8, which is also

the value assigned to each parameter. Finally, the numbers of

four parameters are multiplied to calculate the corresponding

risk score of the user.

3https://developer.apple.com/documentation/exposurenotification
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V. ANALYSIS & EVALUATION

A. Security & Privacy Analysis

In this section, we theoretically analyze CoAvoid from the

perspectives of security and privacy.

1) Attack Resistance: Here, we prove that the fine-grained

matching algorithm is secure. More specifically, with the

existence of adversary A and hypothetical challengers Pc

and UcU , we prove the semantic security of the fine-grained

matching algorithm by playing a game between the adversaries

and challenges. Let ε denote the algorithm. εEP is the patient’s

encrypted location data in the algorithm, and εEU is the user’s

encrypted location information in the algorithm.

First, we need to verify the security of the patient location

information. Pc generates the required system parameters,

and A selects two pairs of location information, PIPcP0
and

PIPcP1
, to send to Pc. After Pc receives the information, it

randomly selects a bit b ∈ {0, 1} and randomly selects a

non-repeating aj(j = 1 ∼ 7). Then, it encrypts the location

information with key s and parameter α, and returns ENb to

A, where ENb = ENb1 || . . . ||ENb7 . We can calculate ENbj

using Equation (14).

ENb1 = s · (xIPcP0
· α+ a1) mod p

ENb2 = s · (yIPcP0
· α+ a2) mod p

ENb3 = s · (xIPcP1
· α+ a3) mod p

ENb4 = s · (yIPcP1
· α+ a4) mod p

ENb5 = s · (xIPcP0
· xIPcP1

· α+ a5) mod p

ENb6 = s · (yIPcP0
· yIPcP1

· α+ a6) mod p

ENb7 = s · (α+ a7) mod p

(14)

After ENb is returned to A, A transmits a bit b′ ∈ {0, 1}
to Pc and tries to infer which location message Pc encrypts.

s is a randomly generated secrecy parameter of at least

400(0.5k1) bits by Pc, while aj is a non-repeating 128(k3)
bits random number and a unique aj is used for each location

message encryption. The location information within any of

the encrypted messages can be obtained by the following

formula, for example, the location information xIPcP0
can be

obtained by
((s−1·ENb1

)−a1) mod p

α
. However, as both s and

aj are generated by the secure random number generator and

are immediately encrypted, there are two enormous unknowns

for each message of A. In addition, since each message

is encrypted with a unique aj at each time, A is unable

to distinguish the messages encrypted by PIPcP0
or PIPcP1

Assume the keyspace for location information is ∂(key) and

the keyspace for the longitude and latitude information is

∂(PIP )(i.e., s, aj ∈ ∂(key) and P ∈ ∂(PIP )). We can then

derive Equation (15):

ρrPIPcP0
,PIPcP1

((s, aj , P ) = ENl)

=
#s, aj ∈ ∂(key), s · t ENbj(s, aj , P ) = ENl

2428

= Constant

(15)

At this time, SSadv[A, ε] := |ρr(b = b′) − 1
2 | can be

ignored, which satisfies the semantic security.

Next, we need to verify the security of the security of

location information for ordinary users. Let A select two

pairs of location information, PIPcU0
(xIPcU0

, yIPcU0
) and

PIPcU1
(xIPcU1

, yIPcU1
), and send them to UcU . UcU receives

the information and randomly selects a bit b ∈ {0, 1} and

a non-repeating rcU ||pb. To hide the location information,

UcU multiplies the location information PIPcUb
, the received

patient-encrypted information ENm, and rcU ||pb. After that,

UcU sends AcU ||cPb = AcU ||cPb1||AcU ||cPb2 to A. A then

returns a bit b′ ∈ {0, 1} to UcU and tries to infer which location

information UcU encrypted. We can calculate AcU ||cPb using

Equation (16).

