
Optimizing Data Center Traffic of

Online Social Networks

Lei Jiao

University of Göttingen

Göttingen, Germany

jiao@cs.uni-goettingen.de

Jun Li

University of Oregon

Eugene, OR, USA

lijun@cs.uoregon.edu

Xiaoming Fu

University of Göttingen

Göttingen, Germany

fu@cs.uni-goettingen.de

Abstract—With a huge number of users and a very large
scale of data, an Online Social Network (OSN) service has to
partition its data among multiple servers inside a data center.
As data are often partitioned randomly, the response time in
accessing the data is however unpredictable. Researchers have
proposed social locality to address this concern: if a server
hosts the master replica of a user’s data, it must also host a
replica (either master or slave) of every friend of this user, thus
enabling convenient access of all of them on the same server.
However, doing so comes with two overheads: the replication
storage and the traffic of maintaining replica consistency. Existing
work focuses on the former, but overlooks the latter that can
consume considerable network resources. In this paper, we study
social-locality-aware partitioning of the OSN data while meeting
diverse performance goals of data center networks. We formulate
the traffic optimization problem and propose a new traffic-
aware data partitioning algorithm. Through the evaluations
with a large-scale, real-world Twitter trace, we further show
that, compared with state-of-the-art algorithms, our algorithm
significantly reduces traffic without deteriorating the load balance
among servers and causing extra replication storage.

I. INTRODUCTION

Online Social Networks (OSNs) are extremely popular

destinations for Internet users nowadays, e.g., Facebook had

1 billion users as of October 2012 [1]. With users of such a

huge scale, it is imperative to implement a scalable backend

system to support users’ data storage and access. Current

OSN data center infrastructures often adopt distributed DBMS

(e.g., MySQL) and/or key-value stores (e.g., Cassandra [2]),

which essentially distribute users’ data among servers ran-

domly. Though simple and efficient, random distribution fails

to match the OSN data access patterns and can thus suffer

from performance problems. For instance, in a typical OSN

service such as Facebook News Feed or Twitter, to display

a user’s home page, the service must access and collect the

data of this user’s every friend from multiple servers, with

unpredictable response time determined by the server with

the highest latency. This problem becomes particularly severe

when servers and the data center network are under heavy

workload.

To address this issue, it has been proposed to replicate the

data of a user’s every friend to the server where this user’s

own data are stored, i.e., maintaining social locality so that

services such as News Feed can be resolved within a single

server [3]. In this paradigm, each user has a single master

replica, with which the replicas of friends’ data are co-located

on the same server; each user also has multiple slave replicas

on different servers co-located with friends’ master replicas.

The overheads of social locality are two-fold: the replication

storage of slave replicas and the traffic from master to slaves

in order to maintain the consistency.

Existing work mainly focuses on optimizing the storage [3],

[4], yet overlooks the traffic aspect. According to [3], the mini-

mum average number of slave replicas per user to ensure social

locality is up to 20 for an OSN service on a cluster of 512

servers. Given about 3.2 billion daily Facebook comments [5]

and the average packet size of 1 KB, the traffic for synchro-

nizing replicas can be up to about 60 TB per day, which

could consume considerable data center network resources,

not to mention other user-generated contents. In industrial data

centers, the networks are often the bottleneck [6], [7], [8];

Besides, the user-facing service traffic (e.g., the traffic between

OSN service and OSN users) and the backend synchronization

traffic shares a common data center network infrastructure,

competing for network resources [9]. Therefore, optimizing

the backend traffic can yield more network resources for the

user-facing service, and can improve the salability of data

center networks.

In this paper, we study the problem of social-locality-

aware partitioning of the OSN data backend in a data center

environment. While embracing social locality’s advantages

such as eliminating unpredictable inter-server response time,

we aim to minimize its overhead in the traffic aspect without

ruining the existing optimization (if any) of the storage aspect.

We explicitly consider data center network topologies (e.g.,

tree [9], Clos topology [6], etc.) together with social locality.

