
Sieve: Actionable Insights from
Monitored Metrics in Distributed Systems

Jörg Thalheim1∗, Antonio Rodrigues2∗, Istemi Ekin Akkus3, Pramod Bhatotia1,
Ruichuan Chen3, Bimal Viswanath4, Lei Jiao5∗, Christof Fetzer6

1University of Edinburgh, 2Carnegie Mellon Univ., 3NOKIA Bell Labs, 4University of Chicago, 5University of Oregon, 6TU Dresden

Abstract

Major cloud computing operators provide powerful monitoring

tools to understand the current (and prior) state of the distributed

systems deployed in their infrastructure. While such tools provide a

detailed monitoring mechanism at scale, they also pose a signiicant

challenge for the application developers/operators to transform the

huge space of monitored metrics into useful insights. These insights

are essential to build efective management tools for improving the

eiciency, resiliency, and dependability of distributed systems.

This paper reports on our experience with building and deploy-

ing SieveÐa platform to derive actionable insights from monitored

metrics in distributed systems. Sieve builds on two core compo-

nents: a metrics reduction framework, and a metrics dependency

extractor. More speciically, Sieve irst reduces the dimensionality

of metrics by automatically iltering out unimportant metrics by

observing their signal over time. Afterwards, Sieve infers metrics

dependencies between distributed components of the system using

a predictive-causality model by testing for Granger Causality.

We implemented Sieve as a generic platform and deployed it for

two microservices-based distributed systems: OpenStack and Share-

Latex. Our experience shows that (1) Sieve can reduce the number

of metrics by at least an order of magnitude (10 − 100×), while pre-

serving the statistical equivalence to the total number of monitored

metrics; (2) Sieve can dramatically improve existing monitoring

infrastructures by reducing the associated overheads over the en-

tire system stack (CPUÐ80%, storageÐ90%, and networkÐ50%);

(3) Lastly, Sieve can be efective to support a wide-range of work-

lows in distributed systemsÐwe showcase two such worklows:

Orchestration of autoscaling, and Root Cause Analysis (RCA).

CCSConcepts ·Computer systems organization→Depend-

able and fault-tolerant systems and networks;

Keywords Microservices, Time series analysis
∗Authors did part of the work at NOKIA Bell Labs.

ACM Reference format:

Jörg Thalheim1∗, Antonio Rodrigues2∗, Istemi EkinAkkus3, Pramod Bhatotia1,

Ruichuan Chen3, Bimal Viswanath4, Lei Jiao5∗, Christof Fetzer6. 2017. Sieve:

Actionable Insights from Monitored Metrics in Distributed Systems. In

Proceedings of Middleware ’17, Las Vegas, NV, USA, December 11ś15, 2017,

14 pages.

DOI: 10.1145/3135974.3135977

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware ’17, Las Vegas, NV, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4720-4/17/12. . . $15.00
DOI: 10.1145/3135974.3135977

1 Introduction

Most distributed systems are constantly monitored to understand

their current (and prior) states. The main purpose of monitoring is

to gain actionable insights that would enable a developer/operator

to take appropriate actions to better manage the deployed system.

Such insights are commonly used tomanage the health and resource

requirements as well as to investigate and recover from failures

(root cause identiication). For these reasons, monitoring is a crucial

part of any distributed system deployment.

All major cloud computing operators provide amonitoring infras-

tructure for application developers (e.g., Amazon CloudWatch [2],

Azure Monitor [12], Google StackDriver [5]). These platforms pro-

vide infrastructure to monitor a large number (hundreds or thou-

sands) of various application-speciic and system-level metrics as-

sociated with a cloud application. Although such systems feature

scalable measurement and storage frameworks to conduct moni-

toring at scale, they leave the task of transforming the monitored

metrics into usable knowledge to the developers. Unfortunately,

this transformation becomes diicult with the increasing size and

complexity of the application.

In this paper, we share our experience on: How can we derive

actionable insights from the monitored metrics in distributed systems?

In particular, given a large number of monitored metrics across

diferent components (or processes) in a distributed system, we

want to design a platform that can derive actionable insights from

the monitored metrics. This platform could be used to support a

wide-range of use cases to improve the eiciency, resiliency, and

reliability of distributed systems.

In this work, we focus on microservices-based distributed sys-

tems because they have become the de-facto way to design and

deploy modern day large-scale web applications [48]. The microser-

vices architecture is an ideal candidate for our study for two reasons:

First, microservices-based applications have a large number of dis-

tributed components (hundreds to thousands [45, 56]) with complex

communication patterns, each component usually exporting several

metrics for the purposes of debugging, performance diagnosis, and

application management. Second, microservices-based applications

are developed at a rapid pace: new features are being continuously

integrated and deployed. Every new update may ix some existing

issues, introduce new features, but can also introduce a new bug.

With this rapid update schedule, keeping track of the changes in

the application as a whole with efects propagating to other compo-

nents becomes critical for reliability, eiciency, and management

purposes.

The state-of-the-art management infrastructures either rely on

ad hoc techniques or custom application-speciic tools. For instance,

prior work in this space has mostly focused on analyzing message-

level traces (instead of monitored metrics) to generate a causal

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

model of the application to debug performance issues [30, 42]. Al-

ternatively, developers usually create and use custom tools to ad-

dress the complexity of understanding the application as a whole.

For example, Netlix developed several application-speciic tools

for such purposes [8, 45] by instrumenting the entire application.

These approaches require either complicated instrumentation or

sophisticated techniques to infer happens-before relationships (for

the causal model) by analyzing message trace timestamps, making

them inapplicable for broader use.

This paper presents our experience with designing and building

Sieve, a system that can utilize an existing monitoring infrastruc-

ture (i.e., without changing the monitored information) to infer

actionable insights for application management. Sieve takes a data-

driven approach to enable better management of microservices-

based applications. At its core, Sieve is composed of two key mod-

ules: (1) a metric reduction engine that reduces the dimensionality

of the metric space by iltering out metrics that carry redundant

information, (2) a metric dependency extractor that builds a causal

model of the application by inferring causal relationships between

metrics associated with diferent components.

Module (1) enables Sieve to identify łrelevantžmetrics for a given

application management task. For instance, it might be suicient

to monitor only a few metrics associated with error states of the

application instead of the entire set when monitoring the health

of the application. It is important to also note that reducing the

metric space has implications for deployment costs: frameworks

like Amazon CloudWatch use a per-metric charging model, and

not identifying relevant metrics can signiicantly drive up the cost

related to monitoring the application.

Module (2) is crucial for inferring actionable insights because it

is able to automatically infer complex application dependencies. In

a rapidly updating application, the ability to observe such complex

dependencies and how they may change is important for keeping

one’s understanding of the application as a whole up-to-date. Such

up-to-date information can be helpful for developers to quickly

react to any problem that may arise during deployment.

We implemented Sieve as a generic platform, and deployed it

with two microservices-based distributed systems: ShareLatex [22]

and OpenStack [26]. Our experience shows that (1) Sieve can re-

duce the number of monitored metrics by an order of magnitude

(10− 100×), while preserving the statistical equivalence to the total

number of monitored metrics. In this way, the developers/operators

can focus on the important metrics that actually matter. (2) Sieve

can dramatically improve the eiciency of existing metrics monitor-

ing infrastructures by reducing the associated overheads over the

entire system stack (CPUÐ80%, storageÐ90%, and networkÐ50%).

This is especially important for systems deployed in a cloud infras-

tructure, where the monitoring infrastructures (e.g. AWS Cloud-

Watch) charge customers for monitoring resources. And inally, (3)

Sieve can be employed for supporting a wide-range of worklows.

We showcase two such case-studies: In the irst case study, we use

ShareLatex [22] and show how Sieve can help developers orches-

trate autoscaling of microservices-based applications. In the second

case study, we use OpenStack [26] and show how developers can

take advantage of Sieve’s ability to infer complex dependencies

across various components in microservices for Root Cause Analy-

sis (RCA). Sieve’s source code with the full experimentation setup

is publicly available: https://sieve-microservices.github.io/.

Table 1. Metrics exposed by microservices-based applications.

Application Number of metrics

Netlix [58] ∼ 2,000,000
Quantcast [13] ∼ 2,000,000
Uber [15] ∼ 500,000,000
ShareLatex [22] 889
OpenStack [17, 19] 17,608

2 Overview

In this section, we irst present some background on microservices-

based applications and ourmotivation to focus on them. Afterwards,

we present our goals, and design overview.

2.1 Background and Motivation

Microservices-based applications consist of loosely-coupled dis-

tributed components (or processes) that communicate via well-

deined interfaces. Designing and building applications in this way

increases modularity, so that developers can work on diferent

components and maintain them independently. These advantages

make the microservices architecture the de facto design choice for

large-scale web applications [48].

While increasing modularity, such an approach to developing

software can also increase the application complexity: As the num-

ber of components increases, the interconnections between compo-

nents also increases. Furthermore, each component usually exports

several metrics for the purposes of debugging, performance diag-

nosis, and application management. Therefore, understanding the

dependencies between the components and utilizing these depen-

dencies with the exported metrics becomes a challenging task. As

a result, understanding how the application performs as a whole

becomes increasingly diicult.

Typical microservices-based applications are composed of hun-

dreds of components [45, 56]. Table 1 shows real-worldmicroservices-

based applications that have tens of thousands of metrics and hun-

dreds of components. We experimented with two such applications,

ShareLatex [22] and OpenStack [18], each having several thousands

of metrics and order of tens of components. The metrics in these

applications come from all layers of the application like hardware

counters, resource usage, business metrics or application-speciic

metrics.

To address this data overload issue, developers of microservices-

based applications usually create ad hoc tools. For example, applica-

tion programmers at Netlix developed several application-speciic

tools for such purposes [8, 45]. These tools, however, require the

application under investigation to be instrumented, so that the

communication pattern between components can be established

by following requests coming into the application. This kind of in-

strumentation requires coordination among developers of diferent

components, which can be a limiting factor for modularity.

