
Dynamic Distributed Edge Resource Provisioning
via Online Learning across Timescales

Wencong You1, Lei Jiao1∗, Sourav Bhattacharya2, Yuan Zhang3
1University of Oregon, Eugene, OR, USA 2Samsung AI Center, Cambridge, UK

3Communication University of China, Beijing, China

Abstract—The strategic management of distributed resources
of mobile edge computing networks often requires managing dif-
ferent system components over different timescales. In this paper,
we formulate a nonlinear mixed-integer program to capture the
online optimization of the edge network’s long-term cost, where
we distribute workload more frequently on the fast timescale
and provision resources less frequently on the slow timescale.
We design a novel online learning framework consisting of three
algorithms to make fast-timescale and slow-timescale fractional
decisions, respectively, and round such decisions into integers.
Our algorithms run in polynomial time in an online manner,
jointly solving the original NP-hard problem that can contain
arbitrary and unpredictable inputs. Via rigorous formal analysis,
we prove a parameterized-constant competitive ratio as the
performance guarantee for our approach. We conduct extensive
evaluations with real-world data and confirm our approach’s
superiority over existing practices and state-of-the-arts.

I. INTRODUCTION

Telecom carriers, network operators, and service providers

today are increasingly interested in building and deploying

computing resources at the network edge in closer proximity

to end users. Doing so brings multiple benefits, such as shorter

communication delay, less core-network traffic, and better

data localization and user privacy, just to name a few. The

cornerstone to realizing all such potentials lies in the strategic

management of distributed edge resources, often in the form

of micro clouds or “cloudlets”, which can be co-located with

cellular base stations and local communities [1], connecting

to one another via high-speed wired networks.

While adapting to the dynamics of operational expenses

(e.g., electricity cost) and service workload (e.g., user requests)

has been a major task in provisioning edge resources, a critical

factor that has been largely overlooked is managing different

components of the system over different timescales. Consider

an edge cloudlet network in Fig. 1 as an example. Users’

(e.g., HTTP) requests, often small in size and varying in

volume (e.g., due to user movements), can be easily moved

around and distributed at different cloudlets for execution [2]–

[5]; in contrast, the resources (e.g., virtual machines) [6] at

each cloudlet cannot be adjusted (e.g., booted or reconfigured)

fast enough to catch up with the workload variation and

distribution—booting new virtual machines and/or preparing

the runtime environment often takes time. In this case, the

workload and the resources to serve such workload need to be

∗The corresponding author is Lei Jiao (jiao@cs.uoregon.edu).

User

Cloudlet

Wireless

Access

Fig. 1: Edge network with workload distribution

managed on two different timescales, i.e., the workload could

be distributed more frequently on a fast timescale and the re-

sources could be adjusted less frequently on a slow timescale.

Compared to a single-timescale scheme [7]–[11] that forces

the synchronization of management, multi-timescale methods

[5], [12]–[15] can lead to greater management flexibility with

better performance and more cost savings.

However, making optimal decisions on the fly to provision

resources and distribute workload within the cloudlet network

on two timescales is non-trivial, facing multiple challenges.

First, resources provisioned in one time period need to ac-

commodate multiple workload distribution decisions, before

the next time period when the resource decision can be

updated [16]. As such workload decisions are only made after

the resource decision, it is difficult to provision resources

beforehand without knowing how the workload will be dis-

tributed (and without knowing the workload itself, because

the workload may fluctuate unpredictably) [5]. Second, the

difficulty for making resource decisions escalates when the

switching cost is involved [9], incurred by the change be-

tween two consecutive decisions which often leads to system

instability and performance degradation. Thus, in contrast to

encouraging the resources to follow the fluctuating workload

to save operational expense, the switching cost encourages

stable, constant resource decisions over time. It is challenging

to strike this trade-off wisely, as any resource decision made

at any moment can potentially impact the switching cost

between itself and the next resource decision yet to be made.

Third, other constraints in the cloudlet network adds extra

complexities, such as the time-varying operational price [12],

the heterogeneous network delay between cloudlets [10], and

the limited capacity of each cloudlet [4], which all need to be

taken into account when pursuing the optimal cost over time.

Existing research works fall insufficient for our problem.

The vast majority are single-timescale resource management

[4], [8]; some have switching cost [9], [10], [17] or learning978-1-7281-6630-8/20/$31.00 c©2020 IEEE

of uncertainties [7], [11], but are inapplicable to our two-

timescale setting. Those two-timescale approaches are often

based on different assumptions, such as time-averages [12]–

[14], stochastic knowledge [15] or predictions [16] of inputs,

which do not match our case. To our best knowledge, this is the

first paper to jointly address all the aforementioned challenges.

In this paper, firstly, we formulate the problem of resource

provisioning and workload distribution at edge as an on-

line mixed-integer program, featuring the long-run cumulative

minimization of the workload migration cost, the operational

expense of the resources, the switching cost of changing

resource decisions, and the performance degradation due to

the possible mismatch between the slow-timescale resources

and the fast-timescale workload. Our formulation generally

captures any arbitrary dynamics of the inputs, and our problem

is provably NP-hard even in an offline setting.

Next, we design a novel online learning algorithmic frame-

work which consists of three polynomial-time algorithms.