Different topologies have different features, we consequently

define diverse network performance goals for the synchro-

nization traffic to save network resource consumption. We

further formulate the traffic optimization problem and propose

a unified solution to achieve all network performance goals

— our traffic-aware partitioning algorithm which is inspired

by the fact that carefully swapping the roles of the master

replica and a slave replica of a user can lead to traffic

reduction. Trace-driven simulations with a large-scale, real-

world Twitter dataset demonstrate that, compared with state-

of-the-art algorithms, such as random placement (i.e., the

standard placement in MySQL and Cassandra), SPAR [3], and

METIS [10], our algorithm can reduce the synchronization

traffic by approximately 30%-70% in a variety of data center

network topologies with a number of servers, without affecting

the existing load balance among servers and increasing the

total replication storage.

II. PROBLEM STATEMENT

We briefly introduce the social locality paradigm and data

center network topologies. For different topologies, we pro-

pose diverse network performance goals for the synchroniza-

tion traffic. We then present the traffic optimization problem

with diverse goals by a unified formulation.

A. Revisiting Social Locality

“Social locality” is a data replication scheme independent of

data partitioning. The latter means dividing the whole dataset

into separate subsets (i.e., partitions), each of which is placed

on a different server. In contrast, data can be replicated across

servers. The social locality scheme chooses to replicate the

data of a user’s every friend to the server that hosts this user’s

own data, which has proved to be an effective approach to

overcome the performance problems of OSN services.

Social locality is a single-master-multi-slave paradigm. The

partition that hosts a user’s master is determined by the

partitioning scheme; the partitions that host a user’s slaves are

determined by the social relations among users and also by

the locations of the masters of this user’s friends. The replica

consistency is maintained by the synchronization traffic from a

user’s master to her slaves. Load balance in this context refers

to balancing the number of masters among servers [3].

B. Defining Network Performance Goals

The de facto standard of data center network topology is

the two- or three-layer tree [9], interconnecting servers by

switches and/or routers. In a three-layer tree, at the bottom,

servers in the same rack are connected to a top-of-rack or

edge switch. Each edge switch is connected to an aggregation

switch, and each aggregation switch is connected to one or

multiple core switches. Given that each edge switch connects

with k1 servers and each aggregation switch connects with k2
edge switches, the number of servers that are hosted by one

aggregation switch is thus k1k2. The tree topology is quite

often oversubscribed in modern data centers in order to lower

the total cost of such design [6].

A couple of full-capacity topologies (e.g., fat-tree [6],

BCube [11], etc.) have been proposed to overcome the over-

subscription problem of the tree topology. Fat-tree is a design

that is composed of servers and k-port switches. In a fat-

tree, there are k pods with k/2 edge switches and k/2
aggregation switches in each pod, k2/4 core switches, and

k3/4 servers. The k/2 ports of each edge switch connect with

k/2 servers, and the rest k/2 ports connect with different

aggregation switches in the same pod. The rest k/2 ports of

each aggregation switch connect with different core switches.

Fig. 1 depicts a tree and a fat-tree, with k1 = k2 = 2 and

k = 4, respectively.

Aggregation

Edge

Core

(a) Three-layer tree

Aggregation

Edge

Core

Pod

(b) Fat-tree

Fig. 1. Data center network topologies

Targeting at different data center topologies, we define

diverse performance goals for the synchronization traffic. For

the tree topology, it is desirable to localize the traffic to

save the utilization of the oversubscribed upper-layer network

links [8]. If a user’s master and all her slaves are on servers in

the same rack, synchronization only involves intra-rack traffic;

otherwise, the synchronization traffic must go beyond the edge

switch to upper layers in order to reach replicas on servers

in another rack. Fig. 1(a) uses red lines to exemplify a path

between servers via the core switch. We consequently define

the following goal of traffic localization:

• Goal #1 Minimize the core synchronization traffic, i.e.,

the traffic traveling through core switch(es)

For full-capacity topologies, it is not necessary to localize

the traffic due to the absence of oversubscription [8], but

it is desirable to reduce the utilization of every switch and

link to improve the network scalability [7]. We thus have the

following goal, which is also applicable to the tree topology:

• Goal #2 Minimize the total synchronization traffic, i.e.,

the sum of the traffic perceived by every switch

Note that the performance goals of a data center network

are not limited to the ones that we define here, e.g., for a

fat-tree, localizing the traffic also makes sense if upper-layer

links suffer from congestion. As will be shown next, it is easy

to use our model to express any network performance goal,

and our proposed algorithm provides a general and efficient

approach to reach all these goals.