AcU ||cPb1 = rcU ||pb · α · (xIPcUb
· (ENcUb1 + ENcUb3)+

yIPcUb
· (ENcUb2 + ENcUb4)) mod p

AcU ||cPb2 = rcU ||pb · α · (ENcUb5 + ENcUb7 + (x2
IPcUb

+

y2IPcUb
) · ENcUb7) mod p

(16)

In this assumption, since the random number generator is

secure and the generated rcU ||pb is a non-repeating random

number, A cannot distinguish between rcU ||p0 and rcU ||p1.

In addition, the user’s location information xIPcUb
, yIPcUb

) is

used to encrypt the message. A will consider that the encrypted

information AcU ||cPb1 and AcU ||cPb1 generated by the user are

unary cubic polynomial and binary cubic polynomial. Thus, A

cannot distinguish between the encrypted messages PIPcU0
or

PIPcU1
, which means SSadv[A, ε] := |ρr(b = b′)− 1

2 | can be

ignored. Therefore, semantic security is satisfied here.

Suppose there is a patient P , two users U1 and U2, and a

hypothetical adversary A, where A tries to obtain the patient’s

RPI information and propagate it to other users in other

geographical locations. A randomly selects the received RPI

and forwards it.

Assume that ε is the location verification algorithm, ε1
is the coarse-grained location verification algorithm, and ε2
is the fine-grained location verification algorithm. ε1 has a

location space of ∂(fSHA256(fH3(Location))) and an RPI

message space of ∂(RPI), where ∀RPIP , RPIA ∈ ∂(RPI)
and ∀locP , locU1

∈ ∂(fSHA256(fH3(Location))).
Adversary A actively collects the RPI of surrounding users

through the BLE device and forwards it to other geolocation

locations. In our method, user U1, after downloading the

information about patient P from the server, will first verify

whether the received location and their own location are RPI

in a common vicinity with algorithm ε1, as shown in Equation

(17).

(RPIP ∥ locP )⊕ (RPIA ∥ locU1
)

=

{

RPIP ⊕RPIA if locP = locU1

(RPIP ⊕RPIA) ∥ (locP ⊕ locU1
) if locP ̸= locU1

(17)

Since fSHA256 is a strong collision-resistant hash function,

its security and unforgeability are hard to break. Besides,

the probability that the hash values of two location messages
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will conflict is negligible. Due to these factors, the advantage

shown in Equation (18) is negligible.

AdvSHA256 =

Pra[fSHA256(fH3(locP )) = fSHA256(fH3(locU1
))]

(18)

Besides, when user U2 performs fine-grained location ver-

ification V, attacker A cannot break our system due to the

security of the lightweight matching algorithm. This means

that, SSadv[A, ε] := |ρr(PIPP
= PU ) − 1

2 | can be ignored,

where PIPP
is the coordinate of the patient and PU is the

coordinate of the user. Therefore, our system can guarantee

secure location verifications even in the presence of wormhole

attacks.

2) Privacy Analysis: Our approach utilizes various methods

to protect user privacy, such as processing all the data anony-

mously, using encryption algorithms to prevent data leakage,

and using fuzzification and obfuscation to shelter sensitive

data.

Assume that εRPI is the encryption algorithm of PRI

with location space ∂(fSHA256(fH3(Location))) and RPI

message space ∂(RPI), where ∀RPI1, RPI2 ∈ ∂(RPI) and

∀loc1, loc2 ∈ ∂(fSHA256(fH3(Location))).

Before the user uploads the location information, the loca-

tion information will be first fuzzed by Equation (1), then the

fuzzy range of the original location reaches 3
2

√
3r

2
, where r is

the side length of the hexagon when the processing is carried

out.

From the previously mentioned loc encryption algorithm,

we know that (RPI1 ∥ loc1) ⊕ (RPI2 ∥ loc2) can be used

to determine whether the user and the patient are in the same

hexagonal region. In worst case, attacker A can analyze and

attack the system within the same hexagonal region to find

out the RPI information of the same user. From the BLE

information generation algorithm, we can derive the following

equation:

RPIKi = fSHA256(DTKi, NULL,UTF8(”EN −RPIK”)),
(19)

where the identity key DTKl that updated every 15 minutes

by each user is a secure pseudo-random number. ∂(DTK)
denotes the keyspace for DTKl, where ∀DTKl ∈ ∂(DTK)
and ∀RPIl ∈ ∂(RPI).

