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Abstract—Provisioning machine learning inference as a service
at the mobile network edge for distributed users in an online
setting faces multiple challenges, including the accuracy-resource
trade-off for model selection, the time-coupled decision for model
distribution, and the unpredictable user inference workload. To
overcome such challenges, we firstly model an online time-varying
non-linear integer program of maximizing the overall service’s
inference accuracy through dynamic model instance selection,
delivery and workload distribution. Afterwards, we design an
online learning algorithm to make fractional control decisions,
which alternates between minimizing an outer problem and
maximizing an inner problem of an equivalent convex-concave
formulation by only taking previously observable inputs. We
further design a randomized rounding algorithm to convert the
fractional decisions into integers. We rigorously prove that our
approach only incurs sub-linear dynamic regret for the optimality
loss and sub-linear dynamic fit for the long-term constraints
violation. Finally, we conduct extensive evaluations with real-
world data and confirm the empirical superiority of our approach
over state-of-the-art algorithms in terms of up to 30% reduction
on accuracy loss and 34% reduction on constraints violation.

I. INTRODUCTION

While machine learning models are mostly trained in cloud
data centers today, there is a push towards moving machine
learning inference to the network edge of the mobile edge
computing infrastructures [1, 2] in closer proximity to end
users. Such edge inference can bring ultra low response time
to end users, reduce traffic beyond the edge networks, and
ensure better user privacy [3] as users’ inference queries
are answered locally; compared to on-device inference [4–6],
executing inference in nearby edge infrastructures overcomes
the drawback of the limited resource and battery capacities of
mobile devices, requires no high-end processors on the device,
and can thus serve a wide range of users.

However, provisioning edge inference is a complicated non-
trivial process for service providers, which involves the man-
agement of loading machine learning models across networks
and serving users’ inference workload over distributed edges,
as depicted in Fig. 1. Particularly, managing edge inference
optimally in an online manner faces fundamental challenges:

First and foremost, loading machine learning models from
the cloud to distributed edges entails dynamically navigating
the trade-offs between accuracy and resource consumption
[7, 8] within the heterogenous resource and network capacities
of the underlying infrastructures. While models of higher
inference accuracies often have larger sizes and require more
computation [7, 9] when executing inference queries, it is
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Fig. 1: System architecture for inference provisioning at edge

uneasy to determine the number of model instances to fit into
each edge in each time slot in an online setting, due to the
following dilemma: loading more instances will consume more
resources than necessary; but hosting fewer instances in the
current time slot and if additional instances are needed as it
goes to the next time slot, loading them may be prohibitive due
to the available bandwidth constraints. That is, any decision
made currently potentially restricts the decisions which will be
made next, and such decision coupling over time is generally
hard to handle in online problems [10, 11].

Furthermore, user inference queries are often unpredictable
due to users’ dynamic arrivals, departures, mobility, and device
usage patterns [12, 13]. Machine learning models also need
to be chosen and placed at the edges before the inference
workload arrives. The difficulty for online algorithm design
caused by such obliviousness to the uncertain inputs further
escalates due to the queueing state transitions, as we need
to determine how many inference queries to serve from each
queue at each edge before new inference queries arrive and
enter these queues, and ensure all such queries are served
eventually. Intuitively, in every time slot, one can “learn” in
an online manner [10, 14] from the “penalty” incurred by
the online decisions just made regarding the machine learning
model provisioning and inference workload distribution after
the inference workload actually arrives, and seek to make
better decisions as time goes; however, how to design such
an effective “online learning” algorithm to clear the queues
remains a challenging problem.

Existing research falls insufficient for addressing the afore-
mentioned challenges. Some works [2, 15–19] focused on opti-
mizing and executing machine learning inference in individual
devices/systems, and rarely studied inference optimization
over heterogeneous edges from a service perspective as well978-1-7281-6630-8/20/$31.00 © 2020 IEEE



as in an online setting. Other literatures [10, 20–23] aimed at
online service provisioning, but failed to treat the challenges
for machine learning inference and integral online decisions.

In this paper, we investigate the online problem of optimiz-
ing the overall inference accuracy of the machine learning ser-
vice over the heterogenous, resource-constrained, distributed
edge infrastructure while accommodating the unpredictable
inference workload. We make the following contributions:

We model this problem as a time-varying non-linear integer
program with long-term constraints. Our problem maximizes
the overall inference accuracy subject to the constraints of
queueing state transition, machine learning model selection
and delivery, and inference workload distribution. The blind-
ness that the workload is only revealed after decisions with
regards to models and workload are made in each time slot
hampers us from satisfying the constraints for each time slot.
We thus choose to design online algorithms that optimize
the objective and upper-bound the cumulative, long-term con-
straints violation over time. Besides, the problem is NP-hard.

We design a novel polynomial-time online algorithm that
consists of an online learning component that makes frac-
tional decisions in each time slot without observing current
inputs and a randomized rounding component that converts
the fractional decisions into integers without changing the
constraints violation in expectation. Our online learning com-
ponent is based on a convex-concave equivalent formulation,
and alternates between minimizing the outer convex problem
and maximizing the inner concave problem by taking only
previous inputs instead of current inputs to our problem. Our
randomized rounding component rounds fractional decisions
in pair into integers while letting the two fractions compensate
each other and keeping the expectation of randomized integers
equal the corresponding fractions. Through rigorous theoret-
ical analysis, we prove that the performance metrics of both
the dynamic regret, which characterizes the optimality loss
relative to a sequence of instantaneous optimizers with known
costs and constraints, and the dynamic fit, which characterizes
the long-term constraint violations, with regard to our entire
online algorithm only grow sub-linearly along with time.

We conduct extensive numerical evaluations using London’s
268 underground stations as the edge infrastructure and the
corresponding real-world dynamic passenger statistics in each
station over 4 days in November 2016 as the inference
workload. We observe that our online algorithm achieves up
to 30% and 34% reduction on accuracy loss and constraint
violation, respectively, compared with multiple state-of-the-
art algorithms. Our proposed algorithm also exhibits the sub-
linear growth in the dynamic regret and fit, aligning with our
theoretical analysis, and behaves well for different workloads
as we appropriately control its parameters.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Edge Computing Infrastructure: We consider a com-
puting infrastructure that consists of a group of distributed
heterogeneous edges (e.g., cellular base stations with colocated

TABLE I: Summary of Notations
Symbol Description Vector1

rn,t Number of queries submitted to edge n at time t rt
qn,t Number of untreated queries at edge n at time t qt
am,t Accuracy loss of model m at time t at
bn,t Transference budget of edge n at time t bt
τ Cost for migrating a single inference query -
cn Resource capacity of edge n c
dm Resource requirement of an instance of model m d
sm Size of model m s
pm Processing capability of model m p

ft(·), gt(·) Abstract objective and long-term constraint -,gt(·)
α, µ, λt Non-negative algorithmic parameters -,-,λt
Decision Description2 Vector
xn,m,t #I of model m hosted at edge n at time t xt
yn,n′,t #Q migrated from edge n to edge n′ at time t yt
zn,m,t Indicator of hosting model m at edge n at time t zt

1. All vectors are column vectors in this paper, e.g., a>t := [a1,t, ..., aM,t].
2. #I : Number of instances; #Q: Number of queries.

microservers), denoted as N = {1, 2, ..., N}. Each edge has
its own access point that can be used by the end users, and all
the edges connect to one another through the wireline backhaul
networks, and further connect to the cloud that hosts the pre-
trained machine learning models via the IP backbone. We use
cn, ∀n ∈ N to represent the resource capacity (e.g., the total
CPUs or memory) of edge n.