C. Model Formulation

OSN is often modeled as a graph [12], where each user is

represented by a vertex and each social relation between two

users is represented by an edge between the corresponding

two vertices. We additionally consider each user’s traffic rate

(i.e., the size of the data generated by a user) in this paper.

Given such a social graph with each user’s traffic rate, we

are interested in the problem of partitioning the graph into

N partitions, maintaining social locality for each user with

the synchronization traffic achieving our network performance

goals. Additional inputs to the problem include pre-specified

numbers of master replicas on each server and a pre-specified

total number of slave replicas in the entire system. Our

partitioning ensures that, the number of masters on each server

equals to the corresponding pre-defined number for this server

(i.e., guaranteeing the load assignment across servers, or load

balance if such number is the same for all servers), and the

total number of slaves in the system does not exceed the pre-

defined number (i.e., guaranteeing the total replication storage

within the given quota).

We introduce notations to formulate the problem. G =
(V,E) denotes the undirected social graph, where V is the

set of vertices (i.e., users) and E is the set of edges (i.e.,

social relations). eij is the edge between user i and user j. ti
is the traffic rate of user i. A(i, j) is the value representing

the adjacency between server i and server j in the N × N
control matrix A, where N is the total number of servers. Mj

is the pre-defined number of masters on server j and S is the

pre-defined total number of slaves in the system. m(i, j) is

binary, being 1 if the master of user i is assigned to server

j and being 0 otherwise. Thus mi =
∑

∀j(j ×m(i, j)) is

the server which hosts user i’s master. s(i, j) is similar to

m(i, j) but representing the assignment of salves to servers.

We formulate the problem as follows.

minimize:
∑

∀i

∑

∀j∈{j|sij=1,∀j}

(ti ×A(mi, j × s(i, j)))

subject to:
∑

∀j

m(i, j) = 1,∀i (1)

m(i′,mi) + s(i′,mi) = 1, ∀i, i′, eii′ ∈ E (2)
∑

∀i

m(i, j) = Mj ,∀j (3)

∑

∀i

∑

∀j

s(i, j) ≤ S (4)

The objective is to minimize the traffic from masters to

slaves, counted by a given control matrix. Each of our goals

can be expressed by a particular control matrix. Thus our

problem formulation applies uniformly to all the goals that

are defined previously. Constraint (1) ensures a single master

for every user. Constraint (2) ensures social locality for every

user. Constraint (3) ensures that the distribution of masters on

servers matches the pre-defined load assignment. Constraint

(4) ensures that the total replication storage does not exceed

the pre-defined quota.

The control matrix is used to count the traffic for a given

performance goal in a given data center topology. For Goal

#1, we only care about the core-layer traffic, and thus we

only set the adjacency value between any two servers located

under different aggregation switches to 1. For Goal #2, we

count the traffic at every switch. If there are n switches in the

communication path between any two servers, the adjacency

value between these two servers are set to n. Aligned with the

descriptions of data center network topologies in Section II-B,

we present as follows the control matrices for the goals of the

tree and the fat-tree topology, respectively.

• Control matrix of tree for Goal #1:

At1(i, j) =























0, i = j

0, i 6= j ∧
⌊

i
k1

⌋

=
⌊

j
k1

⌋

0, i 6= j ∧
⌊

i
k1

⌋

6=
⌊

j
k1

⌋

∧
⌊

i
k1k2

⌋

=
⌊

j
k1k2

⌋

1, otherwise

• Control matrices of tree and fat-tree for Goal #2:

At2(i, j) =























0, i = j

1, i 6= j ∧
⌊

i
k1

⌋

=
⌊

j
k1

⌋

3, i 6= j ∧
⌊

i
k1

⌋

6=
⌊

j
k1

⌋

∧
⌊

i
k1k2

⌋

=
⌊

j
k1k2

⌋

5, otherwise

Aft2(i, j) =















0, i = j

1, i 6= j ∧
⌊

2i
k

⌋

=
⌊

2j
k

⌋

3, i 6= j ∧
⌊

2i
k

⌋

6=
⌊

2j
k

⌋

∧
⌊

4i
k2

⌋

=
⌊

4j
k2

⌋

5, otherwise

III. TRAFFIC-AWARE PARTITIONING

The traffic optimization problem is an Integer Linear Pro-

gram that generally belongs to NP-hard problems [13]. We

thus focus on developing a heuristic approach that works well

in practice.