As Equation (20) shows, fSHA256 is a strong collision-

resistant hash function, it is thus difficult for attackers to obtain

the information sent by the user with brute force attacks.

ρrDTKl
((DTKl, UTF8(EN−RPIK)) = RPIKex)

=
#DTKl∈∂(DTK), s·tfSHA256(DTKl, UTF (EN−RPIK))=RPIKex

|K|

<
1

2128
(20)

The generated RPIKl is a random string, which is very un-

predictable. RPIK is the key for the next round of encryption

to obtain RPIl, and its keyspace is noted as ∂(RPIK).

PaddedDatal=UTF8(EN−RPI)∥0x000000000000∥ENINj

(21)

In the above equation, ENINj=ENIntervalNumber(j)
is the serial number corresponding to each RPI , ranging from

1 to 96. As stated above, RPIKl is unpredictable, and the

broadcast message PaddedDatal satisfies the AES security

padding condition, as shown in Equation (22).

ρrRPIKl,paddedDatal
((RPIKl, paddedDatal) = RPIex)

=
#RPIKl∈∂(RPIK), s·t fAES−128 (DTKl, paddedDatal)=RPIex

|K|

= pr (fAES−128 (RPIKl, paddedDatal) = RPIex)
(22)

At this point, SSadv[A, ε] :=
∣

∣pr (ε (DTKl) = RPIl)− 1
2

∣

∣

can be ignored, which satisfies the semantic security, i.e.,

attacker A cannot tell which information belongs to the same

patient. As a result, our algorithm can guarantee the security

of patients’ personal information.

B. Evaluation

In our experiment, we evaluate our system from the per-

spectives of privacy, security, and efficiency. We compared

CoAvoid with the centralized solution TraceTogether [41],

the distributed solution COVIDWISE, DP-3T [53] and Im-

muni. COVIDWISE and Immuni were developed by the Vir-

ginia Department of Health and Italy based on GAEN API.

1) Dataset and Configuration: In our experiment, we sim-

ulated the daily interactions of thousands of users with a

simplified random walk model. The random walk model is

one of the most widely used mobility models for network

behavior analysis. Therefore, we utilized a simplified variant

of the random walk model in our setting. More specifically, we

set up n locations as user contact locations, and each location

is assigned with an actual GPS geographic location. The

distances between these geographic locations may vary but

will generally remain within the confines of a city. According

to the random walk model, each user is required to go to other

places randomly and with equal probability. Instead of setting

up the moving speed at which users go to the location, we

let each user arrive at the contact location immediately at a

random time. Each user randomly engages with another user

present in the same location for a randomized number of times

at a random time. We use minutes as the smallest time unit.

Before the starting of the model each day, each user

generates the DTK of the day and calculates the user’s real

RPI throughout the day. After the model starts, the simulated

system randomly determines where a user is going. After

the location is determined, this user randomly communicates

with any other users in the current location for a randomized

number of times. Each communication lasts t minutes. In

this process, the two users who communicate with each other

will exchange the RPI of the current time slot and perform

data processing according to the CoAvoid algorithm. At

the end of the day, the number of real contacts of patients

will be calculated, and contacts were traced according to the

CoAvoid procedures. Each user will be labeled as healthy,
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suspected, or sick. The required tracing data will be uploaded

when a user is determined to be sick. Each user will download

the patient’s anonymous data for contact verification. After

verification using the CoAvoid rules, if a user confirms

contact with a patient, it will be marked as suspected. Based on

a pre-set infection rate, suspected cases are marked as sick on

a daily basis and will be further utilized for model simulations

on the following day.