Our fast-timescale online algorithm observes the dynamic

workload in each time slot and optimizes the workload dis-

tribution in real time. Our slow-timescale online algorithm,

based on existing workload distribution of each current time

frame, transforms the original problem, decomposes it into

a series of convex sub-problems corresponding to each time

frame, and solves such sub-problems to obtain the fractional

solutions to the original problem. Our rounding algorithm

converts the fractional decisions into integers (i.e., the number

of virtual machines) by iteratively rounding pairs of fractions

to compensate each other, and violates no constraints [18].

Our algorithmic framework features two types of decom-

position. On one hand, we decompose the two-timescale

joint problem into a fast-timescale sub-problem and a slow-

timescale sub-problem which are solvable separately, based on

our key observation that the optimal workload distribution in

the joint problem and that in the fast-timescale sub-problem

make the same constraints tight. On the other hand, we further

decompose the slow-timescale sub-problem into a series of

convex sub-problems solvable without worrying about incur-

ring excessive switching cost due to not knowing the future

inputs, via a learning approximation transformation that we

develop and the regularization technique [19].

Further, we perform rigorous formal analysis to quantify the

overall performance of our approach. Particularly, via multiple

theorems, we prove the competitive ratio of our approach as a

function of the key parameters of our problem. We highlight

that, unlike classic and standard online learning algorithms

whose performance is often characterized by the regret against

the optimal invariant offline decisions [7], [11], we use the

competitive ratio to compare our algorithms against the best

possible dynamic offline decisions, which makes more sense

in our setting that naturally allows dynamic decisions.

Finally, we conduct extensive evaluations using real-world

data in realistic settings to validate the practical performance

of our proposed approach. We highlight the following findings:

(1) Our two-timescale approach outperforms one-timescale

algorithms significantly, and remains better even when the one-

timescale algorithms are adapted to the two-timescale settings;

(2) Our approach can achieve more total cost savings as more

frequent fast-timescale decisions are allowed for each slow-

timescale decision; (3) Our approach becomes more advanta-

geous as the switching cost and the learning loss becomes

more important in the system; (4) Our approach executes

efficiently, and scales well as the problem size increases.

II. MODEL FORMULATION

A. Settings and Notations

Cloudlets and Timescales. We consider an edge network

that consists of a set of geographically distributed cloudlets

J . Without loss of generality, we assume that each cloudlet

is co-located with a different cellular tower [1], and differ-

ent cloudlets connect to one another via wireline backhaul

networks. Users access their nearest cloudlet, to which they

submit their requests for processing. We study the system over

a time horizon that consists of a number of consecutive time

frames, denoted as T , where we use t ∈ T to index a single

time frame. Each time frame t further consists of a number of

consecutive time slots, denoted as St, where we use τ ∈ St to

index a single time slot. The time frames and the time slots are

of consistent durations, and correspond to the slow timescale

and the fast timescale, respectively.

Workload and Distribution. We use λjtτ to denote the

aggregated workload (e.g., user requests) received at cloudlet

j at time slot τ of time frame t. We make no assumption

on how λjtτ varies at different cloudlets or fluctuates over

time. We allow moving workload across cloudlets, and thus

the workload received at one cloudlet may be processed

at a different cloudlet with the results routed back to the

corresponding users. We use aijtτ to denote the price (i.e.,

unit cost) of routing the workload from cloudlet i to cloudlet

j at time slot τ of time frame t. Such routing cost can represent

the bandwidth consumption, the network delay, etc.

Resources and Provisioning. It is common to adopt virtual-

ization techniques in cloudlets, and without loss of generality,

we consider a virtual machine, or VM, as the unit of resource

provisioning. We denote by ej the amount of workload that can

be processed by virtual machines at cloudlet j, and by Cj the

capacity of cloudlet j in terms of the total number of virtual

machines that can be hosted. We denote by bjt the operational

price (i.e., unit operational cost) of a virtual machine at

cloudlet j at time frame t. Such operational cost may refer

to electricity price, averaged software maintenance/license fee,

etc. We further denote by cj the unit switching cost at cloudlet

j for changing resource decisions across consecutive time

frames. Such switching cost may represent the performance

penalty related to system instability due to decision changes.

Two-Timescale Decisions. We use xijtτ as the decision

variable that represents the amount of workload moved from

cloudlet i to cloudlet j at time slot τ of time frame t. We also

use yjt as the decision variable that represents the number of

virtual machines provisioned at cloudlet j at time frame t. Note

that we are modeling the decisions over two timescales, where

we make each workload distribution decision along the fast

...

s
lo

t
1

s
lo

t
2

s
lo

t
T

1

s
lo

t
1

s
lo

t
2

s
lo

t
T

2

s
lo

t
1

... ...

per-slot (fast-timescale)

workload distribution

per-frame (slow-timescale)

resource provisioning

frame frame

Fig. 2: Decisions of workload distribution and resource provisioning

timescale and make each resource provisioning decision along

the slow timescale. We also treat making a decision at a time

frame as making that decision at the first time slot of that time

frame; one can also treat it as making that decision at the last

time slot of the previous frame, which is essentially indifferent.

This is illustrated in Fig. 2. As we provision the resources

before distributing the workload, there might be performance

degradation, or what we call as learning loss, if insufficient

resources are provisioned. Here, we use dj to denote the unit

learning loss incurred at cloudlet j.

We summarize all the notations in Table I.