A. Overview

Starting with an initial solution (i.e., a trial assignment of

all replicas to servers), our algorithm tweaks this solution

iteratively to search the solution space for the optimum. Each

tweak operation changes the current assignment into a new

one that has less traffic counted by the control matrix, without

violating any of the constraints.

Swapping the roles of a user’s master and slave can be

used as the tweak operation [14]. As an example, Figure 2 is

a local view of part of the tree topology, where three servers

are interconnected by two edge switches and one aggregation

switch. The box below each server shows the current data

replicas on this server. There are four users u, v1, v2 and v3.

Black circles are masters, and red ones are slaves that exist

for maintaining social locality of masters. Solid lines represent

social relations and dotted arrows represent the synchroniza-

tion traffic. Let’s consider the total traffic perceived by every

switch, and let’s assume all users have the same traffic rate of

1 unit, for example. The existing data assignment has the total

traffic of 15 units, as in Figure 2(a). Figure 2(b) and Figure 2(c)

perform the role-swaps. Firstly, we swap the roles of user u’s

master and her slave u′, reducing the total traffic to 11 units.

Secondly, we select v2 and v′
2
, and swap the roles in order to

maintain the existing load assignment. Social locality must be

maintained after each role-swap. Overall, we achieve 4 units

traffic reduction without altering the load assignment of the

existing data placement (i.e., the number of masters on each

server remains the same before and after the two role-swaps)

and without increasing the total replication storage (i.e., the

total number of slaves does not increase after the two role-

swaps).

 ଷݒ ଵݒ

 ଶԢݒ ଶݒ
 ԢԢݑ

 Ԣݑ
 ݑ

 ଷԢݒ

͙͘͘͘

͙͘͘͘

 ଵԢݒ
(a) Before swapping: traffic = 15

 ଶݒ ଵݒ

 Ԣݑ ݑ
 ଷԢԢݒ ԢԢݑ ଷݒ ଵԢݒ

͙͘͘͘

 ଶԢݒ ͙͘͘͘
(b) After swapping the roles of u and u′: traffic = 11

 ݑ ଶԢݒ ଵݒ

 ଷԢԢݒ ԢԢݑ ଷݒ ଵԢݒ

͙͘͘͘

 Ԣݑ ͙͘͘͘
 ଶݒ

(c) After swapping the roles of v2 and v′
2

: traffic = 11

Fig. 2. Using role-swaps to reduce the traffic

Note that, in order to always guarantee the load assignment,

a single tweak must include two role-swaps, i.e., we must

select two users and do the role-swap for each of them. The

two users’ masters are on different servers, and each user’s

slave is co-located with the other user’s master. Only two users

satisfying this condition can be considered as candidates for

a tweak operation.

B. Partitioning Algorithm

Algorithm 1 provides the pseudo codes of our partitioning

algorithm. pstart is the starting solution; Best maintains the

best solution that has been found. For a tweak, two users u and

v are selected. mu is the server that hosts u’s single master,

and su is the server that hosts u’s slave involved in this tweak.

µu is the total number of slave replicas that can be reduced

and τu is the amount of traffic (counted by the control matrix)

that can be saved by swapping the roles of u’s master on mu

and her slave on su. mv , sv , µv , and τv have similar meanings

for user v. ∆ denotes the total number of slave replicas that

has been reduced so far compared with the starting solution.