Major cloud computing operators also provide monitoring tools

for recording all metric data from all components. For example,

Amazon CloudWatch [2], Azure Monitor [12], and Google Stack-

Driver [5]. These monitoring tools aid in visualizing and processing

metric data in real-time (i.e., for performance observation) or af-

ter an issue with the application (i.e., for debugging). These tools,

however, either use a few system metrics that are hand-picked by

developers based on experience, or simply record all metric data

for all the components.

https://sieve-microservices.github.io/

Sieve: Actionable Insights from

Monitored Metrics in Distributed Systems Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA

ApplicationLoad

Metrics time seriesCall graph

Step#1: Load the application

N metrics

..
.

k clusters
k << N

Step#2: Reduce metrics
Step#3: Identify dependencies

Component1

Component2 Component3

metric relation

Figure 1. High level steps of Sieve.

Relying on past experience may not always be efective due to

the increasing complexity of a microservices-based application. On

the other hand, recording all metric data can create signiicant

monitoring overhead in the network and storage, or in the case

of running the application in a cloud infrastructure (e.g., AWS), it

can incur costs due to the provider charging the customers (e.g.,

CloudWatch). For these reasons, it is important to understand the

dependencies between the components of a microservice-based

application. Ideally, this process should not be intrusive to the

application. Finally, it should help the developers to identify and

minimize the critical components and metrics to monitor.

2.2 Design Goals

While designing Sieve, we set the following goals.

• Generic:Many tools for distributed systems have speciic

goals, including performance debugging, root cause analysis

and orchestration. Most of the time, these tools are custom-

built for the application in consideration and target a certain

goal. Our goal is to design a generic platform that can be

used for a wide-range of worklows.

• Automatic: The sheer number of metrics prohibits manual

inspection. On the other hand, designing a generic system

to help developers in many use cases might require man-

ually adjusting some parameters for each use case. Our

tool should be as automated as possible while reducing the

number of metrics and extracting their relationships. How-

ever, we leave the utilization of our platform’s output to the

developers, who may have diferent goals.

• Eicient: Our platform’s operation should be as eicient

as possible. Minimizing analysis time becomes important

when considering distributed systems, such asmicroservices-

based applications.

2.3 Sieve Overview

The underlying intuition behind Sieve is two-fold: Firstly, in the

metric dimension, some metrics of a component may behave with

similar patterns as other metrics of that component. Secondly, in

the component dimension, there are dependencies between com-

ponents. As a result, monitoring all metrics of all components at

runtime may be unnecessary and ineicient (as components are

not independent).

In this paper, we present Sieve to reduce this complexity by sys-

tematically analyzing the application to ilter collected metrics and

to build a dependency graph across components. To showcase the

generality of this dependency graph and its beneits, we then utilize

Sieve to orchestrate autoscaling of the ShareLatex [22] applicationÐ

an online collaboration tool, and to perform Root Cause Analysis

(RCA) in OpenStack [26]Ða cloud management software (ğ4).

At a high level, Sieve’s design follows three steps as shown in

Figure 1.

Step #1: Load the application. Sieve uses an application-speciic

load generator to stress the application under investigation. This

load generator can be provided by the application developers. For

example, OpenStack already uses a load generator named Rally

[20]. During the load, Sieve records the communications among

components to obtain a call graph. This recording does not require

any modiications to the application code. In addition, Sieve records

all exposed metrics by all components. Note that this recording

only happens during the creation of the call graph and not during

runtime.

Step #2: Reduce metrics. After collecting the metrics, Sieve ana-

lyzes each component and organizes its metrics into fewer groups

via clustering, so that similar-behaving metrics are clustered to-

gether. After clustering, Sieve picks a representative metric from

each cluster. These representative metrics as well as their clusters

in a sense characterize each component.

Step #3: Identify dependencies. In this step, Sieve explores the

possibilities of one component’s representative metrics afecting

another component’s metrics using a pairwise comparison method:

each representative metric of one component is compared with each

representative metric of another component. Sieve uses the call

graph obtained in Step 1 to choose the components to be compared

(i.e., components directly communicating) and the representative

metrics determined in Step 2. As a result, the search space is signif-

icantly reduced compared to the naïve approach of comparing all

components with every other component using all metrics.

If Sieve determines that there is a relationship between a metric

of one component and another metric of another component, a

dependency edge between these components is created using the

corresponding metrics. The direction of the edge depends on which

component is afecting the other.

3 Design

In this section, we detail the three steps of Sieve.

3.1 Load the Application

For our systematic analysis, we irst run the application under

various load conditions. This loading serves two purposes: First,

the load exposes a number of metrics from the application as well

as the infrastructure it runs on. These metrics are then used to

identify potential relationships across components. Second, the

load also enables us to obtain a call graph, so that we can identify

the components that communicate with each other. The call graph is

later used to reduce the amount of computation required to identify

the inter-component relationships (§3.3). The load test is intended

to be run in an oline step and not in production.

Obtaining metrics. During the load of the application, we record

metrics as time series. There are two types of metrics that we can

leverage for our analysis: First, there are system metrics that are

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

obtained from the underlying operating system. These metrics

report the resource usage of a microservice component, and are

usually related to the hardware resources on a host. Examples

include usages in CPU, memory, network and disk I/O.

Second, there are application-level metrics. Application devel-

opers often add application-speciic metrics (e.g., number of active

users, response time of a request in a component). Commonly-used

components (e.g., databases, load balancers) and certain language

runtimes (e.g., Java) may provide statistics about speciic operations

(e.g., query times, request counts, duration of garbage collection).

Obtaining the call graph. Generally speaking, applications us-

ing a microservices architecture communicate via well-deined

interfaces similar to remote procedure calls. We model these com-

munications between the components as a directed graph, where

the vertices represent the microservice components and the edges

point from the caller to the callee providing the service.

By knowing which components communicate directly, we can

reduce the number of component pairs we need to check to see

whether they have a relation (see Section 3.3). Although it is pos-

sible to manually track this information for smaller-sized applica-

tions, this process becomes quickly diicult and error-prone with

increasing number of components.

There are several ways to understand which microservice com-

ponents are communicating with each other. One can instrument

the application, so that each request can be traced from the point it

enters the application to the point where the response is returned

to the user. Dapper [81] from Google and Atlas [45, 58] from Netlix

rely on instrumenting their RPC middleware to trace requests.

Anothermethod to obtain communicating components is tomon-

itor network traic between hosts running those components using

a tool like tcpdump. After obtaining the traic, one can map the

exchanged packets to the components via their source/destination

addresses. This method can produce communicating component

pairs by parsing all network packets, adding signiicant computa-

tional overhead and increasing the analysis time. Furthermore, it

is possible that many microservice components are deployed onto

the same host (e.g., using containers), making the packet parsing

diicult due to network address translation on the host machine.

One can also observe system calls related to network opera-

tions via APIs such as ptrace() [28]. However, this approach adds a

lot of context switches between the tracer and component under

observation.

Sieve employs sysdig to obtain the communicating pairs. sys-

dig[23] is a recent project providing a new method to observe

system calls in a more eicient way. Utilizing a kernel module, sys-

dig provides system calls as an event stream to a user application.

The event stream also contains information about the monitored

processes, so that network calls can be mapped to microservice

components, even if they are running in containers. Furthermore,

it enables extraction of the communication peer via user-deined

ilters. Employing sysdig, we avoid the shortcomings of the above

approaches: 1) We do not need to instrument the application, which

makes our system more generally applicable, 2) We add little over-

head to obtain the call graph of an application for our analysis (see

Section 6.1.3).

3.2 Reduce Metrics

The primary goal of exporting metrics is to understand the per-

formance of applications, orchestrating them and debugging them.

While themetrics exported by the application developers or commonly-

used microservice components may be useful for these purposes,

it is often the case that the developers have little idea regarding

which ones are going to be most useful. Developers from diferent

backgrounds may have diferent opinions: a developer specializing

in network communications may deem network I/O as the most im-

portant metric to consider, whereas a developer with a background

on algorithms may ind CPU usage more valuable. As a result of

these varying opinions, often times many metrics are exported.

While it may look like there is no harm in exporting as much in-

formation as possible about the application, it can create problems.

Manually investigating the obtained metrics from a large number

of components becomes increasingly diicult with the increasing

number of metrics and components [35]. This complexity relects

on the decisions that are needed to control and maintain the ap-

plication. In addition, the overhead associated with the collection

and storage of these metrics can quickly create problems. In fact,

Amazon CloudWatch [2] charges its customers for the reporting of

the metrics they export. As a result, the more metrics an application

has to export, the bigger the cost the developers would have to

bear.

One observation we make is that some metrics strongly correlate

with each other and it might not be necessary to consider all of

them when making decisions about the control of the application.

For example, some application metrics might be strongly correlated

with each other due to the redundancy in choosing which metrics to

export by the developers. It is also possible that diferent subsystems

in the same component report similar information (e.g., overall

memory vs. heap usage of a process). In addition, some system

metrics may ofer clues regarding the application’s state: increased

network I/O may indicate an increase in the number of requests.

The direct outcome of this observation is that it should be possi-

ble to reduce the dimensionality of the metrics the developers have

to consider. As such, the procedure to enable this reduction should

happen with minimal user efort and scale with increased numbers

of metrics.

To achieve these requirements, Sieve uses a clustering approach

namedk-Shape [73]with a pre-iltering step.While other approaches

such as principal component analysis (PCA) [49] and random pro-

jections [72] can also be used for dimensionality reduction, these

approaches either produce results that are not easily interpreted

by developers (i.e., PCA) or sacriice accuracy to achieve perfor-

mance and have stability issues producing diferent results across

runs (i.e., random projections). On the other hand, clustering re-

sults can be visually inspected by developers, who can also use any

application-level knowledge to validate their correctness. Addition-

ally, clustering can also uncover hidden relationships which might

not have been obvious.

Filtering unvarying metrics. Before we use k-Shape, we irst

ilter metrics with constant trend or low variance (var ≤ 0.002).