Machine Learning Models: We consider a group of ma-
chine leaning models, denoted as M = {1, 2, ...,M}, pre-
trained, updated and stored in the cloud. For each model
m ∈ M, we denote the inference “accuracy loss” (defined
as one minus its percentile accuracy) of its latest version at
time t as am,t, its resource requirement (e.g., in terms of CPU
or memory) for a single model instance as dm, and its size
(e.g., in terms of bytes) as sm. We also use pm,∀m ∈ M to
refer to the processing capability of a single instance of model
m, i.e., the number of inference queries that a single instance
of model m can serve per time slot.

Inference Workload Processing: We consider a series of
consecutive time slots T . We denote by rn,t, ∀n ∈ N , t ∈ T
the number of inference queries submitted by the end users to
edge n at time t. Each edge has a local first-in-first-out queue,
and all the inference queries join the queue before getting
served. We denote the length of the queue as qn,t, i.e., the
number of untreated queries in the queue at edge n at time
t. The inference queries can be distributed or migrated across
edges, and can thus enter different queues and then get served.
We denote the cost (e.g., in terms of traffic) of migrating
a single inference query across edges as τ . We denote the
migration or transference budget of edge n at time t as bn,t,
capturing the (two-way) traffic limit, available bandwidth, etc.

Control Variables: We use zn,m,t ∈ {0, 1},∀n ∈ N ,m ∈
M, t ∈ T as the indicator to represent whether model m is
hosted (zn,m,t = 1) or not (zn,m,t = 0) at edge n at time t.
We denote by xn,m,t the number of the instances of model m
that are hosted at edge n at time t. We also denote by yn,n′,t
the number of users’ inference queries that are migrated from
edge n to edge n′ at time t. These variables are non-negative
integers, i.e., xn,m,t, yn,n′,t ∈ N,∀n, n′ ∈ N ,m ∈M, t ∈ T .

For clarity, the main notations are summarized in Table 1.



B. Problem Formulation

Having the system models, we aim to minimize the overall
accuracy loss of

∑T
t=1

∑
n

∑
m am,txn,m,t. Ideally, for each

time t, we would need to meet the following constraints.

∀t, n : qn,t+1 = [qn,t +
∑
n′ yn′,n,t −

∑
m pmxn,m,t]

+,

qn,1 ≥ 0, qn,T+1 = 0, (0a)

Constraint (0a) characterizes the queue state transition between
any two consecutive time slots, where the function of [·]+ =
max{·, 0} ensures the non-negative queue length. The queue
length is increased by the arriving queries, and decreased by
the queries served. Every queue is eventually cleared.

∀t, n :
∑
n′ yn,n′,t = rn,t. (0b)

Constraint (0b) captures the workload distribution.

∀t, n :
∑
m sm[zn,m,t − zn,m,t−1]+

+ τ
∑
n′,n′ 6=n(yn,n′,t + yn′,n,t) ≤ bn,t. (0c)

Constraint (0c) ensures that downloading models from the
cloud and distributing workload over the edges obeys the
transference budget. Only one copy of a model needs to be
downloaded to an edge for creating instances, if that edge does
not host that model previously.

∀t, n,m : dmxn,m,t ≤ zn,m,tcn. (0d)

Constraint (0d) ensures that an edge can have instances of a
model only if that model is decided to be hosted at that edge.

∀t, n :
∑
m dmxn,m,t ≤ cn. (0e)

Constraint (0e) ensures that the resources consumed to process
inference queries are within the edge capacity.

∀t, n, n′,m : xn,m,t, yn,n′,t ∈ N, zn,m,t ∈ {0, 1}. (0f)

Constraint (0f) enforces the variables are appropriate integers.
Problem Formulation: We observe that, because we have

no priori knowledge of users’ inference queries, it is actually
very hard, if ever possible, to make decisions at each time slot
on the fly before knowing such workload, while still satisfying
the constraints for each time slot; therefore, we choose to only
enforce the constraints in the long run, and aim to design
online algorithms to minimize the objective and bound the
cumulative constraint violation over time. We formulate the
edge inference provisioning problem as follows:

min
∑T
t=1{

∑
n

∑
m am,txn,m,t} (1)

s.t. ∀n :
∑T
t=1 g

0,n
t ≤ 0,

∀n :
∑T
t=1 g

1,n
t :=

∑T
t=1{

∑
n′ yn,n′,t − rn,t} ≤ 0,

∀n :
∑T
t=1 g

2,n
t :=

∑T
t=1{rn,t −

∑
n′ yn,n′,t} ≤ 0,

∀n :
∑T
t=1 g

3,n
t ≤ 0,

∀n,m :
∑T
t=1 g

4,n,m
t ≤ 0,

∀t, n : hnt :=
∑
m dmxn,m,t − cn ≤ 0,

var. ∀t, n,m : xn,m,t, yn,n′,t ∈ N, zloadn,m,t ∈ {0, 1},

where we have converted Constraints (0a)∼(0d) to their long-
term versions correspondingly. For (0a), we have

∀n : qn,T+1 ≥ qn,T +
∑
n′ yn′,n,T −

∑
m pmxn,m,T

≥ ... ≥ qn,1 +
∑T
t=1{

∑
n′ yn′,n,t −

∑
m pmxn,m,t},

which is due to the property of [·]+ and 0 ≥ qn,T+1 − qn,1,
all by definition. Thus, we have∑T

t=1 g
0,n
t :=

∑T
t=1{

∑
n′ yn′,n,t −

∑
m pmxn,m,t} ≤ 0.