TABLE I: Notations

Inputs
J Set of cloudlets
T Set of time frames
St Set of time slots of time frame t

λjtτ Workload at cloudlet j at time slot τ of time frame t

aijtτ Delay from cloudlet i to j at time slot τ of time frame t

bjt Operational price of VMs at cloudlet j at time frame t

cj Unit switching cost of VMs at cloudlet j
dj Unit learning loss at cloudlet j
ej Workload that can be processed by one VM at cloudlet j
Cj Capacity of cloudlet j

Decision Variables
xijtτ Amount of workload distributed from cloudlet i to j at

time slot τ of time frame t

yjt Number of VMs to provision at cloudlet j at time frame t

B. Problem Formulation

We formulate the long-term total cost minimization problem

PL as below:

min PL =
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ +

∑
t

∑
j bjt+1yjt

+
∑

t

∑
j cj(yjt −yjt−1)

+

+
∑

t

∑
τ

∑
j dj(

∑
i xijt+1τ −ejyjt)

+

s.t. yjt ≤ Cj , ∀j, ∀t, (1a)
∑

j xijtτ ≥ λitτ , ∀i, ∀t, ∀τ ∈ St, (1b)

xijtτ ≥ 0, ∀i, ∀j, ∀t, ∀τ ∈ St, (1c)

yjt ∈ {0, 1, 2, · · · }, ∀j, ∀t. (1d)

The objective consists of four terms: total workload routing

cost
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ , total resource operational cost∑

t

∑
j bjt+1yjt, total resource switching cost

∑
t

∑
j cj(yjt−

yjt−1)
+, and total learning loss

∑
t

∑
τ

∑
j dj(

∑
i xijt+1τ −

ejyjt)
+, where (·)+

def
= max {·, 0}. Each of the four terms

can be associated to a different weight, which is omitted

for the ease of the presentation. Constraint (1a) enforces that

resources provisioned at each cloudlet is no greater than the

capacity. Constraint (1b) ensures that at every cloudlet all

the aggregated workload is fully distributed for processing.

Constraints (1c) and (1d) ensure that all decision variables are

non-negative, and resource decisions (e.g., number of virtual

machines) always take integer values.
Challenges. To solve our problem in an online manner, we

need to overcome the following challenges:

• Uncertainty. At t, it is non-trivial to determine yjt, as

it depends on unknown information: (1) for the value of

bjt+1yjt, bjt+1 is unknown at t and will only be known

at t + 1; (2) for the value of (yjt+1 − yjt)
+, yjt+1 will

only be determined and known at t+ 1 as well; and (3)

for the value of (
∑

i xijt+1τ −ejyjt)
+, xijt+1τ will also

only be determined and known at τ of t+ 1.

• Intractability. At t, determining yjt as integers is NP-

hard. Our problem is essentially NP-hard even in the

offline setting (i.e., all the inputs are known at once

beforehand)—by introducing auxiliary variables to re-

place the function of (·)+ as will be shown later, our

problem can be proved to contain the covering problem,

which is NP-hard, as a special case.

III. TWO-TIMESCALE ONLINE LEARNING FRAMEWORK

We propose a novel polynomial-time online algorithmic

framework to solve the resource provisioning optimization

problem with provable performance guarantees. First, we pro-

pose an upper bound for the problem’s objective to overcome

the challenge of uncertainty using a transformation based

only on current inputs and decisions. Second, we decompose

our transformed problem and design two fractional online

algorithms for the two timescales, respectively, to address

the switching cost and a rounding algorithm to convert the

fractional decisions to integers, in order to overcome the

challenge of intractability.

A. Problem Transformation

We transform the optimization objective of

PL =
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ +

∑
t

∑
j cj(yjt −yjt−1)

+

+
∑

t

∑
j bjt+1yjt +

∑
t

∑
τ

∑
j dj(

∑
i xijt+1τ −ejyjt)

+

to

PNL =
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ +

∑
t

∑
j ∆jt(yjt −yjt−1)

+

+
∑

t

∑
j 2bjtyjt +

∑
t

∑
τ

∑
j dj(

∑
i xijtτ −ejyjt)

+,

where ∆jt = cj+bjt+ |St|djej . Details of this transformation

are in Section IV. The new objective is actually an upper

bound of the original one. We highlight that, unlike the original

objective, in the new objective, bjt and xijtτ are in the same

time frame as yjt. That is, no information at t+1 is needed. We

will hereafter optimize the new objective, and then compare

the value of new objective with our proposed online algorithms

against the offline optimum of the original objective.
Furthermore, we introduce some auxiliary variables: wjt to

replace (yjt−yjt−1)
+, and vjtτ to replace (

∑
i xijtτ−ejyjt)

+.

We thus rewrite PNL:

min PNL =
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ +

∑
t

∑
j ∆jtwjt

+
∑

t

∑
j 2bjtyjt +

∑
t

∑
τ

∑
j djvjtτ

s.t.
∑

i λitτ −
∑

j ejCj −
∑

j vjtτ ≤ 0, ∀t, ∀τ ∈ St, (4a)

λitτ −
∑

j xijtτ ≤ 0, ∀i, ∀t, ∀τ ∈ St, (4b)

yjt − yjt−1 − wjt ≤ 0, ∀j, ∀t, (4c)
∑

i xijtτ − ejyjt − vjtτ ≤ 0, ∀j, ∀t, ∀τ ∈ St, (4d)

all variables ≥ 0, yjt ∈ {0, 1, · · · }, ∀i, ∀j, ∀t, ∀τ ∈ St.