Algorithm 1: partition(pstart)

begin

Best← pstart,∆← 0;
repeat

(mu, su,mv , sv)← selectUsers();
(µu, τu)← getReduction(mu, su);
Best← swapRole(Best,mu, su);
(µv , τv)← getReduction(mv , sv);
if ∆+ µu + µv ≥ 0 and τu + τv > 0 then

Best← swapRole(Best,mv , sv);
∆← ∆+ µu + µv ;

else

Best← swapRole(Best, su,mu);

until Best is the ideal solution or we run out of time;
return Best

Algorithm 2: getReduction(mu, su)

begin

µu ← 0, τu ← 0;
Non mu ← ∅, Non su ← ∅;
Adjacency mu ← 0, Adjacency su ← 0;
Remove m← true,Remove s← true;
for each v ∈ u’s neighbors do

if mv 6= mu then

Non mu ← Non mu

⋃
mv ;

if u is v’s only neighbor on mu then
µu ← µu + 1, τu ← τu + tv ×A(mv ,mu);

if mv = su then
Remove s← false;

if mv 6= su then

Non su ← Non su
⋃

mv ;
if u is v’s only neighbor on su then

µu ← µu − 1, τu ← τu − tv ×A(mv , su);

if mv = mu then

Remove m← false;

if Remove s = true then

µu ← µu − 1;

if Remove m = true then
µu ← µu + 1;

for each i ∈ Non mu do

Adjacency mu ← Adjacency mu +A(mu, i);

for each i ∈ Non su do

Adjacency su ← Adjacency su +A(su, i);

τu ← τu + tu × (Adjacency mu −Adjacency su);
return (µu, τu)

Algorithm 1 adopts a hill-climbing strategy by requiring

that every tweak must reduce the traffic (i.e., τu + τv > 0).

We are aware of other design options, e.g., Simulated Anneal-

ing [15] which in our case allows tweaks with traffic increase,

etc. While such techniques may discover better solutions or

approximate closer to the theoretical optimum(s), it is easy

to integrate them to our algorithm, and we leave this as

possible future work since we find that hill-climbing can

already achieve significant traffic reductions in practice, as will

128 432 1024
0

0.2

0.4

0.6

0.8

of Servers

N
o

rm
a

li
z
e

d
 T

ra
ff

ic

Random

SPAR

METIS

TA−Random

TA−SPAR

TA−METIS

Fig. 3. Core-layer traffic

128 432 1024
0

0.2

0.4

0.6

0.8

1.0

of Servers

N
o

rm
a

li
z
e

d
 T

ra
ff

ic

Random

SPAR

METIS

TA−Random

TA−SPAR

TA−METIS

Fig. 4. Perceived traffic (tree)

128 432 1024
0

0.2

0.4

0.6

0.8

1.0

of Servers

N
o

rm
a

li
z
e

d
 T

ra
ff

ic

Random

SPAR

METIS

TA−Random

TA−SPAR

TA−METIS

Fig. 5. Perceived traffic (fat-tree)

128 432 1024
0

20%

40%

60%

80%

of Servers

R
a

ti
o

 o
f

R
e

d
u

c
e

d
 T

ra
ff

ic

TA−Random,tree

TA−Random,fat−tree

TA−SPAR,tree

TA−SPAR,fat−tree

TA−METIS,tree

TA−METIS,fat−tree

Fig. 6. Traffic reduction ratio

be shown in Section IV-B.

Algorithm 2, invoked by Algorithm 1, specifies the calcula-

tion of the replica number reduction and the traffic reduction

that can be achieved by a given role-swap. An intuitive

alternative to get the reductions is calculating the total replica

number and the total traffic before and after a tweak, respec-

tively, and then calculating the difference for each of them.

However, compared with Algorithm 2 which only accesses

the neighborhood of the selected user, this intuitive approach

needs to access every user in the system and can cause

considerable computation overhead for a large social graph.

C. Complexity Considerations

The design of our algorithm is partially guided by our com-

plexity considerations. The time complexity of Algorithm 2 is

O(|V |+ 2×N) = O(|V |), where |V | is the total number of

users and N is the total number of servers, given N ≪ |V |.
Without Algorithm 2, the intuitive method of calculating the

reductions as mentioned above will be of O(|V |2).
In Algorithm 1, we need to select two users with their

role-swaps. Different selection strategies usually have differ-

ent trade-offs between time complexity and the amount of

traffic reduction. A greedy selection may have a good traffic

reduction, but it takes more time, because after a role-swap is

performed, we must re-calculate the reductions of role-swaps

of all this selected user’s neighbors, which takes O(|V |2) if we

do all calculations by Algorithm 2, and then sort all the role-

swaps again, which takes O(|E| log |E|) where |E| is the total

number of social relations. Therefore, the greedy selection has

a complexity of O(|V |2 + |E| log |E|). In contrast, a random

selection only has O(1), but may achieve less reductions than

greedy. We take random selection in this paper.