For (0b), we simply have
∑T
t=1 g

1,n
t as well as

∑T
t=1 g

2,n
t , as

adopted in the formulation of workload distribution above. For
(0c), we introduce auxiliary binary variables to denote whether
model m should be downloaded from the cloud to edge n at
time t, i.e., binary variable zloadn,m,t, and then have

g3,n
t :=

∑
m smz

load
n,m,t+τ

∑
n′,n′ 6=n(yn,n′,t+yn′,n,t)−bn,t≤0,

where zloadn,m,t := [zn,m,t − zn,m,t−1]+, ∀n,m, t. For (0d), we
have dmxn,m,t/cn ≤ zn,m,t ≤ ... ≤ zn,m,0 +

∑t
t′=1 z

load
n,m,t′ ,

since zloadn,m,t ≥ zn,m,t − zn,m,t−1. After applying zn,m,0 = 0
and converting the inequality to its long term version, we have∑T

t=1 g
4,n,m
t :=

∑T
t=1{

dmxn,m,t
cn

− (T + 1− t)zloadn,m,t} ≤ 0.

Concise Representation: For the ease of the presentation,
we simplify the representation of our problem formulation:

min
∑T
t=1 ft(It), s.t.

∑T
t=1 gt(It) � 0, h(It) � 0, (2)

∀t : ft(It) :=
[
a>t , (0NN×1)>, (0NM×1)>

]
· It,

∀t : gt(It) :=
[
..., g0,n

t , g1,n
t , g2,n

t , g3,n
t , ..., g4,n,m

t , ...︸ ︷︷ ︸
edge n

, ...
]>
,

∀t : h(It) :=
[
h1
t , ..., h

N
t

]>
,

∀t : It =
[
x>t ,y

>
t , (z

load
t )>

]> ∈ ND, zloadt ∈ {0, 1}NM ,

where the vector It is the aggregation of xt,yt and zloadt , and
D = dim(It) is the dimension1 of It.

Note that our problem can be proved to be NP-hard even in
the offline setting (i.e., all inputs over time are known at once
and all decisions for all time slots are made at once), due to its
discrete variables and its connection to the minimum knapsack
problem. We omit this proof due to the page limit.

III. ONLINE ALGORITHM DESIGN

Our intuition is that, in each time slot, we should “learn”
from the cost incurred by the online decision just made, and
seek to make a better decision in the next time slot. We design
a novel polynomial-time Online Algorithm for Edge Inference
(OAEI) with two components: an online learning component
that overcomes the obliviousness to the uncertain user queries
and returns fractional decisions based on previously observable

1In this paper, decision Ĩt and its corresponding domain X̃ are defined
in real domain while decision It and X are defined in integral domain.
X̃ = {[x̃>t , ỹ>t , (z̃loadt )>]>|x̃t ∈ RNM≥0 , ỹt ∈ RNN≥0 , z̃

load
t ∈ [0, 1]NM}.

For the provisioning scenario, the radius of the convex feasible set X̃ is
bounded, i.e., ||a − b|| ≤ R, ∀a,b ∈ X̃ by assuming that the resource
capacity of edges and the number of queries are both limited, Similarly, X =
{[x>t ,y>t , (zloadt )>]>|xt ∈ NNM ,yt ∈ NNN , zloadt ∈ {0, 1}NM}.



Algorithm 1 Online Algorithm for Edge Inference (OAEI)

Input: Initial decision Ĩ1; Initial update parameter λ1 = 0;
Proper step sizes α and µ.

1: for t = 1, 2, ..., T do
2: Obtain It by using Randomized Rounding on Ĩt
3: Provision machine learning inference based on It.
4: Observe current cost ft(It) and constraint gt(It).
5: Update λt+1 according to (5).
6: Update Ĩt+1 according to (4).
7: end for

inputs, and a randomized rounding component that converts
such fractional decisions into integers.

A. Online Learning Component

We design an alternating “primal-dual” approach. We note
that solving the convex problem of

min
∑
t ft(Ĩt) , s.t.

∑
t gt(Ĩt) � 0, h(Ĩt) � 0, Ĩt ∈ X̃ ,

where Ĩt represents the fraction version. Solving such problem
is equivalent to solving the convex-concave problem of

minĨt
maxλt

∑
t

(
ft(Ĩt) + λ>t gt(Ĩt)

)
, s.t. h(Ĩt) � 0, Ĩt ∈ X̃ ,

where λt ∈ Rdim(gt(Ĩt))
≥0 is the Lagrange multiplier. To solve

this convex-concave problem in an online manner, we consider

Lt(Ĩ,λ) := ft(Ĩ) + λ>gt(Ĩ). (3)

Therefore, we can alternate between minimizing Lt(Ĩ,λt+1)
with respect to the primal variable Ĩ via a modified descent
step and maximizing Lt(Ĩt,λ) with respect to the Lagrange
multiplier λ via a dual ascent step. Specifically, at time t+ 1,
we solve the following problem

minĨ∈X̃ ∇ft(Ĩt)
>(Ĩ− Ĩt) + λ>t+1gt(Ĩ) +

||Ĩ− Ĩt||2

2α
, (4)

s.t. h(Ĩ) � 0,

to get Ĩt+1, where ∇ft(Ĩt) is the gradient of primal objective
ft(·) at Ĩ = Ĩt, and α is a positive step size. We also update
the Lagrange multiplier as

λt+1 = [λt + µ∇λLt(Ĩt,λt)]+ = [λt + µgt(Ĩt)]
+, (5)

where µ is also a positive step size, and∇λLt(Ĩt,λt) = gt(Ĩt)
is the gradient of Lt(Ĩt, ·) at λ = λt.

We highlight that, at t + 1, updating λt+1 as in (5) and
updating Ĩt+1 as in (4) only requires information from t, which
is the key feature of OAEI . We also point out that (4) is not a
standard but a modified descent step that directly penalizes the
constraint violation, which facilitates our performance analysis
shown later. The first two terms in (4) form an approximation
to Lt(Ĩ,λt+1), and the last term is a proximal term.

Our online component is exhibited as Algorithm 1. The
dual update of λt+1 and the primal update of Ĩt+1 are in
Lines 5 and 6, respectively. In order to convert the fractional
decisions Ĩt, ∀t into integers, we propose a randomized
rounding component as Algorithm 2, which is described next.

Algorithm 2 Randomized Rounding

Input: Fractional decision Ĩt ∈ X̃
// Step 1 rounds ỹt and z̃loadt .

1: At =
[
ỹ>t , (z̃

load
t )>

]>
, A′t = At − bAtc.

2: for Each column c in A′t do
3: A′′c,t = 1 with the probability of A′c,t; otherwise 0.
4: end for
5:
[
y>t , (z

load
t )>

]
= bAtc> + A

′′>
t

// Step 2 rounds x̃t.
6: for Each model m ∈M do
7: Bt =

[
x̃1,m,t, ..., x̃N,m,t

]>
.