(4e)

Consequently, Constraints (4c) and (4d) are added; Constraint

(4e) is updated. Meanwhile, Constraint (4a) is rewritten from

(1a) and (1b), combined with (4d). This involves an equivalent

transformation which does not change the problem [20], and

we adopt this transformation to facilitate our performance

analysis later.

B. Decomposition across Timescales

We decompose PNL which involves two timescales via

solving for {xijtτ , ∀i, j, ∀τ ∈ St, ∀t} using a fast-timescale

algorithm, and solving for {yjt, ∀j, ∀t} using a slow-timescale

algorithm and a rounding algorithm. The performance guaran-

tees of these algorithms are formally analyzed in Section IV.

Here we introduce additional notations for the variables for

brevity. We consider yjt as an example: we use ŷjt and ȳjt
to denote the fractional solution and its rounded value for

cloudlet j at time frame t, respectively; we also use {ŷt}
and {ȳt} to denote the set of ŷjt, ∀j and the set of ȳjt, ∀j at

t, respectively. Similar notations also apply to other variables.

Algorithm 1: Fast-Timescale Online Algorithm,∀τ ∈St,∀t

Solve the below problem PNL(x) to get the optimal {x̂t}:

min PNL(x) =
∑

t

∑

τ

∑

i

∑

j
aijtτxijtτ

s.t. λitτ −
∑

j
xijtτ ≤ 0 ∀i

∑

i
xijtτ − ejCj ≤ 0 ∀j

xijtτ ≥ 0 ∀i, ∀j

Fast-Timescale Algorithm. First, we run Algorithm 1 at

every time slot of every time frame to solve the workload

decisions {x̂t}. We solve the problem PNL(x) which is

derived from PNL, with additional constraints
∑

i xijtτ ≤
ejCj , ∀j, ∀t, ∀τ ∈ St which ensure distributed workload is

within cloudlets’ capacity. PNL(x) is simply a linear program.

Our key observation here is that, when the optimum is reached,

{x̂t} solved from PNL(x) and the optimal {xt} solved

from PNL make the same constraint, i.e., (4b), tight. Thus,

we are able to derive PNL(x) from PNL and solve {xt}
independently on the fast timescale. This connection is used

to analyze our proposed algorithms’ performance as well.

Slow-Timescale Algorithm: Fractional. Next, we call

Algorithm 2 at every time frame to solve the fractional

resource decisions {ŷt} with {x̂t} as inputs. Our focus here

is to address the switching cost. We construct the problem

PNLt
for time frame t by relaxing the integer constraints to

the continuous domain and substituting (yjt − yjt−1)
+ by a

well-designed logarithmic term of (yjt + ε) ln
yjt+ε

yjt−1+ε
− yjt,

Algorithm 2: Slow-Timescale Online Algorithm, ∀t

1 Insert {x̂t} in the following problem PNLt
as inputs;

2 Solve PNLt
to obtain the optimal {ŷt, v̂t};

min PNLt =
∑

τ

∑

i

∑

j
aijtτxijtτ +

∑

j
2bjtyjt

+
∑

τ

∑

j
djvjtτ

+
∑

j

∆jt

η

(

(yjt + ε) ln
yjt + ε

ŷjt−1 + ε
− yjt

)

s. t. (4a), (4b), (4d) without “∀t”
yjt, vjtτ ≥ 0 ∀j, ∀τ ∈ St

where ε > 0 and η = ln
(

1 + 1

ε

)

are parameters.

where ε > 0 is a pre-specified parameter. This new term is

convex and differentiable in yjt given yjt−1 [19], and the

property of logarithm helps us regularize the current decisions

in a controlled manner to avoid excessive switching cost that

might be incurred by potential future workload increase. It

allows us to solve PNLt
at t in polynomial time using any

standard convex solver by taking solutions from PNLt−1
and

requiring no information beyond t. Moreover, it brings us

proven performance guarantees.

Algorithm 3: Pairwise Rounding Algorithm, ∀t

⊲ Round ŷt to ȳt in a randomized manner.

1 θjt
def
= ŷjt, ∀j;

2 J ′ def
= J \ {j|θjt − ⌊θjt⌋ = 0};

3 while |J ′| > 1 do

4 Select j1, j2 ∈ J ′, where j1 6= j2;

5 ω1
def
= min{⌈θj1t⌉ − θj1t, θj2t};

6 ω2
def
= min{θj1t, ⌈θj2t⌉ − θj2t};

7 With the probability ω2

ω1+ω2
,

Set θ′j1t = θj1t + ω1, θ
′

j2t
= θj2t − ω1;

8 With the probability ω1

ω1+ω2
,

Set θ′j1t = θj1t − ω2, θ
′

j2t
= θj2t + ω2;

9 if θ′j1t−⌊θ′j1t⌋ = 0 then Set ȳj1t= θ′j1t, J
′= J ′ \{j1};

10 else Set θj1t = θ′j1t;
11 if θ′j2t−⌊θ′j2t⌋ = 0 then Set ȳj2t= θ′j2t, J

′= J ′ \{j2};
12 else Set θj2t = θ′j2t;
13 end

14 if |J ′| = 1 then Set ȳjt = ⌈ŷjt⌉ for the only j ∈ J ′

Slow-Timescale Algorithm: Rounding. Lastly, we invoke

Algorithm 3, inspired by the dependent rounding technique

[18], at every time frame to convert the fractional solutions

produced by Algorithm 2 to integers. In each iteration, the

algorithm picks a pair of fractions and rounds at least one of

the two values to an integer randomly. The main loop is Line

3 through Line 13 where either Line 7 or Line 8 is executed

in each iteration based on the probability. The main loop has

three properties: (1) In each iteration, at least one fraction

is rounded to an integer; (2) After each iteration, there is

θj1t + θj2t = θ′j1t + θ′j2t that ensures the integral solutions

after rounding do not violate the constraints of PNLt
; and (3)

After rounding, the expectation of the integral value equals to

the previous fractional value, i.e., E(ȳjt) = ŷjt, ∀j ∈ J \ J ′.