These metrics cannot provide any new information regarding the

relationships across components, because they are not changing

according to the load applied to the application. Removing these

metrics also enables us to improve the clustering results.

k-Shape clustering. k-Shape is a recent clustering algorithm that

scales linearly with the number of metrics. It uses a novel distance

metric called shape-based distance (SBD). SBD is based on a nor-

malized form of cross correlation (NCC) [73]. Cross correlation is

Sieve: Actionable Insights from

Monitored Metrics in Distributed Systems Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA

calculated using Fast Fourier Transformation and normalized using

the geometric mean of the autocorrelation of each individual met-

ric’s time series. Given two time series vectors, ®x and ®y, SBD will

take the positionw , when sliding ®x over ®y, where the normalized

cross correlation maximizes.

SBD(®x , ®y) = 1 −maxw (NCCw (®x , ®y)) (1)

Because k-Shape uses a distance metric based on the shape of

the investigated time series, it can detect similarities in two time

series, even if one lags the other in the time dimension. This fea-

ture is important to determine relationships across components in

microservices-based applications because a change in one metric

in one component may not relect on another component’s met-

rics immediately (e.g., due to the network delay of calls between

components).

Additionally, k-Shape is robust against distortion in amplitude

because data is normalized via z-normalization (z =
x−µ
σ) before

being processed. This feature is especially important because difer-

ent metrics may have diferent units and thus, may not be directly

comparable.

k-Shape works by initially assigning time series to clusters ran-

domly. In every iteration, it computes new cluster centroids ac-

cording to SBD with the assigned time series. These centroids are

then used to update the assignment for the next iteration until the

clusters converge (i.e., the assignments do not change).

Wemake three adjustments to employk-Shape in Sieve. First, we

preprocess the collected time series to be compatible with k-Shape.

k-Shape expects the observations to be equidistantly distributed

in the time domain. However, during the load of the application,

timeouts or lost packets can cause gaps between the measurements.

To reconstruct missing data, we use spline interpolation of the

third order (cubic). A spline is deined piecewise by polynomial

functions. Compared to other methods such as averages of previous

values or linear interpolation, spline interpolation provides a higher

degree of smoothness. It therefore introduces less distortion to

the characteristics of a time-series [66]. Additionally, monitoring

systems retrieve metrics at diferent points in time and need to be

discretized to match each other. In order to increase the matching

accuracy, we discretize using 500ms instead of the original 2s used

in the original k-Shape paper [73].

Our second adjustment is to change the initial assignments

of metric time series to clusters. To increase clustering perfor-

mance and reduce the convergence overhead, we pre-cluster met-

rics according to their name similarity (e.g., Jaro distance [60])

and use these clusters as the initial assignment instead of the de-

fault random assignment. This adjustment is reasonable given that

many developers use naming conventions when exporting met-

rics relating to the same component or resource in question (e.g.,

łcpu_usage", łcpu_usage_percentile"). The number of iterations to

converge should decrease compared to the random assignment,

because similar names indicate similar metrics. Note that this ad-

justment is only for performance reasons; the convergence of the

k-Shape clustering does not require any knowledge of the vari-

able names and would not be afected even with a random initial

assignment.

During the clustering process, k-Shape requires the number of

clusters to be previously determined. In an application with sev-

eral components, each of which having various number of metrics,

pre-determining the ideal number of clusters may not be straight-

forward. Our inal adjustment is to overcome this limitation: we

iteratively vary the number of clusters used by k-Shape and pick

the number that gives the best silhouette value [78], which is a

technique to determine the quality of the clusters. The silhouette

value is −1 when the assignment is wrong and 1 when it is a per-

fect assignment [29]. We use the SBD as a distance measure in the

silhouette computation.

In practice, experimenting with a small number of clusters is

suicient. For our applications, seven clusters per component was

suicient, where each component had up to 300 metrics.

Representative metrics. After the clustering, each microservice

component will have one ormore clusters of metrics. The number of

clusters will most likely bemuch smaller than the number of metrics

belonging to that component. Once these clusters are obtained,

Sieve picks one representative metric from each cluster. To pick the

representative metric from each cluster, Sieve determines the SBD

between each metric and the corresponding centroid of the cluster.

The metric with the lowest metric is chosen as the representative

metric for this cluster.

The high-level idea is that the behavior of the cluster will match

this representative metric; otherwise, the rest of the metrics in the

cluster would not have been in the same cluster as this metric. The

set of representative metrics of a component can then be used to

describe amicroservice component’s behavior. These representative

metrics are then used in conjunction with the call graph obtained

in Section 3.1 to identify and understand the relationships across

components.

3.3 Identify Dependencies

To better understand an application, we need to ind dependencies

across its components. A naïve way of accomplishing this goal

would be to compare all components with each other using all

possible metrics. One can clearly see that with the increasing num-

ber of components and metrics, this would not yield an efective

solution.

In the previous section, we described how one can reduce the

number of metrics one has to consider in this pairwise comparison

by clustering and obtaining the representative metrics of each com-

ponent. Still, comparing all pairs of components using this reduced

set of metrics may be ineicient and redundant considering the

number of components in a typical microservices-based application

(e.g., tens or hundreds).

Sieve uses the call graph obtained in Section 3.1 to reduce the

number of components that need to be investigated in a pairwise

fashion. For each component, we do pairwise comparisons using

each representative metric of its clusters with each of its neighbour-

ing components (i.e., callees) and their representative metrics.

Sieve utilizes Granger Causality tests [54] in this pairwise com-

parison. Granger Causality tests are useful in determining whether

a time series can be useful in predicting another time series: In a

microservices-based application, the component interactions closely

follow the path a request takes inside the application. As a result,

these interactions can be predictive of the changes in the metrics

of the components in the path. Granger Causality tests ofer a sta-

tistical approach in understanding the relationships across these

components. Informally, Granger Causality is deined as follows.

If a metric X is Granger-causing another metric Y, then we can

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

predict Y better by using the history of both X and Y compared to

only using the history of Y [51].

To utilize Granger Causality tests in Sieve, we built two linear

models using the ordinary least-square method [32]. First, we com-

pare each metric Xt with another metric Yt . Second, we compare

each metric Xt with the time-lagged version of the other metric Yt :

Yt−Laд . Covering the cases with a time lag is important because the

load in one component may not be relected on another component

until the second component receives API calls and starts processing

them.

Sieve utilizes short delays to build the time-lagged versions

of metrics. The reason is that microservices-based applications

typically run in the same data center and their components com-

municate over a LAN, where typical round-trip times are in the

order of milliseconds. Sieve uses a conservative delay of 500ms for

unforeseen delays.

To apply the Granger Causality tests and check whether the past

values of metric X can predict the future values of metric Y , both

models are compared via the F-test [67]. The null hypothesis (i.e.,

X does not granger-cause Y) is rejected if the p-value is below a

critical value.

However, one has to consider various properties of the time se-

ries. For example, the F-test requires the time series to be normally

distributed. The load generation used in Section 3.1 can be adjusted

to accommodate this requirement. Also, the F-test might ind spuri-

ous regressions when non-stationary time series are included [53].

Non-stationary time series (e.g., monotonically increasing counters

for CPU and network interfaces) can be found using the Augmented

Dickey-Fuller test [55]. For these time series, the irst diference

is taken and then used in the Granger Causality tests. Although

longer trends may be lost due to the irst diference, accumulating

metrics such as counters do not present interesting relationships

for our purposes.

After applying the Granger Causality test to each component’s

representative metrics with its neighbouring component’s repre-

sentative metrics, we obtain a graph. In this graph, we draw an edge

between microservice components, if one metric in one component

Granger-causes another metric in a neighbouring component. This

edge represents the dependency between these two components

and its direction is determined by Granger causality.

While Granger Causality tests are useful in determining predic-

tive causality across microservice components, it has some limi-

tations that we need to consider. For example, it does not cover

instantaneous relationships between two variables. More impor-

tantly, it might reveal spurious relationships, if important variables

are missing in the system: if bothX andY depend on a third variable

Z that is not considered, any relationship found between X and Y

may not be useful. Fortunately, an indicator of such a situation is

that both metrics will Granger-cause each other (i.e., a bidirectional

edge in the graph). Sieve ilters these edges out.

4 Applications

In this section, we describe two use cases to demonstrate Sieve’s

ability to handle diferent worklows. In particular, using Sieve’s

base design, we implemented 1) an orchestration engine for au-

toscaling and applied it to ShareLatex [22], and 2) a root cause

analysis (RCA) engine and applied it to OpenStack [18].

4.1 Orchestration of Autoscaling

For the autoscaling case study, we used ShareLatex [22]Ða popular

collaborative LaTeX editor. ShareLatex is structured as amicroservices-

based application, delegating tasks to multiple well-deined compo-

nents that include a KV-store, load balancer, two databases and 11

node.js based components.

Sieve’s pairwise investigation of representative metrics of com-

ponents produces the dependencies across components. By leverag-

ing this dependency graph, our autoscaling engine helps developers

to make more informed decisions regarding which components and

metrics are more critical to monitor. As a result, developers can

generate scaling rules with the goal of adjusting the number of

active component instances, depending on real-time workload.

More speciically, we use Sieve’s dependency graph and ex-

tract (1) guiding metrics (i.e., metrics to use in a scaling rule), (2)

scaling actions (i.e., actions associated with reacting to varying

loads by increasing/decreasing the number of instances subject

to minimum/maximum thresholds), and (3) scaling conditions (i.e.,

conditions based on a guiding metric triggering the corresponding

scaling action). Below, we explain how we use Sieve to generate a

scaling rule:

#1: Metric.We pick a metricm that appears the most in Granger

Causality relations between components.

#2: Scaling actions. In our case study, we restrict scaling actions

to scale in/out actions, with increments/decrements of a single

component instance (+/−1).

#3: Conditions. The scale in/out thresholds are deined from the

values ofm according to a Service Level Agreement (SLA) condition.

For ShareLatex, such an SLA condition can be to keep 90% of all

request latencies below 1000ms. The thresholds form are iteratively

reined during the application loading phase.

4.2 Root Cause Analysis

For the root cause analysis (RCA) case study, we usedOpenStack [18,

26], a popular open-source cloud management software. OpenStack

is structured as a microservices-based application with a typical

deployment of ∼10 (or more) individual components, each often

divided into multiple sub-components [80]. Due to its scale and

complexity, OpenStack is susceptible to faults and performance

issues, often introduced by updates to its codebase.