// Step 2.1 ensures the sum of xn,m,t is an integer.
8: k = 1>Bt, γ1 = 1− k−bkc

k , γ2 = 1 + dke−k
k .

9: U>t =

{
[γ1B1,t, ..., γ1BN,t] with prob. dke − k;

[γ2B1,t, ..., γ2BN,t] with prob. k − bkc.
// Step 2.2 ensures each xn,m,t is an integer.

10: Vt = Ut − bUtc.
11: while Vi,t ∈ (0, 1) ∧ Vj,t ∈ (0, 1) do
12: θ1 = min {1− Vi,t, Vj,t}, θ2 = min {Vi,t, 1− Vj,t}.

13: (Vi,t,Vj,t) =

{
(Vi,t + θ1, Vj,t − θ1) with prob. θ2

θ1+θ2
;

(Vi,t − θ2, Vj,t + θ2) with prob. θ1
θ1+θ2

.
14: end while
15: xn,m,t = Vn,t,∀n ∈ N .
16: end for
17: Return It =

[
x>t ,y

>
t , (z

load
t )>

]>
.

B. Randomized Rounding Component

Our randomized rounding algorithm proceeds in two steps
as shown in Algorithm 2. The first step rounds ỹt and z̃loadt

independently, because h(Ĩt) only restricts x̃t in the sub-
problem (4). The second step rounds x̃t in a randomized
manner without violating h(·) � 0, where in every iteration a
pair of fractions are selected and rounded simultaneously.

We elaborate these steps below. The first step treats sepa-
rately each fractional value, and rounds it to an integer, whose
expectation is the fractional value itself after rounding, shown
in Lines 1 through 5. More specifically, the fractional values
can be split into two parts: the integral part bAtc and the real
part A′t. The real part is used as the probability of rounding.

Step 2.1 ensures that the sum of xn,m,t,∀n ∈ N equals
an integer and that the expectation of each xn,m,t equals its
corresponding value, as shown in Lines 8 and 9. This step
either decreases each column of Bt by multiplying γ1 < 1
so that the sum of all columns in Ut is b1>Btc, or increases
each column of Bt by multiplying γ2 > 1 so that the sum
of all columns in Ut is d1>Bte. The probabilities of taking
these two choices are dke−k and k−bkc, respectively, which
can thus ensure E[Ut] = Bt. Furthermore, given m, and k ≤
Ωm,Ωm ∈ Z, the sum of xn,m,t, i.e., k, increases to at most
dke, which also obeys dke ≤ Ωm, i.e., h(·) � 0 is also kept.

Step 2.2 further rounds the values into integers in a ran-
domized manner, while guaranteeing that the sum of all the



values stay unchanged after rounding, and that the expectation
of each randomized integer equals its corresponding value
before rounding, as shown in Lines 10 through 16. First,
the vector Ut is split again into the integral part and the
real part. Then, we use the real part as the probability to
round the columns in pairs into integers, while letting the
two fractions compensate each other. Since the sum of all
columns is an integer beforehand as a result of the previous
step, Vt can be guaranteed as a vector that only contains 0
and 1 after the loop. The complexity of the inner while loop
reaches O(N2) [24]. Lastly, combing xt, yt and zloadt together
produces the final control decisions It. We emphasize that the
results of E[It] = Ĩt that we get from our rounding algorithm
is necessary for our performance analysis later.

IV. PERFORMANCE ANALYSIS

A. Performance Metrics
We focus on two metrics that measure the performance of an

online algorithm: dynamic regret and dynamic fit. We exhibit
that the dynamic regret and the dynamic fit for our algorithms
grow only sub-linearly along with time.

Dynamic Regret: The dynamic regret is defined as the
difference between the long-term objective function value of
the online decisions {It} that are made without knowing the
inputs in each time slot and the long-term objective function
value of the optimal decisions {I∗t } that optimize the objective
function in each time slot by observing the corresponding
inputs. Both integral and real domains are considered, namely:

RegdT := E[
∑T
t=1 ft(It)]−

∑T
t=1 ft(I

∗
t ), (6a)

I∗t ∈ argminI∈X ft(I), s.t. gt(I
∗
t ) � 0, h(I∗t ) � 0,

R̃eg
d

T :=
∑T
t=1 ft(Ĩt)−

∑T
t=1 ft(Ĩ

∗
t ), (6b)

Ĩ
∗
t ∈ argminĨ∈X̃ ft(Ĩ), s.t. gt(Ĩ

∗
t ) � 0, h(Ĩ

∗
t ) � 0,

where the expectation is introduced due to the randomized
rounding component of our online algorithm.

Dynamic Fit: The dynamic fit is defined as the norm of
the cumulative violation of the long-term constraints, incurred
by the online decisions {It}. We use the function of [·]+ to
capture such violation. Also, both of the integral and real
domains are considered as follows:

FitdT := ||
[
E[
∑T
t=1 gt(It)]

]+||,∀t : It ∈ X , (7a)

F̃ it
d

T := ||[
∑T
t=1 gt(Ĩt)]

+||,∀t : Ĩt ∈ X̃ . (7b)

B. Regret and Fit Analysis
Roadmap: We firstly present Lemmas 1 and 2, via which

we connect the dynamic regret and the dynamic fit in the
integral domain to those in the real domain. Next, we bound
the fit in Theorem 1 and bound the regret in Theorem 2. Last,
we show in Corollary 1 that by choosing proper step sizes we
can concretize these bounds into sub-linear functions of time.

Lemma 1. The relationship on dynamic regret and dynamic
fit in the domain of integers and reals can be illustrated as

RegdT ≤ R̃eg
d

T , F itdT ≤ F̃ it
d

T . (8)

Proof. See Appendix A.

Assumptions: Before proceeding further, we introduce the
following assumptions to facilitate our analysis. These as-
sumptions are very common, and easy to be satisfied.

Assumption 1: ∀t, ft(Ĩ) has bounded gradients in X̃ , i.e.,
||∇ft(Ĩ)|| ≤ F,∀Ĩ ∈ X̃ ; and gt(Ĩ) is bounded in X̃ , i.e.,
||gt(Ĩ)|| ≤ G,∀Ĩ ∈ X̃ .

Assumption 2: There exists a constant ε > 0, and an interior
point Ît ∈ X̃ such that ∀t,gt(̂It) ≤ −ε1.