This will be used to derive the integrality gap for analysis.

IV. COMPETITIVE ANALYSIS

We formally prove that the objective value of our original

problem PL evaluated with the solutions produced by our pro-

posed online algorithms is upper-bounded by a parameterized

constant times the offline optimum of PL. We will establish

the following chain of inequalities:

E(PL(x̂t, ȳt)) (7a)

≤ E(PNL(x̂t, ȳt)) (7b)

≤ r3PNL(x̂t, ŷt) (7c)

≤ r2r3PNLOPT
(7d)

≤ r1r2r3PLOPT
, (7e)

where r = r1r2r3 is the overall competitive ratio. Regarding

(7a) ≤ (7b), we exhibit that PNL is an upper bound of PL

when evaluated with {x̂t, ȳt}. We focus on the expected

value “E”, because we have introduced probability-based

randomization in our rounding algorithm. Regarding (7b)

≤ (7c), we characterize the performance of our rounding

algorithm, i.e., connecting the value of PNL with rounded

solutions to its value with fractional ones. Regarding (7c)

≤ (7d), we characterize the performance of our fractional

online algorithms, i.e., connecting the value of PNL evaluated

with the online fractional solutions to its corresponding offline

optimum. Regarding (7d) ≤ (7e), we connect the optimum of

PNL to that of PL, because the latter is the original problem

that we aim to solve.

A. Learning Approximation

We prove (7a) ≤ (7b) in Theorem 1, then prove (7d) ≤ (7e)

and show r1 in Theorem 2.

Theorem 1. E(PL(x̂t, ȳt)) ≤ E(PNL(x̂t, ȳt)) is due to
∑

t

∑
j bjt+1ȳjt ≤

∑
t

∑
j 2bjtȳjt +

∑
t

∑
j bjt(ȳjt − ȳjt−1)

+

and ∑
t

∑
τ

∑
j dj(

∑
i x̂ijt+1τ − ej ȳjt)

+

≤
∑

t

∑
τ

∑
j dj(

∑
i x̂ijtτ − ej ȳjt)

+

+
∑

t

∑
j |St|djej(ȳjt − ȳjt−1)

+.

Proof. See Appendix A.

Theorem 2. PNLOPT
≤ r1PLOPT

, where

r1 =
maxj,t(∆jt+2bjt+|St|djej)

minj cj
+ 2.

Proof. See Appendix B.

B. Fractional Competitive Ratio

We prove (7c) ≤ (7d) and show r2 in Theorem 3. We present

the proof via a primal-dual method. That is, we show

PNL(x̂t, ŷt) ≤ r2DNL(π(x̂t, ŷt, v̂t)) ≤ r2PNLOPT
.

DNL denotes the objective function of the problem DNL,

which is the Lagrange dual problem of PNL. π denotes a

mapping that maps PNL’s fractional solutions to the feasible

solutions to DNL. Then, due to weak duality, we immediately

have DNL({π(x̂t, ŷt, v̂t)}) ≤ PNLOPT
, and thus we only

need to prove PNL(x̂t, ŷt) ≤ r2DNL(π(x̂t, ŷt, v̂t)). Below,

we formulate DNL, construct π, and establish the bound.

Formulating Lagrange Dual of PNL. We derive the dual

problem DNL as follows, where αtτ , βitτ , φjt, ϕjtτ are the

dual variables:

max DNL =
∑

t

∑
τ αtτ (

∑
i λitτ −

∑
j ejCj)

+
∑

t

∑
τ

∑
i βitτλitτ

s.t. aijtτ − βitτ + ϕjtτ ≥ 0, ∀i, ∀j, ∀t, ∀τ ∈ St, (9a)

2bjt + φjt − φjt+1 − ej
∑

τ ϕjtτ ≥ 0, ∀j, ∀t, (9b)

∆jt − φjt ≥ 0, ∀j, ∀t, (9c)

dj − αtτ − ϕjtτ ≥ 0, ∀j, ∀t, ∀τ ∈ St, (9d)

αtτ , βitτ , φjt, ϕjtτ ≥ 0, ∀j, ∀t, ∀τ ∈ St. (9e)

Constructing the Mapping. We construct the mapping as

follows, where ŷjt are solved from PNLt
, and ατ , βiτ , ϕjτ

are PNLt
’s dual variables:

αtτ = ατ , ∀τ ∈ St,

βitτ = βiτ , ∀i, ∀τ ∈ St,

ϕjtτ = ϕjτ , ∀j, ∀τ ∈ St,

φjt =
∆jt

η
ln 1+ε

ŷjt−1+ε
, ∀j.

To verify that such constructed solutions are indeed feasible

for DNL, we need to show that they satisfy DNL’s constraints.