According to the quarantine time of COVID-19, this paper

set up a 14-day simulation experiment, with Xi’an, Shaanxi

Province, China as the simulation system’s geographic envi-

ronment. We utilized the GPS location information of Xi’an

to help simulate the places for user contacts. We take the

minimum RPI exchange time as the contact time unit. The

infection rate is set to be 100%, which means if a user has any

contact with a patient, this user will be infected. The number

of actual patients are calculated according to the simulation

system, and the number of contacts on the day is calculated

according to the CoAvoid algorithm. Android simulators

generate the broadcast data used in our experiment according

to official documents of GAEN and DP-3T, which simulate

broadcast information for the user device. Our edge server is

a machine running a Windows 10 operating system with an

Intel (R) Core (TM) i3-8100 CPU and a 16GB, which is used

to manage uploaded data.

2) Privacy Enhancement: Part of the information broad-

casting by a patient during a period is shown in Table II, we

can figure that the data contact between users is completely

random. Table III demonstrates the data recorded by the pa-

tient’s mobile device before uploading the information. As can

be seen from the table, since the RPI generated by the contacts

and each person is completely random, and the geographical

location is encrypted, it is impossible to track a user who has

been contacted only through the information collected and

broadcast to the device. Random RPIs and processed GPS

information can better protect patients’ privacy.

TABLE II
BROADCASTING LOGS OF PATIENT

Time RPI

2020-08-09 09:00:00 a7776f642d40a688e5fa8232d588bcdd

2020-08-09 09:15:00 7a34dbb03355ef6e4cc8382002d86a4c

2020-08-09 09:30:00 601d6118b8f2900699c6641bf2eecfa5

The experiment simulated the process of filtering the in-

formation uploaded by patients. The experiment demonstrates

that the number of RPIs uploaded by users is greatly reduced

by filtering the information and interrupting the temporal

order of RPIs when they are broadcast. When the attacker

conducts a privacy analysis attack, the patient’s trajectory

can be determined by matching the information collected by

the attacker with the patient’s RPI on the server. However,

the filtered RPI information does not have significant time

continuity and removes some information that no other users

have been contacted. Thus, the attacker can only obtain a

small number of information about the historical locations of

patients, making it more challenging to analyze privacy.

TABLE III
EXCHANGE LOGS OF PATIENT

Time RPI GPS Information

2020-08-09
09:04:00

f20f8ec68b7ec16
2427850607b93e5a5

2c05f58240d84224cf0a
ce831674735314ed655524
13c8e7f1a9748873d794c8

2020-08-09
09:06:00

f20f8ec68b7ec16
2427850607b93e5a5

2c05f58240d84224cf0a
ce831674735314ed655524
13c8e7f1a9748873d794c8

2020-08-09
10:40:00

ae16fac366df90d
3bca294c9f0a19ba7

2cf33e200fd54585ff8a
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Fig. 6. Time consumption for RPI recombination. (a) Date-related time
consumption with 100 groups of users contacting at each time unit. (b) Seven-
day time consumption with different interaction frequencies.

The RPI information uploaded by the patient needs to be

processed in three steps. The time consumption of these three

steps is demonstrated in Figure 6. Figure 6(a) illustrates the

time consumption for user screening on different numbers of

days, where we let 100 groups of users contact each other

at each time unit. In Figure 6(b), we set up a seven-day

simulation experiment to test the time consumption for user

screening at different contact frequencies. Figure 6(a) and

Figure 6(b) show that the time consumption of these three

steps increases as date and interaction frequency increases.

However, it takes very little time. Users generate more contact

data when the proportion of patients remains unchanged.

Despite the most data to be calculated, CoAvoid can still

finish the two processes within 0.0042s. This feature helps

medical staff to obtain patient information in a little time.

After receiving all patient data, the experiment simulated

that the server will obfuscate the default storage order to

ensure that adjacent RPIs do not belong to the same patient

before other users download all the data.