Assumption 3: The slack constant ε in Assumption 2 satis-
fies ε > V (g), where the point-wise maximal variation of the
consecutive constraints is defined as

V (g) := maxt maxĨ∈X̃ ||[gt+1(Ĩ)− gt(Ĩ)]
+||. (9)

Assumption 1 bounds both primal and dual gradients per
slot, which is a very common assumption [25]. Assumption
2 is Slater’s condition, which guarantees the existence of a
bounded optimal Lagrange multiplier. Assumption 3 implies
that the slack constant ε is larger than the maximal varia-
tion of the constraints, requiring mini,t maxĨ∈X̃ [−gi,t(Ĩ)]+ >

maxt maxĨ∈X̃ ||[gt+1(Ĩ)− gt(Ĩ)]
+||, which is valid when the

feasible region defined by gt(Ĩ) � 0 is large enough, or the
trajectory of gt(Ĩ) is smooth enough across time.

Lemma 2. Under previous assumptions and the dual variable
initialization of λ1 = 0, we have the following:

(||λt+1||2−||λt||2)
2 ≤ µλ>t gt(Ĩt) + µ2

2 ||gt(Ĩt)||
2, (10a)

∀t, ||λt|| ≤ ||λ̄|| := µG+ 2FR+R2/(2α)+(µG2)/2

ε−V (g)
. (10b)

Proof. See Appendix B.

Theorem 1. Under previous assumptions and the dual vari-
able initialization of λ1 = 0, the integral dynamic fit in (7a)
is upper-bounded:

FitdT ≤ F̃ it
d

T ≤
λT+1

µ ≤ ||λ̄||µ . (11)

Proof. See Appendix C.

Theorem 2. Under previous assumptions and the dual vari-
able initialization of λ1 = 0, the integral dynamic regret in
(6a) is upper-bounded:

RegdT ≤ R̃eg
d

T ≤ RT ,

where

RT =
R · V ({Ĩ∗t }Tt=1)

α
+
αF 2T

2
+
µG2(T + 1)

2
+
R2

2α

+ ||λ̄||V ({gt}
T
t=1), (12a)

V ({Ĩ∗t }Tt=1) :=
∑T
t=1 ||Ĩ

∗
t − Ĩ

∗
t−1||︸ ︷︷ ︸

V (Ĩ
∗
t )

, (12b)

V ({gt}Tt=1) :=
∑T
t=1 max

Ĩ∈X̃
||[gt+1(Ĩ)− gt(Ĩ)]

+||︸ ︷︷ ︸
V (gt)

. (12c)

Proof. See Appendix D.



Corollary 1. Under previous assumptions and initialization,
dynamic regret and fit are bounded by controlling step sizes:

α = µ = max{
√

V ({Ĩ∗t }Tt=1)

T
,

√
V ({gt}Tt=1)

T
},

RegdT = O(max{
√
V ({Ĩ∗t }Tt=1)T ,

√
V ({gt}Tt=1)T}),

F itdT ≤ ||λ̄||µ = O(max{ T

V ({Ĩ∗t }Tt=1)
, T
V ({gt}Tt=1)

}).

Following this corollary, if we set the step sizes as

α = µ = O(T−
1
3 ), (13)

then the dynamic regret and the dynamic fit can be bounded,
respectively, by

RegdT = O(max{V ({Ĩ∗t }Tt=1)T
1
3 , V ({gt}Tt=1)T

1
3 , T

2
3 }),

F itdT = O(T
2
3 ). (14)

V. EXPERIMENTAL STUDY

A. Data and Settings

Edge, Inference Workload, and Processing: We use the
dynamic passenger numbers at the 268 underground stations
of London [13] to represent the workload originated from that
station. Such passenger data is measured for every quarter
(15 minutes) for four days around Nov. 16, 2016. Thus, we
consider a four-day period of 384 quarters or time slots. We
assume every passenger issues 1∼20 inference queries to the
nearby access point colocated at the station. Without loss of
generality, each instance of machine learning models has its
accuracy loss, ranging 10%∼90%, and each instance processes
1000∼5000 queries per time slot.

Machine Learning Models, Resource, and Usage: The
typical size of a machine learning model can be of hun-
dreds of MBs, and the size variation can be up to tens of
times [9]. We set the model size as 100∼1000 MB and set the
transmission budget, according to real network bandwidths of
edges [26, 27], as 1000∼2000 KB/s. The computing capacity
for each edge is randomly configured as 80∼300 [27]. Due to
the fact that the resource consumed by different models are
quite different, we set the resource consumption as 1∼20 [28].

Algorithms and Metrics: Except for the online schema
we proposed, i.e., OAEI with α = µ = 0.15, i.e., O(384−

1
3 )

according to the corollary mentioned before, we also compare
our schema with multiple step sizes and other algorithms:
• FullUse fully uses edge resource for the model with

highest performance-price ratio, which is defined as its
process ability dividing its consumption on resource;

• Equally assigns equal amount of queries to each model
based on the query number in previous time slot;

• MaxUtility only chooses the most valuable model
with highest performance-price ratio within each edge,
and switches on delicate calculated number of instances
to cover the query number in previous time slot.

All algorithms run online, and will not obtain the actual query
numbers before provisioning any instance in each time slot.

B. Evaluation Results

Fig. 2(a) shows the normalized cost, i.e., the total accuracy
loss of the system, per time slot for all the algorithms. OAEI
with the step size of α = µ = 0.15 reduces at least 24.1% cost
on average, compared to other strategies. Further, the dynamic
changes of the cost per time slot of OAEI are more stable.
Although Equally and MaxUtility have lower costs than
OAEI at some time slots, the changes of their costs are quite
severe compared to that of OAEI , with larger peaks. We point
out that the computation overhead of OAEI is only several
seconds for thousands of variables, which is acceptable for 15-
minute time intervals and hundreds of edges. It is better than
other optimization approaches such as linear programming and
Newton’s method which often need several minutes.

Fig. 2(b) depicts the dynamic regret and the dynamic fit
for all the algorithms. Both of the dynamic regret and fit
of OAEI perform the best compared with other strategies,
gaining at least 30.0% and 34.3% reduction on the means, re-
spectively. This figure also visualizes the sub-linear growth of
the dynamic regret and the dynamic fit of OAEI , aligned with
our theoretical analysis. OAEI updates the deployment of the
instances for different models only based on users’ queries in
each previous time slot, and maintains a well balance between
both sides, i.e., the objective and the constraints.

Fig. 2(c) illustrates the results for diverse workloads and in
various settings. OAEI is the best for all the three workloads,
whose average number of queries per passenger are 5, 10
and 20, respectively; it also gains at least 40.8%, 30.0% and
29.6% reduction in terms of the mean cost, respectively. This
figure also shows the mean cost of OAEI under various step
sizes, illustrating that the step sizes chosen from our online
schema actually performs well compared with others. The
figure further shows the impact of step sizes on the dynamic fit.
OAEI with small step sizes prefers to update at a fast speed
to shorten the violation on constraints while OAEI with large
step sizes updates at a mild speed.

VI. RELATED WORK

We summarize prior research in two categories, and high-
light their drawbacks compared to our work, respectively.