In microservices-based applications such as Openstack, com-

ponents can be updated quite often [59], and such updates can

afect other application components. If relationships between com-

ponents are complex, such efects may not be easily foreseeable,

even when inter-component interfaces are unchanged (e.g., if the

density of inter-component relationships is high or if the activation

of relationships is selective depending on the component’s state

and inputs). Sieve’s dependency graph can be used to understand

the update’s overall efect on the application: changing dependency

graphs can indicate potential problems introduced by an update.

By identifying such changes, Sieve can help developers identify

the root cause of the problem.

Our RCA engine leverages Sieve to generate a list of possible

root causes of an anomaly in the monitored application. More

speciically, the RCA engine compares the dependency graphs of

two diferent versions of an application: (1) a correct version; and

(2) a faulty version. Similarly to [61, 63], we assume that the system

anomaly (but not its cause) has been observed and the correct and

Sieve: Actionable Insights from

Monitored Metrics in Distributed Systems Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA

A

B

C

Faulty Rank components

by novelty
2

12 3

C
BA

Get dep. graphs

& cluster metadata
0 1

Extract new and

discarded metrics
4

Filter edges by

novelty and similarity

A B

B C

A C New edge

Discarded

Unchanged

Final rankings5

C

A

B

A

B

C

Correct

3
Calculate cluster

novelty and similarity

x

Similarity

½ 1 1 0 0 0

Novelty

2 2 0 0 0

component cluster

metric

Legend:

Figure 2. Sieve’s root cause analysis methodology.

Table 2. Description of dependency graph diferences considered

by the root cause analysis engine.

Scoping level Diferences of interest

Component metrics
Present in F version, not in C (new)
Present in C version, not in F (discarded)

Clusters Cluster includes new/discarded metrics

Dep. graph edges
New/discarded edge between similar clusters
Diferent time-lag between similar clusters
Includes clusters w/ new/discarded metrics

faulty versions have been identiied. The result of this comparison

is a list of {component, metric list} pairs: the component item points

to a component as a possible source for the issue, whereas the

metric list shows the metrics in that component potentially related

to the issue, providing a more ine-grained view. With the help of

this list, developers can reduce the complexity of their search for

the root cause.

Figure 2 shows the ive steps involved in the comparison. At

each step, we extract and analyze Sieve’s outputs at three diferent

granularity levels: metrics, clusters, and dependency graph edges.

The levels and corresponding diferences of interest are described

in Table 2. We describe the steps in more detail below.

#1: Metric analysis. This step analyzes the presence or absence

of metrics between C and F versions. If a metricm is present in

both C and F, it intuitively represents the maintenance of healthy

behavior associated withm. As such, these metrics are iltered out

of this step. Conversely, the appearance of a new metric (or the

disappearance of a previously existing metric) between versions is

likely to be related with the anomaly.

#2: Component rankings. In this step, we use the results of step

1 to rank components according to their novelty score (i.e., total

number of new or discarded metrics), producing an initial group of

interesting components for RCA.

#3: Cluster analysis: novelty & similarity. Clusters aggregate

component metrics which exhibit similar behavior over time. The

clusters with new or discarded metrics should be more interesting

for RCA compared to the unchanged clusters of that component

(with some exceptions, explained below). For a given component,

we compute the novelty scores of its clusters as the sum of the num-

ber of new and discarded metrics, and produce a list of {component,

metric list} pairs, where the metric list considers metrics from the

clusters with higher novelty scores.

In addition, we track the similarity of a component’s clusters

between C and F versions (or vice-versa). This is done to identify

two events: (1) appearance (or disappearance) of edges between

versions; and (2) attribute changes in relationships maintained

between C and F versions (e.g., a change in Granger causality

time lag). An edge between clusters x and y (belonging to com-

ponents A and B, respectively) is said to be ‘maintained between

versions’ if their respective metric compositions do not change

signiicantly between C and F versions, i.e. if S(MA
x,C

) ≈ S(MA
x ′
,F
)

and S(MB
y,C

) ≈ S(MB
y′
,F
).MA

x,C
andMA

x ′
,F

are the metric compo-

sitions of clusters x and x ′ of componentA, in the C and F versions,

respectively. S is some measure of cluster similarity (deined below).

Both events ś (1) and (2) ś can be an indication of an anomaly, be-

cause one would expect edges between clusters with high similarity

to be maintained between versions.

We compute the cluster similarity score, S , according to amodiied

form of the Jaccard similarity coeicient

S =
|MA

i,C
∩MA

j,F
|

|MA
i,C

|
(2)

To eliminate the penalty imposed by new metrics added to the

faulty cluster, we only consider the contents of the correct cluster

in the denominator (instead of the union ofMA
i,C

andMA
j,F

).

#4: Edge iltering. To further reduce the list of {component,metric

list} pairs, we examine the relationships between components and

clusters identiied in steps 2 and 3. We identify three events:

1. Edges involving (at least) one cluster with a high novelty

score

2. Appearance or disappearance of edges between clusters

with high similarity

3. Changes in time lag in edges between clusters with high

similarity

Event 1 isolates metrics related to edges which include at least

one ‘novel’ cluster. Events 2 and 3 isolate clusters which are main-

tained between C and F versions, but become interesting for RCA

due to a change in their relationship. Novelty and similarity scores

are computed as in step 3. We deine thresholds for ‘high’ novelty

and similarity scores.

#5: Final rankings.We present a inal list of {component, metric

list} pairs. The list is ordered by component, following the rank

given in step 2. The metric list items include the metrics identiied

at steps 3 and 4.

5 Implementation

We next describe the implementation details of Sieve. Our system

implementation, including used software versions, is published at

htps://sieve-microservices.github.io. For load generation, Sieve

requires an application-speciic load generator. We experimented

with two microservices-based applications: ShareLatex [22] and

OpenStack [18, 26]. For ShareLatex, we developed our own load

generator using Locust [10], a Python-based distributed load gen-

eration tool to simulate virtual users in the application (1, 041 LoC).

https://sieve-microservices.github.io

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

ch
at cl
si

co
n
ta
ct
s

d
o
c-
u
p
d
.

d
o
cs
to
re

h
ap
ro
xy

p
os
tg
re
s

re
al
-t
im
e

re
d
is

sp
el
lin
g

ta
gs

tr
ac
k-
ch
.

w
eb

0.0

0.2

0.4

0.6

0.8

A
M
I

AMI(1, 2)

ch
at cl
si

co
n
ta
ct
s

d
o
c-
u
p
d
.

d
o
cs
to
re

h
ap
ro
xy

p
os
tg
re
s

re
al
-t
im
e

re
d
is

sp
el
lin
g

ta
gs

tr
ac
k-
ch
.

w
eb

0.0

0.2

0.4

0.6

0.8

A
M
I

AMI(1, 3)

ch
at cl
si

co
n
ta
ct
s

d
o
c-
u
p
d
.

d
o
cs
to
re

h
ap
ro
xy

p
os
tg
re
s

re
al
-t
im
e

re
d
is

sp
el
lin
g

ta
gs

tr
ac
k-
ch
.

w
eb

0.0

0.2

0.4

0.6

0.8

1.0

A
M
I

AMI(2, 3)

Figure 3. Pairwise adjusted mutual information (AMI) scores between 3 measurements.

For OpenStack, we used Rally [20], the oicial benchmark suite

from OpenStack.

For metric collection, Sieve uses Telegraf [24] to collect appli-

cation/system metrics and stores them in InluxDB [7]. Telegraf

seamlessly integrates with InluxDB, supports metrics of commonly-

used components (e.g., Docker, RabbitMQ, memcached) and can

run custom scripts for collection of additional metrics exposed by

application APIs (e.g., [19]). With this setup, Sieve can store any

time-series metrics exposed by microservice components.

For the call graph extraction, Sieve leverages sysdig call tracer [23]

to obtain which microservice components communicate with each

other. We wrote custom scripts to record network system calls

with source and destination IP addresses on every machine hosting

the components (457 LoC). These IP addresses are then mapped

to the components using the cluster manager’s service discovery

mechanism.

We implemented Sieve’s data analytics techniques in Python

(2243 LoC) including metric iltering, clustering based on k-Shape,

and Granger Causality. The analysis can also be distributed across

multiple machines for scalability.

Lastly, we also implemented two case studies based on the Sieve

infrastructure: autoscaling in ShareLatex (720 LoC) and RCA in

OpenStack (507 LoC). For our autoscaling engine, we employed

Kapacitor [9] to stream metrics from InluxDB in real-time and to

install our scaling rules using its user-deined functions. For the

RCA engine, we implemented two modules in Python: one module

extracts metric clustering data (125 LoC) and the other module (382

LoC) compares clustering data and dependency graphs.

6 Evaluation

Our evaluation answers the following questions:

1. How efective is the general Sieve framework? (§6.1)

2. How efective is Sieve for autoscaling? (§6.2)

3. How efective is Sieve for root cause analysis? (§6.3)

6.1 Sieve Evaluation

Before we evaluate Sieve with the case studies, we evaluate Sieve’s

general properties: (a) the robustness of clustering; (b) the efective-

ness of metric reduction; and (c) the monitoring overhead incurred

by Sieve’s infrastructure.

Experimental setup. We ran our measurements on a 10 node

cluster, every node with a 4-core Xeon E5405 processor, 8 GB DDR2-

RAM and a 500GB HDD. For the general experiments, we loaded

ShareLatex using Sieve ive times with random workloads. The

ch
at cl
si

co
nt
ac
ts

do
c-
up
d.

do
cs
to
re

fil
es
to
re

ha
pr
ox
y

m
on
go
db

po
st
gr
es
ql

re
al
-t
im
e

re
di
s

sp
el
lin
g

ta
gs

10
0

10
1

10
2

N
um

b
er

of
m
et
ri
cs

Before clustering After clustering

Figure 4. Average no. of metrics after Sieve’s reduction.

random workloads also help to validate whether the model stays

consistent, if no assumption about the workload is made.

6.1.1 Robustness

We focus on two aspects to evaluate Sieve’s robustness. First, we in-

vestigate the consistency of clustering across diferent runs. Second,

we try to validate whether the metrics in a cluster indeed belong

together.