To evaluate the space consumption for storing interactive

information in CoAvoid, we ran different contact tracing

approaches on both users’ devices and servers with the

same number of simulation days and contact frequency (as

demonstrated in Figure 7). Figure 7(a) illustrates the space

consumption on users’ devices. We can see that the other

three distributed tracing applications remain stable . The space

consumption of COVIDWISE is 2.1 MB while the space

consumption of Immuni and DP-3T is 1.9-2.2 MB. As for

CoAvoid, it takes 7.1-7.3 MB for data storage. Figure 7(b)
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illustrates the space consumption on the server. CoAvoid

saves 77.5% - 79% space compared with COVIDWISE. As

the amount of information uploaded by each patient is fixed

in COVIDWISE, its server space consumption is proportional

to the number of patients. Besides, in CoAvoid, the amount

of information uploaded by each patient is determined by

their activities and will be filtered before uploading. Therefore,

CoAvoid’s server space consumption is not strictly linear

increasing, and the growth is much slower than COVIDWISE.

Immuni and DP-3T upload very little information to servers

because the DTK they upload can greatly reduce the space.

Compared to other methods, our approach requires more

space, especially on users’ devices, to defend against worm-

hole attacks in any scenario, while other approaches are

vulnerable to wormhole attacks. Still, for personal devices, the

space consumption of our approach is within an acceptable

range, which is only slightly higher than other solutions.

Although other solutions take up relatively less storage space,

the information uploaded by other solutions exposes more

sensitive user information. Our approach offers more compre-

hensive privacy protection and can conduct tracing tasks more

securely.
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Fig. 7. Space consumption comparison. (a) Space consumption of users. (b)
Space consumption of server.
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Fig. 8. Server data reorder time cost. (a) Reorder time cost with day time
for 10,000 people. (b) 14-day reorder time cost with user number.

Figure 8 demonstrates the time costs for the server when

dealing with reordering the data. Figure 8(a) tests the server

obfuscated data time consumption on different days for 10,000

people, and Figure 8(b) sets up the server obfuscated data

time consumption in 14 days for a different number of people.

The time cost can increase with the number of users or days.

However, the burden on the server is not significant. The result

demonstrates the time consumption is only 0.261s, even on the

14th day or with 10000 users.

3) Attack Prevention: To evaluate the wormhole attack

resistance of CoAvoid, we generated the false BLE messages

propagated by the attacker and test whether these messages can

be identified during the message verification step on users’

devices. Theoretically, such false messages will be identified

by verifying the location information recorded by the user

device that receives the patient’s BLE message.

We built a multi-location wormhole for forwarding and

sending fake BLE messages. Our experimental links the phys-

ical locations of Xi’an, Xianyang, and some other cities. The

attack within Xi’an city is demonstrated in Figure 9. The

attacker receives and propagates Bluetooth messages sent by

users around the city and transmit the messages to other at-

tackers in other locations for broadcast. Each malicious device

is a device that can send and receive Bluetooth messages, so

the attackers’ communications are operating in a multi-way

fashion.

Our experiments show that our approach can successfully

resist wormhole attacks. For example, the same BLE message

appears in different devices in different cities, indicating a

successful wormhole attack. However, the user device does

not determine this as a patient contact because the device will

verify the user’s location information while contact tracing,

which eliminates the effects of false BLE information on the

devices’ judgments.

Fig. 9. Operation model of the wormhole attack in the city of Xi’an and the
corresponding log information.

Figure 9 also illustrates the log information of users and

patients in two different locations that were attacked by the

wormhole, where user A is a replayed user in the coarse

precision range and user B is a relayed user outside the coarse

precision range. The data in the log file is presented in the

format RPI||fSHA256(fH3(l)). It can be seen that because

of the presence of the patient’s Bluetooth information in the

device logs, both users are under wormhole attack. Listing

1 demonstrates the log extracts from the two user devices

mentioned above. After both user devices identify the patient’s
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BLE information, coarse precision location verification is re-

quired for both user devices. The log result will show ”Worm-

hole Attack” in line 1 because the user B device matches the

same patient information, but the location information does not

match. In line 2, if the location information of user A matches,

log result will show ”Correct”, and then the fine-grained

screening will be performed. In the fine-grained verification,

the patient and the user will push encryption parameters to

each other and check whether the data calculated by the user

meets the judgment condition. In line 3, if the user finally

gets a positive value, it will be judged as a normal user under

a wormhole attack and the log result will show ”Wormhole

Attack”.