Machine Learning Inference at Edge: Facebook [2] intro-
duced their study on bringing machine learning inference to
the edge, presenting both opportunities and design challenges.
Ogden et al. [15] proposed a novel mobile deep inference plat-
form that delivered good inference performance. Hu et at. [16]
minimized the overall delay for partitioned deep inference at
edges. Gobieski et al. [17] designed and implemented an
intermittence-aware software system with specialized support
for edge inference. Chinchali et al. [18] proposed a distributed
DNN architecture for varying network bandwidths between
the edge and the cloud. Jiang et al. [19] proposed a two-stage
pipeline that optimized deep learning on target edge devices.

These works often optimize and execute machine learning
inference in individual devices/systems, and rarely study infer-
ence optimization at distributed edge computing infrastructures
from a service perspective for large-scale users. In contrast, we



0 50 100 150 200 250 300 3500.00
0.20
0.40
0.60
0.80
1.00

No
rm

al
ize

d 
co

st
FullUse Equally MaxUtility OAEI

0 50 100 150 200 250 300 350
Quarter (15 min.)

0.00
0.05
0.10
0.15
0.20

No
rm

al
ize

d 
co

st

(a) Cost per time slot

0 100 200 300
Quarter (15 min.)

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
re

gr
et FullUse

Equally
MaxUtility
OAEI

0 100 200 300
Quarter (15 min.)

0.0

0.2

0.4

No
rm

al
ize

d 
fit

(b) Dynamic regret and fit

Heavy Moderate Light
Workloads

0.00
0.25
0.50
0.75
1.00
1.25
1.50

No
rm

al
ize

d 
co

st FullUse
Equally

MaxUtility
OAEI

0.1 0.3 0.5 0.7 0.9 3.0 6.0 9.0
Step sizes

0.70

0.80

0.90

1.00

No
rm

al
ize

d 
co

st OAEI

0 100 200 300
Quarter (15 min.)

0.00
0.20
0.40
0.60
0.80
1.00

No
rm

al
ize

d 
fit OAEI(1.00)

0 100 200 300
Quarter (15 min.)

0.00
0.01
0.02
0.03
0.04
0.05

No
rm

al
ize

d 
fit OAEI(0.15)

(c) Impact of workloads and step sizes

Fig. 2: Results of London underground traces

treat edge inference service provisioning in an online setting
and design algorithms with rigorously provable performance.

Online Service Provisioning at Edge: Wang et al. [22]
deployed service entities at edges online to facilitate mobile
applications and edge cloud providers. Xu et al. [20] proposed
online service caching and offloading for stochastic inputs.
Gao et al. [21] proposed an online iteration-based algorithm
for access selection and service placement at edges, but failed
to consider the uncertainty of users’ queries. The long-term
effect of instantaneous violation was also studied in [10, 23],
where online algorithms with sub-linear static/dynamic regret
and accumulated constraint violation were developed, but they
failed to consider the integral decision for machine learning
inference provisioning among edges.

These works focus on service provisioning, but are often not
about machine learning inference; regardless, their algorithmic
techniques are insufficient for addressing the challenges in our
work. Few of these works consider integral online decisions.
Further, we have addressed the time-coupled ramp constraints
and the queueing state-transition constraints in an online
learning setting with bounded long-term constraints violation.

VII. CONCLUSION

Provisioning machine learning inference as a service over
the mobile edge computing infrastructures for large-scale dis-
tributed users is an important step towards realizing universal
artificial intelligence. We model an online non-linear integer
program to maximize the edge service’s overall inference ac-
curacy, subject to the challenging constraints of time-coupling
restrictions, obliviousness to uncertain inputs, and integral
decisions. We design an online algorithm that consists of
an online learning component and a randomized rounding
component to overcome these challenges, and rigorously prove
the sub-linear dynamic regret and dynamic fit of our approach.
We also validate the practical superiority of our approach via
trace-driven evaluations and comparison to other algorithms.

APPENDIX

A. Proof of Lemma 1
Proof. Dynamic regret RegdT can be treated as

E[
∑T
t=1 ft(It)]−

∑T
t=1 ft(I

∗
t )

(15a)
=

∑T
t=1 ft(E[It])−

∑T
t=1 ft(I

∗
t )

(15b)
=

∑T
t=1 ft(E[It])−

∑T
t=1 ft(I

∗
t ) + (

∑T
t=1 ft(Ĩt)−

∑T
t=1 ft(Ĩt))

(15c)
=

∑T
t=1 ft(Ĩt)−

∑T
t=1 ft(I

∗
t ) +

∑T
t=1 ft(E[It])−

∑T
t=1 ft(Ĩt)

(15d)

≤
∑T
t=1 ft(Ĩt)−

∑T
t=1 ft(Ĩ

∗
t ) = R̃eg

d

T , (15)

where the equation (15a) holds since the expectation as well
as ft is linear; the equation (15b) holds since we add two
temporary items whose sum is 0; the equation (15c) holds
since we re-arrange the terms, and the inequality (15d) holds
since the optimum in reals is lower than the optimum in
integers for minimization, and E[It] = Ĩt is guaranteed by
our delicate designed randomized rounding.

Dynamic fit FitdT can be also treated as follows:

||[E[
∑T
t=1 gt(It)]]

+||
(16a)

≤ ||E[
∑T
t=1 gt(It)]||

(16b)
= ||

∑T
t=1 gt(E[It])||

(16c)
= ||

∑T
t=1 gt(Ĩt)|| = F̃ it

d

T , (16)

where the inequality (16a) holds because []+ on each dimen-
sion would only decrease the value of its absolute value. Thus,
the value of 2-norm increases after we omit []+. Equation (16b)
holds due to the linearity of constraints, and equation (16c)
holds also due to our randomized rounding.