Consistency. To evaluate consistency, we compare cluster assign-

ments produced in diferent measurements. A common metric to

compare cluster assignments is Adjusted Mutual Information (AMI)

score [85]. AMI is normalized against a random assignment and

ranges from zero to one: If AMI is equal to one, both clusters match

perfectly. Random assignments will be close to zero.

Figure 3 shows the AMI of cluster assignments for individual

components for three independent measurements. To reduce the

selection bias we apply randomized workload in a controlled envi-

ronment. As a result, they should constitute a worst-case perfor-

mance for the clustering. Our measurements show that the average

AMI is 0.597, which is better than random assignments. Based on

these measurements, we conclude the clusterings are consistent.

Validity. To evaluate the validity of the clusters, we choose three

criteria: (1) Is there a common visible pattern between metrics in

one cluster? (2) Do metrics in a cluster belong together assuming

application knowledge? (3) Are the shape-based distances between

metrics and their cluster centroid below a threshold (i.e., 0.3)?

We choose three clusters with diferent Silhouette scores (high,

medium, low). According to the above criteria, we conclude the

clustering algorithm can determine similar metrics. For example,

Sieve: Actionable Insights from

Monitored Metrics in Distributed Systems Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA

native sysdig tcpdump
0.0

0.2

0.4
T
im
e
to

co
m
pl
et
e

10
k
re
qu
es
ts

[s
]

Figure 5.Completion time for HTTP requests when using tcpdump,

sysdig or native (i.e., no monitoring).

application metrics such as HTTP request times and correspond-

ing database queries are clustered together. Similar to consistency,

higher Silhouette scores indicate that the clusters are more mean-

ingful and potentially more useful for the developers. We omit the

details for brevity.

6.1.2 Efectiveness

The purpose of clustering is to reduce the number of metrics ex-

posed by the system without losing much information about the

system behavior. To evaluate how efective our clustering is in

reducing the number of metrics, we compare the results of the

clustering with the actual number of metrics in the application. We

identiied 889 unique metrics within ShareLatex, meaning that an

operator would have to understand and ilter these metrics. Sieve’s

clustering reduces this number to 65 (averaged across ive runs).

Figure 4 shows the reduction in the number of metrics for the indi-

vidual components in ShareLatex. Note that this measurement is

with high Silhouette scores for the clusters, which implies that the

metrics reduction does not afect the quality of the clusters.

6.1.3 Monitoring Overhead

We evaluate Sieve’s overhead based on two aspects. First, we com-

pare diferent techniques for obtaining the call graph and show how

our approach fairs. Second, we investigate the overhead incurred

by the application by comparing the monitoring overhead with and

without using Sieve.

Overheads. To measure the monitoring overhead during the load-

ing stage, we run an experiment with 10K HTTP requests for a

small static ile using Apache Benchmark [11] on an Nginx web

server [14]. Because the computational overhead for serving such

a ile is low, this experiment shows the worst-case performance

for sysdig and tcpdump. Figure 5 shows the time it takes to com-

plete the experiment. While tcpdump incurs a lower overhead than

sysdig (i.e., 7% vs. 22%), it provides less context regarding the com-

ponent generating the request and requires more knowledge about

the network topology to obtain the call graph. sysdig provides all

this information without much additional overhead.

Gains.To show the gains during the runtime of the application after

using Sieve, we compare the computation, storage and network

usage for the metrics collected during the ive measurements. We

store all collected metrics in InluxDB and measure the respective

resource usage. We then repeat the same process using the metrics

found by Sieve; thus, simulating a run with the reduced metrics.

Table 3 shows the relative usage of the respective resources with

Table 3. InluxDB overhead before Sieve’s reduction of metrics.

Metric Before After Reduction

CPU time [s] 0.45G 0.085G 81.2 %
DB size [KB] 588.8 36.0 93.8 %
Network in [MB] 11.1 2.3 79.3 %
Network out [KB] 15.1 7.4 50.7 %

Sieve. Sieve reduces the monitoring overhead for computation,

storage and network by 80%, 90% and 50%, respectively.

6.2 Case-study #1: Autoscaling

We next evaluate the efectiveness of Sieve for the orchestration

of autoscaling in microservices.

Experimental setup. For the autoscaling case study, we used

ShareLatex [22] (as described in §4.1). We used 12 t2.large VM-

Instances on Amazon EC2 with 2 vCPUs, 8GB RAM and 20 GB

Amazon EBS storage. This number of instances were suicient to

stress-test all components of the application. The VM instances

were allocated statically during experiments as Docker containers.

We created a Docker image for each ShareLatex component and

used Rancher [21] as the cluster manager to deploy our containers

across diferent hosts.

Dataset. We used a HTTP trace sample from soccer world cup

1998 [6] for an hour long trace. Note that the access pattern and re-

quested resources in the world cup trace difers from the ShareLatex

application. However, we used the trace to map traic patterns for

our application to generate a realistic spike workload. In particular,

sessions in the HTTP trace were identiied by using the client IP.

Afterwards, we enqueued the sessions based on their timestamp,

where a virtual user was spawned for the duration of each session

and then stopped.

Results. We chose an SLA condition, such that 90th percentile of

all request latencies should be below 1000ms. Traditional tools, such

as Amazon AWS Auto Scaling [1], often use the CPU usage as the

default metric to trigger autoscaling. Sieve identiied an application

metric named http-requests_Project_id_GET_mean (Figure 6) as a

better metric for autoscaling than CPU usage.

To calculate the threshold values to trigger autoscaling, we used

a 5-minute sample from the peak load of our HTTP trace and

iteratively reined the values to stay within the SLA condition. As

a result, we found that the trigger thresholds for scaling up and

down while using the CPU usage metric should be 21% and 1%,

respectively. Similarly, for http-requests_Project_id_GET_mean, the

thresholds for scaling up and down should be 1400ms and 1120ms,

respectively.

After installing the scaling actions, we ran our one-hour trace.

Table 4 shows the comparison when using the CPU usage and

http-requests_Project_id_GET_mean for the scaling triggers. When

Sieve’s selection of metric was used for autoscaling triggers, the

average CPU usage of each component was increased. There were

also fewer SLA violations and scaling actions.

6.3 Case-study #2: Root Cause Analysis

To evaluate the applicability of Sieve to root cause analysis, we

reproduce a representative OpenStack anomaly, Launchpad bug

#1533942 [27].We selected this issue because it haswell-documented

root causes, providing an appropriate ground truth, and allowing

for the identiication of ‘correct’ and ‘faulty’ code versions. We

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

chat
mongodb

web

contacts

doc-updater

track-changes

docstore

clsi

real-time

redis

filestore

haproxy

spelling

tags

postgresql

Figure 6. Relations between components based on Granger Causal-

ity in ShareLatex. The dashed lines denote relationships with metric

http-requests_Project_id_GET_mean.

Table 4. Comparison between a traditional metric (CPU usage) and

Sieve’s selection when used as autoscaling triggers.

Metric CPU usage Sieve Diference [%]

Mean CPU usage per com-
ponent

5.98 9.26 +54.82

SLA violations (out of 1400
samples)

188 70 -62.77

Number of scaling actions 32 21 -34.38

compare the documented root causes to the lists of root causes

produced by our RCA engine. A similar failure is used as a rep-

resentative case in prior work [52, 80]. Due to space constraints,

we refer the analysis of other representative bugs to an extended

version of the article available at [84].

Bug description: Failure to launch a VM. The bug manifests

itself as follows: when launching a new VM instance using the com-

mand line interface, one gets the error message ‘No valid host was

found. There are not enough hosts available.’ despite the availability

of compute nodes. Without any other directly observable output,

the instance falls into ‘ERROR’ state and fails.

Root cause. The failure is caused by the crash of an agent in the

Neutron component, namely the Open vSwitch agent. The Open

vSwitch agent is responsible for setting up and managing virtual

networking for VM instances. The ultimate cause is traced to a

coniguration error in OpenStack Kolla’s deployment scripts [27].

Experimental setup.We deployed OpenStack components as con-

tainerized microservices using Kolla [26]. We conigured Kolla to

deploy 7 main OpenStack components (e.g., Nova, Neutron, Key-

stone, Glance, Ceilometer) along with several auxiliary components

(e.g., RabbitMQ, memcached) for a total of 47 microservices. We use

OpenStack’s telemetry component (Ceilometer) to expose relevant

OpenStack-related metrics and extract them via Telegraf. The in-

frastructure consists of two m4.xlarge Amazon EC2 VM instances

to run OpenStack components (16 vCPUs, 64 GB RAM and 20 GB

Amazon EBS storage) and three t2.medium VM instances (2 vCPUs,

4GB RAM and 20 GB EBS storage) for the supporting components

(measurement, database and deployment).

Table 5. OpenStack components, sorted by the number of novel

metrics between correct (C) and faulty (F) versions.

Component
Changed Total Final

(New/Discarded) (per component) ranking

Nova API 29 (7/22) 59 1
Nova libvirt 21 (0/21) 39 2

Nova scheduler 14 (7/7) 30 -
Neutron server 12 (2/10) 42 3

RabbitMQ 11 (5/6) 57 4
Neutron L3 agent 7 (0/7) 39 5
Nova novncproxy 7 (0/7) 12 -

Glance API 5 (0/5) 27 6
Neutron DHCP ag. 4 (0/4) 35 7
Nova compute 3 (0/3) 41 8
Glance registry 3 (0/3) 23 9

Haproxy 2 (1/1) 14 10
Nova conductor 2 (0/2) 29 -

Other 3 components 0 (0/0) 59 -

Totals 113 (22/91) 508 -

Results. We expect the RCA engine’s outcome to include the Neu-

tron component, along with metrics related to VM launches and net-

working. The {component, metrics list} pairs with Neutron should

be ranked higher than others.

To generate load on OpenStack, we run the ‘boot_and_delete’

task 100 times in the Rally benchmark [20], which launches 5 VMs

concurrently and deletes them after 15-25 seconds. We apply this

process to the correct (C) and faulty (F) versions of OpenStack.

For the faulty version, the task fails as described above. We then

apply the remaining stages of Sieve and feed the output to the RCA

engine. For both versions, the dependency graphs are composed by

16 components, with 647 edges in the C version, and 343 edges in

the F version. Below, we summarize the indings of RCA steps.