IV. EXPERIMENTAL EVALUATION

A. Experimental Settings

OSN Dataset. By crawling Twitter in a breadth-first search-

ing manner in March 2010, we collected a dataset of 107,734

users with 2,744,006 social relations. For each crawled user,

we have her profile, tweets, and the followers list. We use the

total size of each user’s tweets published in February 2010 as

the user’s traffic rate.

Data center network topology. We simulate switches of

8, 12, and 16 ports, respectively, and use them to organize

a tree and a fat-tree topology. In a fat-tree, the total number

of switches and that of servers are determined by the number

of ports per switch, as mentioned in Section II-B; In a tree,

we always use 2 switches in the core layer. Table I contains

the details of the network configurations. For each topology,

we build the corresponding control matrix by the formulas

presented in Section II-C.

TABLE I
DATA CENTER NETWORK CONFIGURATIONS

k, k1, k2 8 12 16

of servers 128 432 1024

of switches
tree 20 41 70
fat-tree 80 180 320

Initial assignment. The initial assignment serves as the

starting solution in our evaluations. For our social graph with

each user’s traffic rate, we use random placement, SPAR [3],

and METIS [10] to generate an initial assignment of master

replicas to servers, respectively, and slave replicas are then

assigned to servers to maintain social locality for each user. We

implement SPAR on our own, strictly following [3]; METIS

has an open-source implementation that we can directly use.

B. Evaluation Results

The results are illustrated in Fig. 3, 4, 5, and 6, where “TA-”

denotes our traffic-aware partitioning, starting with a specified

initial assignment, and traffic values have been normalized.

Fig. 3 shows the traffic that passes the core-layer switches in

the tree topology. We use our algorithm to reduce such core-

layer traffic to achieve Goal #1. Fig. 4 and 5 compare the

total traffic perceived by every switch in a tree and a fat-tree,

respectively. We apply our algorithm to reduce such traffic to

achieve Goal #2. We find that, for any given topology with a

fixed number of servers, users placed by METIS tend to incur

less core-layer traffic and total perceived traffic than by random

and SPAR. This meets our expectation. METIS explicitly

minimizes the inter-server traffic, while SPAR minimizes the

total number of slave replicas, equivalent to minimizing the

inter-server traffic with the assumption that each user has the

same traffic rate, i.e., SPAR essentially ignores the difference

of users’ traffic rates. As the number of servers increases, the

number of users per server drops and users tend to be placed

under different aggregation switches, which explains why the

core-layer traffic and the total perceived traffic grows.

We notice that our traffic-aware partitioning algorithm can

significantly reduce the core-layer traffic and the total per-

ceived traffic on top of random, SPAR and METIS, respec-

tively. Our algorithm makes no assumption about the initial

assignment and the underlying data center network topology,

and can work effectively. Fig 6 makes clear the ratio of

the reduced traffic over the total perceived traffic. It is easy

to see that our algorithm is not sensitive to the type of

data center topologies since tree and fat-tree have similar

traffic reduction ratios for a fixed number of servers. It also

shows that random has the largest traffic reduction ratio than

SPAR and METIS, implying that random has a larger room

for our algorithm to optimize. Both SPAR, which optimizes

the total replication storage, and METIS, which optimizes

the inter-server traffic, cannot automatically meet our Goal

#1 or Goal #2 (i.e., they do not place replicas to achieve

specific network performance goals), while our traffic-aware

partitioning algorithm can minimize the traffic in order to align

with the network performance goals.