B. Proof of Lemma 2
Proof. Updating λ by using the equation in (5), we have

||λt+1||2 = ||[λt + µgt(Ĩt)]
+||2

(17a)

≤ ||λt + µgt(Ĩt)||2

= ||λt||2 + 2µλ>t gt(Ĩt) + µ2||gt(Ĩt)||2, (17)

where inequality (17a) holds with the same reason as inequal-
ity (16a). After re-arranging terms in (17), we obtain (10a).
Since Ĩt+1 is the optimum for objective in (4), by using the
interior point Ît mentioned in Assumption 2, we have

∇ft(Ĩt)>(Ĩt+1 − Ĩt) + λ>t+1gt(Ĩt+1) +
||Ĩt+1−Ĩt||2

2α

≤ ∇ft(Ĩt)>(̂It − Ĩt) + λ>t+1gt(̂It) + ||̂It−Ĩt||2
2α

(18a)

≤ ∇ft(Ĩt)>(̂It − Ĩt)− ελ>t+11 + ||̂It−Ĩt||2
2α

(18b)

≤ ∇ft(Ĩt)>(̂It − Ĩt)− ε||λt+1||+ ||̂It−Ĩt||2
2α

, (18)

where inequality (18a) holds due to Assumption 2, and
inequality (18b) holds because ||λt+1|| is less or equal to
λ>t+11 for any non-negative vector λt+1. Then, we re-arrange
the terms in (18) as follows:

λ>t+1gt(Ĩt+1) ≤ ∇ft(Ĩt)>(̂It − Ĩt)−∇ft(Ĩt)>(Ĩt+1 − Ĩt)



−ε||λt+1||+ (||̂It−Ĩt||2−||Ĩt+1−Ĩt||2)

2α

(19a)

≤ ∇ft(Ĩt)>(̂It − Ĩt)−∇ft(Ĩt)>(Ĩt+1 − Ĩt)− ε||λt+1||+ R2

2α

(19b)

≤ ||∇ft(Ĩt)|| (||̂It − Ĩt||+ ||Ĩt+1 − Ĩt||)− ε||λt+1||+ R2

2α

(19c)

≤ 2FR− ε||λt+1||+ R2

2α

def
= Φt+1, (19)

where inequality (19a) holds since the bounded radius on the
domain mentioned in footnote, and ||Ĩt+1−Ĩt||2≥0; inequality
(19b) holds by using Cauchy-Schwartz inequality twice on
the first two terms; and inequality (19c) holds by using the
bounded gradient in Assumption 1 and bounded domain. After
plugging inequality in (19) into inequality (10a), we have

4(λt+1) :=
(||λt+1||2−||λt||2)

2

≤ µλ>t+1gt+1(Ĩt+1) + µ2

2
||gt+1(Ĩt+1)||2

(20a)

≤ µλ>t+1(gt+1(Ĩt+1)− gt(Ĩt+1)) + µ2G2

2
+ Φt+1

(20b)

≤ µλ>t+1[gt+1(Ĩt+1)− gt(Ĩt+1)]+ + µ2G2

2
+ Φt+1

(20c)

≤ µV (g)||λt+1||+ µ2G2

2
+ 2FR− ε||λt+1||+ R2

2α
, (20)

where inequality (20a) holds by adding two complementary
terms to the right side, i.e., ±λ>t+1gt(Ĩt+1), as well as by
using the upper-bound of g; inequality (20b) holds due to the
non-negative property of λt+1 and the property of []+; and
inequality (20c) holds due to Assumption 3.

Next, we show the correctness of inequality (10b) by
contradiction. Without loss of generality, we suppose that t+2
is the first time index that breaks inequality (10b), namely:

||λt+1|| ≤ ||λ̄||<||λt+2||. (21)

However, by using the equation in (5), the relationship can
be obtained on λ between consecutive time slots as follows:

||λt+1||
(22a)

≥ ||λt+2|| − ||λt+2 − λt+1||
= ||λt+2|| − ||[λt+1 + µgt+1(xt+1)]+ − λt+1||
(22b)

≥ ||λt+2|| − ||λt+1 + µgt+1(xt+1)− λt+1||

= ||λt+2|| − ||µgt+1(xt+1)||
(22c)
> ||λ̄|| − µG, (22)

where inequality (22a) holds due to the triangle inequality;
inequality (22b) holds because of the non-expansive property
of the projection, i.e., []+; and inequality (22c) holds by using
the hypothesis on ||λt+2|| from (21). Then, by plugging (22)
into (20), we obtain that 4(λt+1)<0, leading to ||λt+2||<||λt+1||,
which contradicts (21). Thus, ∀t, inequality (10b) holds.

C. Proof of Theorem 1

Proof. λ is updated by using equation in (5), namely:

[λT + µgT (ĨT )]+ ≥ ... ≥ λ1 +
∑T
t=1 µgt(Ĩt). (23)

Since λ1 = 0, by re-arranging the terms in (23), we obtain∑T
t=1 gt(Ĩt) ≤

λT+1

µ − λ1

µ ≤
λT+1

µ . (24)

Therefore, F̃ it
d

T = ||[
∑T
t=1 gt(Ĩt)]

+|| can be treated as

F̃ it
d

T

(25a)

≤ ||
∑T
t=1 gt(Ĩt)|| ≤ ||

λT+1

µ || ≤
||λ̄||
µ , (25)

where inequality (25a) holds due to the same reason for (16a).
By using (16) again, we complete the proof.

D. Proof of Theorem 2

Proof. The objective in (4) implies that it is 1/α-strongly
convex with respect to Ĩ, denoted by Jt(Ĩ), i.e., ∀a,b ∈ X̃ :

Jt(b) ≥ Jt(a) +∇Jt(a)>(b− a) + ||b−a||2
2α . (26)

Since Ĩt+1 is the optimum for minĨ∈X̃ Jt(Ĩ), then we have

∇Jt(Ĩt+1)>(Ĩ
∗
t − Ĩt+1) ≥ 0. (27)

Thus, by setting a = Ĩt+1,b = Ĩ
∗
t , as well as plugging

inequality (27) into inequality (26), we have

Jt(Ĩ
∗
t ) ≥ Jt(Ĩt+1) + 1

2α ||Ĩ
∗
t − Ĩt+1||2. (28)

After adding ft(Ĩt) on both two sides, expanding Jt(·)
according to its definition, i.e., the objective in (4), as well
as using the property of convex function on ft(·), i.e.,
ft(Ĩ

∗
t )≥ft(Ĩt)+∇ft(Ĩt)>(Ĩ

∗
t−Ĩt), we have

ft(Ĩt) +∇ft(Ĩt)>(Ĩt+1 − Ĩt) + λ>t+1gt(Ĩt+1) +
||Ĩt+1−Ĩt||2

2α

≤ ft(Ĩ
∗
t ) + λ>t+1gt(Ĩ

∗
t ) +

||Ĩ∗t−Ĩt||2

2α
− ||Ĩ

∗
t−Ĩt+1||2

2α

(29a)

≤ ft(Ĩ
∗
t ) +

||Ĩ∗t−Ĩt||2

2α
− ||Ĩ

∗
t−Ĩt+1||2

2α
, (29)

where inequality (29a) comes from the fact that λt+1 � 0 and
the per-slot optimal solution Ĩ

∗
t is feasible, i.e., gt(Ĩ

∗
t ) � 0,

such that λ>t+1gt(Ĩ
∗
t )≤0. Then, we analyze the gradient term as

−∇ft(Ĩt)>(Ĩt+1 − Ĩt)
(30a)

≤ ||∇ft(Ĩt)|| ||Ĩt+1 − Ĩt|| (30)
(30b)