Steps #1 & #2: Metric analysis and component rankings. The

total number of unchanged metrics exceeds that of ‘novel’ metrics

(i.e., new and/or discarded) by ∼ 4×. Furthermore, the initial com-

ponent novelty ranking puts the Nova and Neutron components

(known to be directly related with the anomaly) within the top 4

positions out of 16 (Table 5). This conirms the intuition behind our

approach: novel metrics are more likely to be related to a failure.

Step #3: Cluster novelty & similarity. Computing the cluster

novelty scores shows that the novel metrics from step 1 are dis-

tributed over only 27 of the 67 clusters (Figure 7(a)), even when

conservatively considering a cluster to be novel if it contains at

least one new or discarded metric. Considering only novel clusters

reduces the number of metrics and the number of edges for the

developers to analyze for the root cause in step 4. We also compute

the similarity scores for these novel clusters and use the similarity

in the next step.

Step #4: Edge iltering. By investigating the novel edges (i.e., new

or deleted) in the dependency graph, the developers can better

focus on understanding which component might be more relevant

to the root cause. Utilizing diferent cluster similarity scores en-

ables developers to ilter out some of the edges that may not be

relevant. Figures 7(b & c) show the efect of diferent cluster simi-

larity thresholds for all components in Table 5 when iltering edges.

Without any similarity thresholds, there are 42 edges of interest,

corresponding to a set of 13 components, 29 clusters and 221 met-

rics that might be relevant to the root cause (Figure 7(c)). A higher

threshold reduces the number of the {component,metrics list} pairs:

Sieve: Actionable Insights from

Monitored Metrics in Distributed Systems Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA

New Discarded New
and

Discarded

Changed Total
0

20

40

60

80

#
of

cl
us
te
rs

5

19

1

25

67

a) Cluster novelty

0.0 0.5 0.6 0.7
Similarity threshold

0

10

20

30

40

50

60

#
of

ed
ge
s

27

13 11
6

10
5

1 0
4 4 2 02 2 2 1

b) Edge novelty

New

Discarded

Lag change

Unchanged

0.0 0.5 0.6 0.7
Similarity threshold

0

100

200

300

400

#
co
m
p
on
en
ts
,
cl
us
te
rs

an
d
m
et
ri
cs

13 10 7 3
29 16 10 5

221

163
121

68

c) # of components, clusters and metrics

Components

Clusters

Metrics

Figure 7. (a) Cluster novelty score. (b) Edge novelty score. (c) No. of components & clusters after edge iltering w/ varying thresholds.

nova_instances_in_state_ERROR

nova_instances_in_state_ACTIVE usage

neutron_ports_in_status_DOWN

neutron_ports_in_status_ACTIVE

RabbitMQ

Nova

libvirt

messages

messages_ack-diff

Nova

API

New

Unchanged

Deleted

Lag ch.1st

2nd

4th

20 metrics

5 metrics

63 metrics
Neutron

Server

3rd

22 metrics

active_anon

Figure 8. Final edge diferences for RCA evaluation between top 5

components of Table 5 with similarity threshold of 0.50.

iltering out clusters with inter-version similarity scores below 0.50,

there are 24 edges of interest, corresponding to 10 components, 16

clusters and 163 metrics.

Figure 8 shows the edges between the components at the top-5

rows of Table 5, with a similarity threshold of 0.50. Note that one

component (i.e., Nova scheduler) was removed by the similarity

ilter. Also, one of the new edges includes a Nova API component

cluster, in which the nova-instances-in-state-ACTIVE metric is re-

placed with nova-instances-in-state-ERROR. This change relates

directly to the observed anomaly (i.e., error in VM launch). The

other end of this edge is a cluster in the Neutron component, which

aggregates metrics related to VM networking, including a metric

named neutron-ports-in-status-DOWN. This observation indicates a

causal relationship between the VM failure and a VM networking

issue, which is the true root cause of the anomaly.

We also note that a high similarity threshold may ilter out use-

ful information. For example, the Neutron component cluster with

the neutron-ports-in-status-DOWN metric is removed with similar-

ity thresholds above 0.60. We leave the study of this parameter’s

sensitivity to future work.

Step #5: Final rankings. The rightmost column on Table 5 shows

the inal rankings, considering edge iltering step with a 0.50 sim-

ilarity threshold. Figure 8 shows a signiicant reduction in terms

of state to analyze (from a total of 16 components and 508 metrics

to 10 and 163, respectively) because of the exclusion of non-novel

clusters. For example, for Nova API, the number of metrics reduces

from 59 to 20 and for Neutron server from 42 to 22. Furthermore,

our method includes the Neutron component as one of the top 5

components, and isolates an edge which is directly related with the

true root cause of the anomaly.

7 Related Work

Scalable Monitoring. With the increasing number of metrics ex-

posed by distributed cloud systems, the scalability of themonitoring

process becomes crucial. Meng et al. [70] optimize monitoring scal-

ability by choosing appropriate monitoring window lengths and

adjusting the monitoring intensity at runtime. Canali et al. [39]

achieve scalability by clustering metric data. A fuzzy logic approach

is used to speed up clustering, and thus obtain data for decision

making within shorter periods. Rodrigues et al. [43] explore the

trade-of between timeliness and the scalability in cloud monitor-

ing, and analyze the mutual inluence between these two aspects

based on the monitoring parameters. Our work is complementary

to existing monitoring systems since Sieve aims to improve the

eiciency by monitoring less number of metrics.

Distributed Debugging. Systems like Dapper [81] and Pip [77]

require the developers to instrument the application to obtain its

causal model. X-trace [47] uses a modiied network stack to propa-

gate useful information about the application. In contrast, Sieve

does not modify the application code to obtain the call/dependency

graph of the application.

Systems such as Fay [46] and DTrace [40] enable developers to

dynamically inject debugging requests by developers and require

no initial logs of metrics. Pivot Tracing [69] combines dynamic

instrumentationwith causality tracing. Sieve can complement these

approaches, because it can provide information about interesting

components and metrics, so that the developers can focus their

eforts to understand them better. Furthermore, Sieve’s dependency

graph is a general tool that can not only be used for debugging, but

also for other purposes such as orchestration [86ś88].

Data provenance [34, 50, 83] is another technique that can be

used to trace the datalow in the system. Sieve can also leverage

the existing provenance tools to derive the dependence graph.

Metric reduction. Reducing the size and dimensionality of the

bulk of metric data exposed by complex distributed systems is

essential for its understanding. Common techniques include sam-

pling, and data clustering via k-means and k-medoids. Kollios et

al. [64] employ biased sampling to capture the local density of

datasets. Sampling based approaches argues for approximate com-

puting [65, 74, 75] to enable a systematic trade-of between the

accuracy, and eiciency to collect and compute on the metrics.

Zhou et al. [91] simply use random sampling due to its simplicity

and low complexity. Ng et al. [71] improved the k-medoid method

and made it more efective and eicient. Ding et al. [44] rely on

clustering over sampled data to reduce clustering time.

Sieve’s approach is unique because of its two-step approach:

(1) we irst cluster time series to identify the internal dependency

between any given metrics and then (2) infer the causal relations

among time series. Essentially, Sieve uses two steps of data reduc-

tion for better reduction. Furthermore, Sieve’s time series process-

ing method extracts other useful information such as the time delay

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

of the causal relationship, which can be leveraged in diferent use

cases (e.g., root cause analysis).

Orchestration of autoscaling. Current techniques for autoscal-

ing can be broadly classiied into four categories [68]: (i) static and

threshold-based rules (ofered bymost cloud computing providers [3,

4, 16, 25]); (ii) queuing theory [31, 57, 90]; (iii) reinforcement learn-

ing [76, 82, 89]; and (iv) time series analysis [41, 62, 79]. Existing

systems using these techniques can beneit from the selection of

better metrics and/or from the dependencies between components.

In this regard, our work is complementary to these techniques: it

is intended to provide the developers with knowledge about the

application as a whole. In our case study, we showed the beneits

of Sieve for an autoscaling engine using threshold-based rules.

Root Cause Analysis (RCA). Large and complex distributed sys-

tems are susceptible to anomalies, whose root causes are often hard

to diagnose [59]. Jiang et al. [61] compare łhealthy" and łfaulty"

metric correlation maps, searching broken correlations. In contrast,

Sieve leverages Granger causality instead of simple correlation,

allowing for richer causality inference (e.g., causality direction,

time lag between metrics). MonitorRank [63] uses metric collection

for RCA in a service-oriented architecture. It only analyzes pre-

established (component, metric) relations according to a previously-

generated call graph. Sieve also uses a call graph, but does not ix

metric relations between components, for a richer set of potential

root causes. There are other application-speciic solutions for RCA

(e.g., Hansel [80], Gretel [52]). In contrast, Sieve uses a general

approach for understanding the complexity of microservices-based

applications that can support RCA as well as other use cases.

8 Experience and Lessons Learned

While developing Sieve, we set ourselves ambitious design goals

(described in §2.2). However, we learned the following lessons while

designing and deploying Sieve for real-world applications.

Lesson#1. When we irst designed Sieve, we were envisioning

a dependency graph that was clearly showing the relationships

between components (e.g., a tree). As a result, not only would the

number of metrics that needed to be monitored be reduced, but

also the number of components: one would only need to observe

the root(s) of the dependency graph, and make the actions of the

dependent components according to the established relationships

between the root(s) and them. Such a dependency graph would give

the orchestration scenario a huge beneit. Unfortunately, our expe-

rience has shown us that the relationships between components

are usually not linear, making the dependency graph more complex.

Also, there was no obvious root. Consequently, we had to adjust

our thinking and utilize some application knowledge regarding

components and their relations with others. Nevertheless, in our

experience, Sieve provides the developer with a good starting point

to improve their worklows.