V. RELATED WORK

Commercial OSN services usually adopt distributed hashing

to partition the data backend [2], [16], which can lead to poor

performance (e.g., response time) due to the inter-server multi-

get operations caused by OSN data access patterns. To address

this, recent work proposes to eliminate multi-get operations

by maintaining social locality, i.e., replicating friends across

servers [3], [4], or reduce such operations by carefully placing

users’ data on servers without replication, e.g., exploring self-

similarities of user interactions [17].

Carrasco et al. partition OSN along the time dimension,

i.e., ensuring data locality for different users at different time

periods in order to save storage [18] over time. Cheng et

al. partition the YouTube social media network by preserv-

ing social relations and balancing viewing workload among

servers [19]. Curino et al. partition relational DBMS aiming

at minimizing the number of distributed transactions [20].

Similar to [3], tuple replication across servers is applied if

multiple transactions access the same tuple simultaneously.

A number of literatures study the graph (re)partitioning

problems. Graph partitioning refers to dividing a weighted

graph into a given number of partitions in order to minimize

either the inter-partition edge weights or the inter-partition

communication volume while balancing the vertex weights of

each partition [21]. Graph repartitioning further considers the

existing partitioning and additionally minimizes the extra cost

of migrating vertices across partitions [22].

The problem we study in this paper does not map to

any of these existing work. OSN and DBMS partitioning

focus on server performance and neglect the networks. Graph

(re)partitioning problems, though aiming at minimizing inter-

partition communication, is also inapplicable for our case.

Firstly, they do not have social locality. Secondly, minimiz-

ing the total inter-server communication does not necessarily

minimize the traffic traveling via the core-layer switches or

the total traffic perceived by every switch, as shown in this

paper.

VI. CONCLUSION

As the OSN data have to be partitioned among multiple

servers in a data center, in this paper we studied how to

partition them not only with social locality, but also with

optimized inter-server traffic. We model the problem, propose

a traffic-aware partitioning algorithm, and evaluate how our

algorithm works with real-world Twitter data. Our experiments

show that regardless of the data center topology and the initial

data assignment, our algorithm can significantly reduce the

core-layer traffic and the total traffic that is perceived by

every switch. Its performance is superior to not only random

data partitioning, but also state-of-the-art algorithms including

SPAR and METIS.

REFERENCES

[1] “Key facts - facebook newsroom,” http://newsroom.fb.com/Key-Facts.
[2] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[3] J. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: Scaling online social
networks,” in SIGCOMM, 2010.

[4] D. Tran, K. Nguyen, and C. Pham, “S-clone: Socially-aware data
replication for social networks,” Computer Networks, vol. 56, no. 7,
pp. 2001–2013, 2012.

[5] “How to use facebook for business marketing,” http://www.facebook.
com/business/overview.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[7] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010.

[8] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” in SIGCOMM, 2011.

[9] Cisco Data Center Infrastructure 2.5 Design Guide. Cisco Systems,
Inc., Nov. 2, 2011.

[10] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1999.

[11] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” in SIGCOMM, 2009.

[12] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and analysis of online social networks,” in IMC, 2007.

[13] M. Gary and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-completeness. W.H. Freeman, Jan. 15, 1979.
[14] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social

networks on geo-distributed clouds,” in ICNP, 2012.
[15] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simmulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[16] “Twitter engineering: Introducing gizzard, a framework for cre-

ating distributed datastores,” http://engineering.twitter.com/2010/04/
introducing-gizzard-framework-for.html.

[17] H. Chen, H. Jin, N. Jin, and T. Gu, “Minimizing inter-server communi-
cations by exploiting self-similarity in online social networks,” in ICNP,
2012.

[18] B. Carrasco, Y. Lu, and J. Trindade, “Partitioning social networks for
time-dependent queries,” in EuroSys SNS, 2011.

[19] X. Cheng and J. Liu, “Load-balanced migration of social media to
content clouds,” in NOSSDAV, 2011.

[20] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” in VLDB,
2010.

[21] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning
power-law graphs,” in IPDPS, 2006.

[22] K. Schloegel, G. Karypis, and V. Kumar, “Wavefront diffusion and lmsr:
Algorithms for dynamic repartitioning of adaptive meshes,” IEEE TPDS,
vol. 12, no. 5, pp. 451–466, 2001.