This can actually be shown by using the Karush-Kuhn-Tucker

(KKT) conditions of PNLt
, which they satisfy:

aijtτ − βiτ + ϕjτ = 0 (11a)

2bjt +
∆jt

η
ln

ŷjt+ε

ŷjt−1+ε
− ej

∑
τ ϕjτ = 0 (11b)

dj − ατ − ϕjτ = 0 (11c)

ατ (
∑

i λitτ −
∑

j ejCj −
∑

j v̂jtτ) = 0 (11d)

βiτ (λitτ −
∑

j x̂ijtτ) = 0 (11e)

ϕjτ (
∑

i x̂ijtτ − ej ŷjt − v̂jtτ) = 0 (11f)

all primal and dual variables ≥ 0 (11g)

Bounding. Consequently, we bound the non-switching cost

and the switching cost, respectively. Combining them together,

we have the following theorem:

Theorem 3. PNL(x̂t, ŷt) ≤ r2DNL(π(x̂t, ŷt, v̂t)), where

r2 = 1 + η|J |(maxj ejCj), and η = ln (1 + 1
ε
), ε ≥ 0.

Proof. See Appendix C.

C. Integrality Gap

We prove (7b) ≤ (7c) and show r3 in Theorem 4.

Theorem 4. E(PNL(x̂t, ȳt)) ≤ r3PNL(x̂t, ŷt) is due to

E(
∑

t

∑
j 2bjtȳjt +

∑
t

∑
τ

∑
j dj(

∑
i x̂jitτ − ej ȳjt)

+)

≤δ′yPNL(x̂t, ŷt),

and E(
∑

t

∑
j ∆jt(ȳjt − ȳjt−1)

+) ≤ δ′′yPNL(x̂t, ŷt),

where

δ′y=
2|J|maxj,t bjtCj

mint

∑
τ

∑
i λitτ mini,j,t,τ aijtτ

+
maxj dj

mini,j,t,τ aijtτ
,

δ′′y=
|J|maxj,t ∆jtCj

mint

∑
τ

∑
i λjtτ mini,j,t,τ aijtτ

,

r3= δ′y + δ′′y .

Proof. See Appendix D.

10 20 50 100
Number of Cloudlets

0.0

0.5

1.0

1.5

2.0
To

ta
l C

os
t

Ours, Two Timescales
LCP, One Timescale
Gurobi, One Timescale

Fig. 3: Cost of single vs. multiple
timescales

10 20 50 100
Number of Cloudlets

0.0

0.5

1.0

1.5

2.0

To
ta

l C
os

t

Ours
LCP
Gurobi

Fig. 4: Cost of algorithms in two
timescales

2 4 6 8 10
Number of Time Slots per Time Frame

0.0

0.5

1.0

1.5

2.0

To
ta

l C
os

t

of Cloudlets = 20
of Cloudlets = 10

Fig. 5: Cost for different numbers
of slots per frame

0.33

0.66

1.0 Ours
LCP
Gurobi

0.01 0.1 1 10 100
Weight of Switching Cost

0.0
0.02
0.04
0.06
0.08

To
ta

l C
os

t

Fig. 6: Cost for different weights
of switching cost

V. NUMERICAL EVALUATION

A. Evaluation Setup

Cloudlets and Timescales. We simulate the cloudlets as

being co-located with the Tube stations of the Greater London

Urban Area, where each station has one cloudlet. For scala-

bility, we vary the cloudlets under consideration as the largest

10 ∼ 100 stations within the radius of 4 ∼ 20 miles centered

around the Oxford Circus station. We observe the system for

24 hours. We set the length of a time frame as 5 minutes [21],

and vary the length of a time slot as 0.5 ∼ 5 minutes.

Workload. We use the dynamic numbers of the passengers

entering and exiting each selected Tube station in the 24 hours

of November 10, 2019 [22] to mimic the workload received

at each cloudlet.

Routing Cost, Resource Price, Weights, and Capacity.

We calculate the unit routing cost between two cloudlets based

on the geographic distance between the corresponding stations.

We use Amazon EC2 Spot Instance VMs’ prices (c3.2xlarge,

Linux/UNIX, US West) [23] as the VM operational price in

our system. We also vary the weights of the switching cost

and that of the learning loss as 0.01 ∼ 100 in order to show

the results for a spectrum of settings. We set the algorithmic

parameter ε as 0.001. We set the capacity of each cloudlet

based on a formula that captures the approximate number of

users a website can host via Google Analytics [24].

Algorithms. We use Python 3 and A Mathematical Pro-

gramming Language (AMPL) [25] for data processing and

algorithm implementation. We invoke the interior-point-based

IPOPT solver [26] to solve the underlying fractional opti-

mization problems. In the results, we denote our approach

as “Ours”. We also implement two alternative algorithms.

The first solves each one-shot sub-problem of our non-learning

problem (i.e., PNL) via invoking the mixed-integer program

solver Gurobi [27] to directly get the integer solutions. We

denote this approach as “Gurobi”. The second applies the

“Lazy Capacity Provisioning” (LCP) algorithm to our non-

learning problem, where LCP is a state-of-the-art online algo-

rithm that tackles problems with switching costs [9], coupled

with Python 3’s default rounding method. We denote this

approach as “LCP”. All evaluations run on a laptop with an

Intel(R) Core i7-7500U 2.7-GHz CPU and 16-GB RAM. All

the total cost values in the figures have been normalized for

better visualization.