Lesson#2. Sieve is designed for łblackboxž monitoring of the eval-

uated application, where Sieve can collect and analyze generic

system metrics that are exposed by the infrastructure (e.g., CPU

usage, disk I/O, network bandwidth). However, in our experience,

a system for monitoring and analyzing an application should also

consider application-speciic metrics (e.g., request latency, number

of error messages) to build efective management tools. Fortunately,

many microservices applications we analyzed already export such

metrics. However, given the number of components and exported

metrics, this fact can easily create an łinformation overloadž for the

application developers. In fact, the main motivation of Sieve was

to deal with this łinformation overloadž. Our experience showed

that Sieve can still monitor the application in the blackbox mode

(i.e., no instrumentation to the application), but also overcome the

barrage of application-speciic metrics.

Lesson#3. To adapt to the application workload variations, Sieve

needs to build a robust model for the evaluated application. This re-

quires a workload generator that can stress-test the application thor-

oughly. To meet this requirement, there are three approaches: (1) In

many cases the developers already supply an application-speciic

workload generator. For instance, we employed the workload gen-

erator shipped with the OpenStack distribution. (2) For cases where

we did not have an existing workload generator, we implemented

a custom workload generator for the evaluated application. For

example, we built a workload generator for ShareLatex. Although

we were able to faithfully simulate user actions in ShareLatex, such

an approach might not be feasible for some applications. Having

the ability to utilize existing production traces (e.g., by replaying

the trace or by reproducing similar traces) or working in an online

fashion to generate the model of the application would certainly

help Sieve. Custom workload generation can then be used to close

the gaps in the model for certain workload conditions not covered

by the existing traces. (3) We could also explore some principled

approaches for automatic workload generation, such as symbolic

execution in distributed systems [33].

9 Conclusion and Future Work

This paper reports on our experiences with designing and building

Sieve, a platform to automatically derive actionable insights from

monitored metrics in distributed systems. Sieve achieves this goal

by automatically reducing the amount of metrics and inferring inter-

component dependencies. Our general approach is independent

of the application, and can be deployed in an unsupervised mode

without prior knowledge of the time series of metrics. We showed

that Sieve’s resulting model is consistent, and can be applied for

common use cases such as autoscaling and root-cause debugging.

An interesting research challenge for the future would be to

integrate Sieve into the continuous integration pipeline of an appli-

cation development. In this scenario, the dependency graph can be

updated incrementally [36ś38], which would speed up the analytics

part. In this way, the developers would be able to get real-time pro-

ile updates of their infrastructure. Another challenge is to utilize

already existing traic to generate the dependency graph without

requiring the developers to load the system. Using existing traic

would alleviate the burden of developers to supply a workload gen-

erator. On the other hand, existing traic traces might not always

capture the stress points of the application. A hybrid approach,

in which workload generation is only used for these corner cases,

might help to overcome this problem.

Additional results and software availability. A detailed techni-

cal report with additional experimental evaluation results is avail-

able online [84]. Finally, the source code of Sieve is publicly avail-

able: https://sieve-microservices.github.io/.

Acknowledgments. We would like to thank Amazon AWS for

providing the required infrastructure to run the experiments.

https://sieve-microservices.github.io/

Sieve: Actionable Insights from

Monitored Metrics in Distributed Systems Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA

References
[1] Amazon AWS - Scaling Based on Metrics. htps://docs.aws.amazon.com/

autoscaling/latest/userguide/policy_creating.html. Last accessed: September,
2017.

[2] Amazon CloudWatch. htps://aws.amazon.com/de/cloudwatch/. Last accessed:
September, 2017.

[3] Amazon Web Services. htps://aws.amazon.com/documentation/autoscaling/.
Last accessed: September, 2017.

[4] Google Cloud Platform. htps://cloud.google.com/developers/articles/
auto-scaling-on-the-google-cloud-platform. Last accessed: September, 2017.

[5] Google Stackdriver. htps://cloud.google.com/stackdriver/. Last accessed: Sep-
tember, 2017.

[6] Http Trace of WorldCup98. htp://ita.ee.lbl.gov/html/contrib/WorldCup.html.
Last accessed: September, 2017.

[7] InluxDB. htps://influxdata.com/time-series-platform/influxdb/. Last accessed:
September, 2017.

[8] Introducing Vector. htp://techblog.netflix.com/2015/04/
introducing-vector-netflixs-on-host.html. Last accessed: September, 2017.

[9] Kapacitor. htps://influxdata.com/time-series-platform/kapacitor/. Last ac-
cessed: September, 2017.

[10] Locust - An Open Source Load Testing Tool. htp://locust.io/. Last accessed:
September, 2017.

[11] Manualpage of Apache Benchmark. htps://htpd.apache.org/docs/2.4/programs/
ab.html. Last accessed: September, 2017.

[12] Microsoft Azure Monitor. htps://docs.microsot.com/en-us/azure/
monitoring-and-diagnostics/monitoring-overview. Last accessed: September,
2017.

[13] Monitoring at Quantcast. htps://www.quantcast.com/wp-content/uploads/
2013/10/Wait-How-Many-Metrics_-uantcast-2013.pdf. Last accessed: Sep-
tember, 2017.

[14] Nginx. htps://nginx.org/. Last accessed: September, 2017.
[15] Observability at Uber Engineering: Past, Present, Future. htps://www.youtube.

com/watch?v=2JAnmzVwgP8. Last accessed: September, 2017.
[16] OpenStack. htps://wiki.openstack.org/wiki/Heat. Last accessed: September,

2017.
[17] Openstack: API References (Response parameters). htps://developer.openstack.

org/api-ref/. Last accessed: September, 2017.
[18] Openstack: Open source Software for Creating Private and Public Clouds. htps:

//www.openstack.org/. Last accessed: September, 2017.
[19] Openstack: Telemetry. htps://docs.openstack.org/admin-guide/

telemetry-measurements.html. Last accessed: September, 2017.
[20] Rally. htps://wiki.openstack.org/wiki/Rally. Last accessed: September, 2017.
[21] Rancher Container Management. htp://rancher.com/. Last accessed: September,

2017.
[22] Sharelatex - A Web-based Collaborative LaTeX Editor. htps://sharelatex.com.

Last accessed: September, 2017.
[23] Sysdig. htp://www.sysdig.org/. Last accessed: September, 2017.
[24] Telegraf: Time-series Data Collection. htps://www.influxdata.com/

time-series-platform/telegraf/. Last accessed: September, 2017.
[25] Windows Azure. htp://msdn.microsot.com/en-us/library/hh680945(v=pandp.

50).aspx. Last accessed: September, 2017.
[26] Openstack Kolla. htp://docs.openstack.org/developer/kolla/, 2016. Last accessed:

September, 2017.
[27] Openstack Kolla Launchpad: neutron-openvswitch-agent Bug. htps://bugs.

launchpad.net/kolla/+bug/1533942, 2016. Last accessed: September, 2017.
[28] ptrace(2) Linux User’s Manual, 4.07 edition, Aug 2016.
[29] Scikit Documentation: sklearn.metrics.silhouette_score. htp://scikit-learn.org/

stable/modules/generated/sklearn.metrics.silhouete_score.html, 2016. Last ac-
cessed: September, 2017.

[30] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.
Performance Debugging for Distributed Systems of Black Boxes. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP), 2003.

[31] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Eicient Provisioning of
Bursty Scientiic Workloads on the Cloud Using Adaptive Elasticity Control. In
Proceedings of the 3rdWorkshop on Scientiic Cloud Computing Date (ScienceCloud),
2012.

[32] Amemiya, Takeshi. Advanced econometrics. 1985.
[33] R. Banabic, G. Candea, and R. Guerraoui. Finding trojan message vulnerabilities

in distributed systems. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
2014.

[34] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer. Trustworthy whole-system
provenance for the linux kernel. In 24th USENIX Security Symposium (USENIX
Security, 2015.

[35] R. Bellman and R. Corporation. Dynamic Programming. Rand Corporation
research study. Princeton University Press, 1957.

[36] P. Bhatotia. Incremental Parallel and Distributed Systems. PhD thesis, Max Planck
Institute for Software Systems (MPI-SWS), 2015.

[37] P. Bhatotia, P. Fonseca, U. A. Acar, B. Brandenburg, and R. Rodrigues. iThreads:
A Threading Library for Parallel Incremental Computation. In Proceedings of the

20th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2015.

[38] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini. Incoop: MapRe-
duce for Incremental Computations. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC), 2011.

[39] C. Canali and R. Lancellotti. An Adaptive Technique To Model Virtual Ma-
chine Behavior for Scalable Cloud Monitoring. In Proceedings of the 19th IEEE
Symposium on Computers and Communications (ISCC), 2014.

[40] B. Cantrill, M. W. Shapiro, A. H. Leventhal, et al. Dynamic instrumentation
of production systems. In Proceedings of the 2004 USENIX Annual Technical
Conference (ATC), 2004.

[41] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-aware
Server Provisioning and Load Dispatching for Connection-intensive Internet
Services. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2008.

[42] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The Mystery Machine:
End-to-end Performance Analysis of Large-scale Internet Services. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2014.

[43] G. da Cunha Rodrigues, R. N. Calheiros, M. B. de Carvalho, C. R. P. dos Santos,
L. Z. Granville, L. Tarouco, and R. Buyya. The Interplay Between Timeliness
and Scalability In Cloud Monitoring Systems. In Proceedings of the 20nd IEEE
Symposium on Computers and Communications (ISCC), 2015.

[44] R. Ding, Q.Wang, Y. Dang, Q. Fu, H. Zhang, and D. Zhang. Yading: Fast Clustering
of Large-scale Time Series Data. In Proceedings of the 41st International Conference
on VERY LARGE DATA BASES (VLDB), 2015.

[45] C. W. S. Emmons, and B. Gregg. A Microscope on Microservices. htp://techblog.
netflix.com/2015/02/a-microscope-on-microservices.html, 2015. Last accessed:
September, 2017.

[46] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay: Extensible distributed
tracing from kernels to clusters. In Proceedings of the 23th ACM Symposium on
Operating Systems Principles (SOSP), 2011.

[47] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: A pervasive
network tracing framework. In Proceedings of the conference on Networked systems
design & implementation (NSDI), 2007.

[48] M. Fowler. Microservices. htp://martinfowler.com/articles/microservices.html.
Last accessed: September, 2017.