Listing 1. An example of location verification.

1 Location Verification[1]: [INFO] [P]

fc6128f68d898ba21281a950c0844d891776c2

44acaed219af08a2c5360d6687 [U]

a687ca2e73ed14e4574f87fe611c8d6cc91826

77a8f895e235ad1662bac2158e [Wormhole

Attack]

2 Location Verification[1]: [INFO] [P]

fc6128f68d898ba21281a950c0844d891776c2

44acaed219af08a2c5360d6687 [U]

fc6128f68d898ba21281a950c0844d891776c2

44acaed219af08a2c5360d6687 [Correct]

3 Location Verification[2]: [INFO] [Final]

3.8422948129866016e+197 [Wormhole

Attack]

4) Server Data Storage Comparison: When a patient up-

loads their interaction data to the edge server, the user device

needs to regularly download the patient’s data to verify current

traces with it. If a coarse-granular record of interactions with

the patients exists in the user device, then the user may have

contact with the disease. The data size uploaded to the server

is an important factor that affects the system’s efficiency. We

thus evaluated and compared the data volume uploaded by

patients for coarse-grained comparisons in different scenarios,

as demonstrated in Figure 10. Compared to COVIDWISE,

which uploads all the contact data of patients in the past 14

days to the server, CoAvoid only uploads contact data gen-

erated when contacting other users. Figure 10(a) demonstrates

the comparison of server data volume for 10,000 people on

different days. The data in the CoAvoid server grows as the

date increases, but its data is only 3% - 8% of COVIDWISE,

as demonstrated in Figure 10(a).

In addition, we selected 100,000 to 1,000,000 users to

evaluate the amount of data uploaded to the server from the

perspective of the population. We simulated different cases

with the same interaction rule for a period of 14 days. Figure

10(b) illustrates the server data volume. As the user number

increases, the population density and contact frequency will

also increase, which makes healthy people more likely to be

infected. Compared with COVIDWISE, CoAvoid can reduce

92% - 94% of uploading data.

Figure 10(c) illustrates the comparison of server data vol-

ume for 10,000 people in 14 days with different patient

proportions and interaction frequencies. We can see that the

server data volume of COVIDWISE and CoAvoid increases

while the number of positive patients increases. CoAvoid

saves 92.7% - 92.9% the amount of data on the server

compared with COVIDWISE, which dramatically saves the

storage space of the server. The results illustrate that our

method can significantly reduce the data on the server, which

is beneficial for areas with large population and can effectively

utilize the server’s storage resources.

In figure 10(d), we set up a 14-day experiment with 10,000

users to test the influence of interaction frequency on server

data volume of two methods. The amount of server data in our

approach increases with the frequency of interactions, while

the amount of COVIDWISE data remains essentially constant

on the server. Because the amount of data uploaded by each

patient of COVIDWISE is inevitable, the number of patients

determines the amount of data on the server. In CoAvoid,

the data uploaded by patients is filtered out according to

the contact information. The growth of contact data and the

increase of screened information of patients uploaded to the

server led to the growth of server data. In the experiment,

CoAvoid’s server accounted for 10.5% of COVIDWISE data.

5) Verification Time Comparison and Accuracy: Since our

scheme uses a lightweight and efficient contact matching algo-

rithm with low computational complexity and communication

overhead, it significantly reduces the computation time and

burden of the user’s device during the verification process,

which provides a decent user experience. As demonstrated in

Figure 11, we utilize simulated server data to compare the

verification time of CoAvoid, COVIDWISE, and TraceTo-

gether. Here, the verification time includes comparing the RPI

and GPS information and a fine-grained matching.