B. Evaluation Results

Single Timescale vs. Two Timescales. We compare our

approach which runs on two timescales against Gurobi

and LCP which run on a single timescale (by setting the

length of a time slot to that of a time frame). As we allow

the system to react fast and slow corporately, our approach

does not incur as frequent decision changes for resource

provisioning as the single-timescale ones. Fig. 3 confirms that

our approach produces significantly less total cost, saving on

average 48% and 41% total cost compared to Gurobi and

LCP, respectively.

Total Cost in Two Timescales. We compare our approach,

Gurobi and LCP, all on two timescales. That is, Gurobi and

LCP also invoke our fast-timescale algorithm to distribute the

workload, but make their own decisions in the slow timescale

to provision the resources. Fig. 4 depicts that, as the number of

cloudlets varies, our approach outperforms Gurobi and LCP

by 32% and 26% total cost on average. As more cloudlets

and workload are involved in the system, the total cost goes

up. Although the alternative approaches as well produce better

results in the two-timescale setting compared to themselves in

the single-timescale setting, our approach is always better.

Impact of Number of Slots per Frame. We verify the total

cost incurred by our approach as the number of time slots

per time frame varies, while fixing the length of each time

frame. Fig. 5 presents a decreasing pattern of the total cost as

each time frame contains more time slots. As the number of

time slots per time frame grows, the system can react to user

requests and distribute workload more frequently. Therefore,

it has more opportunities to “learn”, yielding a better resource

provisioning decision for each time frame.

Impact of Weight of Switching Cost and Learning Loss.

We check the total cost of the algorithms when different

weights are associated to the switching cost and the learning

loss. Fig. 6 shows that, as the weight goes up, the total cost

incurred by all algorithms increases; our approach, however,

yields the least total cost that are on average 53% and 41%

less than Gurobi and LCP, respectively. The reasons are as

follows: (1) Gurobi cannot address switching cost well, as it

essentially ignores the switching cost; (2) Python 3’s default

0.01 0.1 1 10 100
Weight of Learning Loss

0.0

0.5

1.0

1.5

2.0

To
ta

l C
os

t
Ours
LCP
Gurobi

Fig. 7: Cost for different weights
of learning loss

10 20 50 100
Number of Cloudlets

0

2

4

6

8

10

12

Al
go

rit
hm

 R
un

 T
im

e
(s

) Fast-timescale
Slow-timescale
Rounding

Fig. 8: Running time of different
algorithms

rounding method with LCP does not ensure that our problem’s

constraints are satisfied, so some resource provisioning vari-

ables are rounded up and others are rounded down, without

any guarantees. Fig. 7 exhibits the influence of the weight

of learning loss on the total cost. It shows that as the weight

grows, the total cost for all algorithms increases. Our approach

still increases the slowest and outperforms Gurobi and LCP

by 38% and 27% less total cost on average.

Algorithm Execution Time. We investigate our algorithms’

running time of each round of decision making in Fig. 8. The

line shows our approach’s overall running time; the stacked

bars show the running time of each algorithmic component.

Our fast-timescale algorithm takes relatively much longer time

to run than our slow-timescale algorithm, because it involves

a larger number of variables and runs more frequently. Our

rounding algorithm takes negligible time to finish, as it has a

linear time complexity by design. Our approach is extremely

efficient and scalable because the overall running times in all

scenarios, where even a hundred cloudlets are considered, are

always less than 2% of the length of a time frame.

VI. RELATED WORK

We consider the existing research on single-timescale and

multi-timescale cloud and edge management, and highlight

their insufficiency compared to our work.

Single-Timescale Resource Management. He et al. studied

service placement and request scheduling with shareable and

non-shareable data across cloudlets [4]. Xu et al. designed a

decoupled model to manage different resources independently

based on a priori resource-sharing contracts [8]. Lin et al.

proposed to save the energy consumption of data centers by

“lazily” right-sizing servers via online algorithms [9]. Jiao et

al. managed both the servers contained in the cloudlets and the

cloudlets themselves for better overall performance [17]. Wang

et al. addressed user mobility in edge networks by an online

algorithm for allocating resources and shifting workloads [10].

Cai et al. designed a general online learning framework based

on stochastic multi-armed bandits for a variety of network

optimization problems [7]. Ouyang et al. jointly optimized

user’s perceived latency and service migration cost using a

Thompson-sampling-based learning algorithm [11].

All of these works are for the one-timescale setting, rather

than for two timescales. Although some of them have con-

sidered the switching cost between consecutive decisions [9],

[10], [17], or the learning of the uncertainties [7], [11], we

emphasize that it largely remains a question whether and how

we could adapt such existing one-timescale approaches to two

timescales with provable performance guarantees, due to the

fundamental change in the settings. This also motivates us to

design novel, intrinsic two-timescale approaches.

Multi-Timescale System Optimization. Goel et al. did a

theoretical study on how to design control algorithms that

can be decomposed across timescales [16]. Deng et al. and

Yao et al. applied Lyapunov optimization to the power supply

minimization for cloud data centers while purchasing energy

on two timescales [12], and also to the joint cloud power and

workload delay reduction by managing routing and servers

over different timescales [13]. Chen et al. extended a stochastic

dual gradient algorithm for placing virtual network functions

while stabilizing the backlogs of network services [14]. Gao et

al. proposed an MDP-based framework to maximize service

profit while provisioning resources on a slow timescale and

scheduling workload on a fast timescale [15]. Farhadi et al.

formulated and solved a two-timescale online linear program

for joint service placement and request scheduling [5].