≤ ||∇ft(Ĩt)||2
2η

+ η
2
||Ĩt+1 − Ĩt||2

(30c)

≤ F2

2η
+ η

2
||Ĩt+1 − Ĩt||2,

where η is an arbitrary positive constant. Inequality (30a)
holds because of the property of norms; inequality (30b) holds
because a2 + b2 ≥ 2ab; and inequality (30c) holds due to the
bounded gradient of ft. After that, we plug inequality (30)
into inequality (29) and re-arrange the terms as

ft(Ĩt) + λ>t+1gt(Ĩt+1) ≤ ft(Ĩ
∗
t ) + ( η

2
− 1

2α
)||Ĩt+1 − Ĩt||2

+ 1
2α

(||Ĩ∗t − Ĩt||2 − ||Ĩ
∗
t − Ĩt+1||2) + F2

2η

(31a)
= ft(Ĩ

∗
t ) + 1

2α
(||Ĩ∗t − Ĩt||2 − ||Ĩ

∗
t − Ĩt+1||2) + αF2

2
, (31)

where inequality (31a) holds because η is chosen, i.e., η=1/α,
such that ( η2−

1
2α )=0. By applying (31) into (10a), we have

4(λt+1)

µ
+ ft(Ĩt)

(32a)

≤ λ>t+1gt+1(Ĩt+1) + µ
2
||gt+1(Ĩt+1)||2

+ft(Ĩt) + λ>t+1gt(Ĩt+1)− λ>t+1gt(Ĩt+1)

(32b)
= ft(Ĩt) + λ>t+1gt(Ĩt+1) + µ

2
||gt+1(Ĩt+1)||2

+λ>t+1gt+1(Ĩt+1)− λ>t+1gt(Ĩt+1)

(32c)

≤ ft(Ĩ
∗
t ) + 1

2α
(||Ĩ∗t − Ĩt||2 − ||Ĩ

∗
t − Ĩt+1||2) + αF2

2

+µ
2
||gt+1(Ĩt+1)||2 + λ>t+1(gt+1(Ĩt+1)− gt(Ĩt+1))

(32d)

≤ ft(Ĩ
∗
t ) + 1

2α
(||Ĩ∗t − Ĩt||2 − ||Ĩ

∗
t − Ĩt+1||2) + αF2

2

+µG2

2
+ λ>t+1[gt+1(Ĩt+1)− gt(Ĩt+1)]+

(32e)

≤ ft(Ĩ
∗
t ) + 1

2α
(||Ĩ∗t − Ĩt||2 − ||Ĩ

∗
t − Ĩt+1||2) + αF2

2



+µG2

2
+ ||λt+1||V (gt), (32)

where inequality (32a) holds because we add the term ft(Ĩt) on
both two sides based on (10a) as well as two complementary
terms, i.e., ±λ>t+1gt(Ĩt+1); equation (32b) holds because
we re-arrange the terms; inequality (32c) holds due to the
application of inequality (31); inequality (32d) holds due to
the bounded value of gt+1 as well as the property of []+;
and inequality (32e) holds based on Assumption 3. Next, we
consider the intermediate terms as follows:

||Ĩ∗t − Ĩt||2
(33a)
= ||Ĩ∗t − Ĩt||2 − ||Ĩt − Ĩ

∗
t−1||2 + ||Ĩt − Ĩ

∗
t−1||2

(33b)
= ||Ĩ∗t − Ĩ

∗
t−1|| ||Ĩ

∗
t − 2Ĩt + Ĩ

∗
t−1||+ ||Ĩt − Ĩ

∗
t−1||2

(33c)

≤ 2R||Ĩ∗t − Ĩ
∗
t−1||+ ||Ĩt − Ĩ

∗
t−1||2, (33)

where equation (33a) holds because we add two complemen-
tary terms; equation (33b) holds because we apply difference
of two squares on the first two terms; and inequality (33c)
holds due to the triangle inequality for vectors and the bounded
radius on domain. Applying inequality (33) to (32), we have
4(λt+1)

µ + ft(Ĩt) ≤ ft(Ĩ
∗
t ) + ||λt+1||V (gt) + αF 2

2 + µG2

2

+ 1
2α (2R||Ĩ∗t − Ĩ

∗
t−1||+ ||Ĩt − Ĩ

∗
t−1||2 − ||Ĩ

∗
t − Ĩt+1||2).

Summing up previous inequality over t = 1 to T , we have∑T
t=1

4(λt+1)

µ
+

∑T
t=1 ft(Ĩt) ≤

∑T
t=1 ft(Ĩ

∗
t ) + αF2T

2
+ µG2T

2

+
R·V ({Ĩ∗t }

T
t=1)

α
+

∑T
t=1{||λt+1||V (gt)}

+ 1
2α

∑T
t=1(||Ĩt − Ĩ

∗
t−1||2 − ||Ĩ

∗
t − Ĩt+1||2)

(34a)

≤
∑T
t=1 ft(Ĩ

∗
t ) + αF2T

2
+ µG2T

2
+

R·V ({Ĩ∗t }
T
t=1)

α

+||λ̄||
∑T
t=1 V (gt) + 1

2α
(||Ĩ1 − Ĩ

∗
0||2 − ||Ĩ

∗
T − ĨT+1||2)

(34b)

≤
∑T
t=1 ft(Ĩ

∗
t ) + αF2T

2
+ µG2T

2
+

R·V ({Ĩ∗t }
T
t=1)

α

+||λ̄||V ({gt}Tt=1) + 1
2α

(||Ĩ1 − Ĩ
∗
0||2), (34)

where inequality (34a) holds due to the definition of ||λ̄||
and (12c), and inequality (34b) holds also due to (12c). Then,

R̃eg
d

T =
∑T
t=1 ft(Ĩt)−

∑T
t=1 ft(Ĩ

∗
t ) ≤ αF2T

2
+ ||λ̄||V ({gt}Tt=1)

+µG2T
2

+
R·V ({Ĩ∗t }

T
t=1)

α
+
||Ĩ1−Ĩ

∗
0 ||

2

2α
−

∑T
t=1

4(λt+1)

µ

= αF2T
2

+ ||λ̄||V ({gt}Tt=1) + µG2T
2

+
R·V ({Ĩ∗t }

T
t=1)

α

+
||Ĩ1−Ĩ

∗
0 ||

2

2α
− ||λT+2||2

2µ
+ ||λ2||2

2µ

(35a)

≤ RT , (35)

where inequality (35a) holds because ||Ĩ1 − Ĩ
∗
0||2 has been

bounded by R according to bounded radius of domain,
||λT+2||2 ≥ 0, as well as ||λ2||2 ≤ µ2G2 if λ1 = 0.
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