Figure 11(a) compares three scenarios about verification

time consumption, which is the simulation generated by 540

users. With the same device, TraceTogether takes 1-1.4 sec-

onds for each user in the centralized server to know whether he

has contact with patients. In comparison, COVIDWISE takes

around 0.15 to 2.21 seconds, and CoAvoid takes less than

0.1 seconds. Our approach incurs a shorter verification time,

which reduces the computational burden of user equipment

and improves verification efficiency.

Figure 11(b) demonstrates the verification time consumption

of different schemes under different numbers of users. For

regions with more users, COVIDWISE will generate a large

amount of server data. All users’ average verification time

consumption will be significantly increased, which reduces

the verification efficiency. However, the amount of data that is

uploaded by CoAvoid in areas with a large number of users

is also minimal. Figure 11(b) demonstrates that in an area

of 10,000 users, the average validation time for centralized

servers was 0.84 seconds. In contrast, the average validation

time was 0.32 seconds for COVIDWISE and 0.028 seconds

for CoAvoid. CoAvoid only took 8.7% of COVIDWISE’s

validation time and 3.8% of the centralized server’s valida-

tion time. Therefore, CoAvoid can effectively reduce user

authentication time, improving authentication efficiency.

Figure 12 demonstrates the correlation between the number

of contacts detected by CoAvoid and the number of contacts

generated by the simulation. The infection rate is set to
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Fig. 10. Server data storage comparison between COVIDWISE and CoAvoid. (a) Server data with days for 10,000 people. (b) 14-day server data with
different numbers of users. (c) Server data with patients for 10,000 people in 14 days. (d) Server data with interaction frequecny of 10,000 people
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Fig. 11. (a)Verification time comparison with a single user: CoAvoid
vs. COVIDWISE vs. TraceTogether. (b)Verification time comparison with
different numbers of users: CoAvoid vs. COVIDWISE vs. TraceTogether.
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Fig. 12. Accuracy verification of CoAvoid. (a) Accuracy verification with
different proportions of infected people within 12 days. (b) Accuracy verifi-
cation with different numbers of days (the proportion of infected people: 0.1

100%, which means if a user has communicated with a

patient, this user will be infected. The daily number of actual

patients and actual contacts was calculated according to the

simulation system, and the number of contacts on the day

was calculated according to the CoAvoid algorithm. Figure

12(a) demonstrates that CoAvoid had the ability to detect

all contacts simulated experimentally in different percentages

of patients at 12 days. As demonstrated in Figure 12(b),

CoAvoid can detect all the contact points simulated in the

experiment every day as the daily interaction continues when

the infected proportion is 0.1. In both experiments, 100%

accuracy is expected, as they validate CoAvoid’s ability to

track contacts with complete tracing data as inputs.

VI. CONCLUSION

Contact tracing is the process of identifying those who may

have been exposed to someone with a virus, whether COVID-

19 or another illness. As the epidemic continues to worsen, the

role of contact tracing becomes even more important. To solve

the problems in current contact tracing systems, protect user

privacy, and resist wormhole attacks, we propose CoAvoid. It

is an edge-based contact tracing system based on GAEN API

and can achieve a high accuracy on dynamic user trajectory

matching with low system and time overhead.

By harnessing multiple security designs, such as location

verification using GPS and fine-grained matching algorithms,

CoAvoid is able to resist both replay and wormhole attacks.

To enhance the privacy protection for all users, CoAvoid

hides geographic location of users through hashing and fuzzi-

fication, filters out uncorrelated contact data before uploading,

and obfuscates information uploaded by confirmed patients

before storage and analysis. As a result, CoAvoid not only

preserves the privacy of low-risk populations, but also makes

the public agnostic to high-risk populations’ identities and

social relationships. Furthermore, as the data to be transmitted

and analyzed in CoAvoid system is significantly reduced,

our approach can achieve good performance with limited

bandwidth and device capacities, enabling it to operate in

regions with different levels of development. In addition,

benefits from the use of GAEN API, CoAvoid has board

hardware and software compatibility.
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