[49] K. P. F.R.S. LIII. On Lines and Planes of Closest Fit to Systems of Points in
Space. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems (SIGMOD), 1901.

[50] A. Gehani and D. Tariq. Spade: Support for provenance auditing in distributed
environments. In Proceedings of the 13th International Middleware Conference
(Middleware), 2012.

[51] D. Giles. Testing for Granger Causality. htps://davegiles.blogspot.de/2011/04/
testing-for-granger-causality.html. Last accessed: September, 2017.

[52] A. Goel, S. Kalra, and M. Dhawan. GRETEL: Lightweight Fault Localization for
OpenStack. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies (CoNEXT), 2016.

[53] C. Granger and P. Newbold. Spurious Regressions in Econometrics. Journal of
Econometrics, 2(2):111ś120, 1974.

[54] C. W. J. Granger. Investigating Causal Relations by Econometric Models and
Cross-spectral Methods. Econometrica, 1969.

[55] W. H. Greene. Econometric Analysis. Prentice Hall, 5. edition, 2003.
[56] E. Haddad. Service-Oriented Architecture: Scaling the uber Engineering Code-

base As We Grow. htps://eng.uber.com/soa/, 2015. Last accessed: September,
2017.

[57] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond. Enabling Cost-aware
and Adaptive Elasticity of Multi-tier Cloud Applications. 2014.

[58] B. Harrington and R. Rapoport. Introducing Atlas: Netlix’s Pri-
mary Telemetry Platform. htp://techblog.netflix.com/2014/12/
introducing-atlas-netflixs-primary.html, 2014. Last accessed: September, 2017.

[59] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar. Gremlin:
Systematic Resilience Testing of Microservices. In Proceedings of the 2016 IEEE
36th International Conference on Distributed Computing Systems (ICDCS), 2016.

[60] M. A. Jaro. Advances in record-linkage methodology as applied to matching the
1985 census of tampa, lorida. 84(406):414ś420, 1989.

[61] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward. Dependency-
aware Fault Diagnosis with Metric-correlation Models in Enterprise Software
Systems. In Proceedings of 2010 International Conference on Network and Service
Management (NSDI), 2010.

[62] S. Khatua, A. Ghosh, and N. Mukherjee. Optimizing the Utilization of Virtual
Resources in Cloud Environment. In Proceedings of the 2010 IEEE International
Conference on Virtual Environments, Human-Computer Interfaces and Measure-
ment Systems (CIVEMSA), 2010.

[63] M. Kim, R. Sumbaly, and S. Shah. Root Cause Detection in a Service-oriented
Architecture. In Proceedings of the ACM SIGMETRICS/international conference on
Measurement and modeling of computer systems (SIGMETRICS), 2013.

[64] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. Eicient Biased Sam-
pling for Approximate Clustering and Outlier Detection in Large Data Sets. In
Proceedings of the 2003 IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2003.

https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html
https://aws.amazon.com/de/cloudwatch/
https://aws.amazon.com/documentation/autoscaling/
https://cloud.google.com/developers/articles/auto-scaling-on-the-google-cloud-platform
https://cloud.google.com/developers/articles/auto-scaling-on-the-google-cloud-platform
https://cloud.google.com/stackdriver/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://influxdata.com/time-series-platform/influxdb/
http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html
http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html
https://influxdata.com/time-series-platform/kapacitor/
http://locust.io/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://www.quantcast.com/wp-content/uploads/2013/10/Wait-How-Many-Metrics_-Quantcast-2013.pdf
https://www.quantcast.com/wp-content/uploads/2013/10/Wait-How-Many-Metrics_-Quantcast-2013.pdf
https://nginx.org/
https://www.youtube.com/watch?v=2JAnmzVwgP8
https://www.youtube.com/watch?v=2JAnmzVwgP8
https://wiki.openstack.org/wiki/Heat
https://developer.openstack.org/api-ref/
https://developer.openstack.org/api-ref/
https://www.openstack.org/
https://www.openstack.org/
https://docs.openstack.org/admin-guide/telemetry-measurements.html
https://docs.openstack.org/admin-guide/telemetry-measurements.html
https://wiki.openstack.org/wiki/Rally
http://rancher.com/
https://sharelatex.com
http://www.sysdig.org/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
http://msdn.microsoft.com/en-us/library/hh680945(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680945(v=pandp.50).aspx
http://docs.openstack.org/developer/kolla/
https://bugs.launchpad.net/kolla/+bug/1533942
https://bugs.launchpad.net/kolla/+bug/1533942
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
http://martinfowler.com/articles/microservices.html
https://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
https://davegiles.blogspot.de/2011/04/testing-for-granger-causality.html
https://eng.uber.com/soa/
http://techblog.netflix.com/2014/12/introducing-atlas-netflixs-primary.html
http://techblog.netflix.com/2014/12/introducing-atlas-netflixs-primary.html

Middleware ’17, December 11ś15, 2017, Las Vegas, NV, USA Thalheim et al.

[65] D. R. Krishnan, D. L. Quoc, P. Bhatotia, C. Fetzer, and R. Rodrigues. IncApprox: A
Data Analytics System for Incremental Approximate Computing. In proceedings
of International Conference on World Wide Web (WWW), 2016.

[66] J. M. Liu. Nonlinear Time Series Modeling Using Spline-based Nonparametric
Models. In Proceedings of the 15th American Conference on Applied Mathematics
(AMATH), 2009.

[67] R. Lomax and D. Hahs-Vaughn. Statistical Concepts: A Second Course, Fourth
Edition. Taylor & Francis, 2012.

[68] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A Review of Auto-scaling
Techniques for Elastic Applications in Cloud Environments. In Proceedings of
Grid Computing (CCGrid), 2014.

[69] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic causal monitoring for
distributed systems. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP), 2015.

[70] S. Meng and L. Liu. Enhanced Monitoring-as-a-service for Efective Cloud
Management. In Proceedings of IEEE Transactions on Computers (TC), 2013.

[71] R. T. Ng and J. Han. Eicient and Efective Clustering Methods for Spatial Data
Mining. In Proceedings of the 19st International Conference on VERY LARGE DATA
BASES (VLDB), 1994.

[72] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic
indexing: A probabilistic analysis. Journal of Computer and System Sciences, 2000.

[73] J. Paparrizos and L. Gravano. k-Shape: Eicient and Accurate Clustering of Time
Series. In Proceedings Of the 2016 ACM SIGMOD/PODS Conference (SIGMOD),
2016.

[74] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe. PrivApprox:
Privacy-Preserving Stream Analytics. In Proceedings of the 2017 USENIX Annual
Technical Conference (USENIX ATC), 2017.

[75] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe. StreamApprox:
Approximate Computing for Stream Analytics. In Proceedings of the International
Middleware Conference (Middleware), 2017.

[76] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. VCONF: A Reinforcement Learning
Approach to Virtual Machines Auto-coniguration. In Proceedings of the 6th
International Conference on Autonomic Computing (ICAC), 2009.

[77] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat. Pip:
Detecting the unexpected in distributed systems. In Proceedings of the conference
on Networked systems design & implementation (NSDI), 2006.

[78] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53 ś
65, 1987.

[79] N. Roy, A. Dubey, and A. Gokhale. Eicient Autoscaling in the Cloud Using
Predictive Models for Workload Forecasting. In Proceedings of the 2011 IEEE 4th
International Conference on Cloud Computing (CCIS), 2011.

[80] D. Sharma, R. Poddar, K. Mahajan, M. Dhawan, and V. Mann. Hansel: Diagnosing
Faults in OpenStack. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT), 2015.

[81] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical report, Google, 2010.

[82] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation. In Proceedings of the
2006 IEEE International Conference on Autonomic Computing (ICAC), 2006.

[83] J. Thalheim, P. Bhatotia, and C. Fetzer. Inspector: Data Provenance using In-
tel Processor Trace (PT). In proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS), 2016.

[84] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen, B. Viswanath, L. Jiao,
and C. Fetzer. Sieve: Actionable Insights fromMonitoredMetrics inMicroservices.
ArXiv e-prints, Sept. 2017.

[85] N. X. Vinh, J. Epps, and J. Bailey. Information Theoretic Measures for Clusterings
Comparison: Is a Correction for Chance Necessary? In Proceedings of the 26th
Annual International Conference on Machine Learning (ICML), 2009.

[86] A.Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Brief Announcement: Modelling
MapReduce for Optimal Execution in the Cloud. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of Distributed Computing (PODC), 2010.

[87] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Conductor: Orchestrating the
Clouds. In Proceedings of the 4th international workshop on Large Scale Distributed
Systems and Middleware (LADIS), 2010.

[88] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orchestrating the Deployment
of Computations in the Cloud with Conductor. In Proceedings of the 9th USENIX
symposium on Networked Systems Design and Implementation (NSDI), 2012.

[89] L. Yazdanov and C. Fetzer. Lightweight Automatic Resource Scaling for Multi-tier
Web Applications. In Proceedings of the 2014 IEEE 7th International Conference
on Cloud Computing (CLOUD), 2014.

[90] Q. Zhang, L. Cherkasova, and E. Smirni. A Regression-Based Analytic Model for
Dynamic Resource Provisioning of Multi-Tier Applications. In Proceedings of
the Fourth International Conference on Autonomic Computing (ICAC), 2007.

[91] S. Zhou, A. Zhou, J. Cao, J. Wen, Y. Fan, and Y. Hu. Combining Sampling
Technique With DBSCAN Algorithm for Clustering Large Spatial Databases. In
Proceedings of the 4th Paciic-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), 2000.

	Abstract
	1 Introduction
	2 Overview
	2.1 Background and Motivation
	2.2 Design Goals
	2.3 Sieve Overview

	3 Design
	3.1 Load the Application
	3.2 Reduce Metrics
	3.3 Identify Dependencies

	4 Applications
	4.1 Orchestration of Autoscaling
	4.2 Root Cause Analysis

	5 Implementation
	6 Evaluation
	6.1 Sieve Evaluation
	6.2 Case-study #1: Autoscaling
	6.3 Case-study #2: Root Cause Analysis

	7 Related Work
	8 Experience and Lessons Learned
	9 Conclusion and Future Work
	References