Despite these works focus on the two-timescale approaches,

some of them adopt offline instead of online algorithms [5];

those that are online often target the time-averaged objectives

and constraints [12]–[14], or the stochastic models of the

system [15]. Some rely on the capability of predicting future

inputs [16]. None of these works matches our problem settings

featured by the switching cost plus the deterministic models

that need no stochastic knowledge or prediction of the system’s

inputs. To the best of our knowledge, this paper is the first to

address these challenges in the two-timescale settings.

VII. CONCLUSION

In this paper, we investigate the online resource provisioning

and workload distribution problem in distributed edge cloudlet

networks. We propose and present a novel online learning

framework which makes resource provisioning decisions and

workload distribution decisions on two separate timescales.

Our approach features the online fractional algorithm and

the rounding algorithm that produce resource provisioning

decisions on the fly, without worrying about the unknown

upcoming dynamic inputs and the workload distribution de-

cisions to be made in the future. We have formally proved

a parameterized-constant competitive ratio for our framework,

and also conducted numerical evaluations with real-world data

to confirm the advantages of our approach in practice.

APPENDIX

A. Proof of Theorem 1
∑

t

∑
j bjt+1ȳjt =

∑
t

∑
j bjtȳjt−1 (15a)

=
∑

t

∑
j bjtȳjt −

∑
t

∑
j bjt(ȳjt − ȳjt−1) (15b)

≤
∑

t

∑
j bjtȳjt +

∑
t

∑
j bjt|ȳjt − ȳjt−1| (15c)

≤
∑

t

∑
j 2bjtȳjt +

∑
t

∑
j bjt(ȳjt − ȳjt−1)

+ (15d)

∑
t

∑
τ

∑
j dj(

∑
i x̂ijt+1τ − ej ȳjt)

+

≤
∑

t

∑
τ

∑
j dj(

∑
i x̂ijt+1τ − ej ȳjt+1)

+

+
∑

t

∑
τ

∑
j djej(ȳjt+1 − ȳjt)

+ (16a)

=
∑

t

∑
τ

∑
j dj(

∑
i x̂ijtτ − ej ȳjt)

+

+
∑

t

∑
τ

∑
j djej(ȳjt − ȳjt−1)

+ (16b)

=
∑

t

∑
τ

∑
j dj(

∑
i x̂ijtτ − ej ȳjt)

+

+
∑

t

∑
j |St|djej(ȳjt − ȳjt−1)

+ (16c)

(15a) holds because of bjT+1 = 0 and ȳj0 = 0 by definition.

(15b) equals to (15a). (15c) holds because the absolute value

is added. (15d) is reached due to the properties of the absolute

value and (·)+.

(16a) holds due to the non-negative property of (·)+. (16b)

holds because by definition we have x̂ijT+1τ = 0, ȳjT+1 = 0
and ȳj0 = 0. (16c) removes the irrelevant summation. Obvi-

ously, the expectations of these terms grant the same relations.

B. Proof of Theorem 2

Let us review the objective function of the non-learning

problem and the original online learning problem.

PNL =
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ +

∑
t

∑
j 2bjtyjt

+
∑

t

∑
j ∆jt(yjt −yjt−1)

+

+
∑

t

∑
τ

∑
j dj(

∑
i xijtτ − ejyjt)

+

PL =
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ +

∑
t

∑
j bjt+1yjt

+
∑

t

∑
j cj(yjt −yjt−1)

+

+
∑

t

∑
τ

∑
j dj(

∑
i xijt+1τ − ejyjt)

+

Assuming {x̂∗
t
, ȳ∗

t
, ∀t} are offline optimal solutions to PL,

and let Q represents
∑

t

∑
τ

∑
i

∑
j aijtτxijtτ that appears in

both PNL and PL. The following chain of inequalities is built:

PNLOPT
≤ PNL({x̂

∗
t
, ȳ∗

t
, ∀t}) (19a)

=Q({x̂∗
t
, ȳ∗

t
, ∀t}) +

∑
t

∑
j ∆jt(ȳ

∗
jt − ȳ∗jt−1)

+

+
∑

t

∑
j 2bjtȳ

∗
jt +

∑
t

∑
τ

∑
j dj(

∑
i x̂

∗
ijtτ − ej ȳ

∗
jt)

+

(19b)

≤Q({x̂∗
t
, ȳ∗

t
, ∀t}) +

∑
t

∑
j 2bjtȳ

∗
jt−1

+
∑

t

∑
j(∆jt + 2bjt)(ȳ

∗
jt − ȳ∗jt−1)

+

+
∑

t

∑
τ

∑
j dj(

∑
i x̂

∗
ijtτ − ej ȳ

∗
jt−1 + ej ȳ

∗
jt−1 − ej ȳ

∗
jt)

+

(19c)

≤Q({x̂∗
t
, ȳ∗

t
, ∀t}) +

∑
t

∑
j 2bjt+1ȳ

∗
jt

+
∑

t

∑
j(∆jt + 2bjt + |St|djej)(ȳ

∗
jt − ȳ∗jt−1)

+

+
∑

t

∑
τ

∑
j dj(

∑
i x̂

∗
ijt+1τ − ej ȳ

∗
jt)

+ (19d)

≤r1PLOPT
(19e)

where r1 = 2 +
maxj,t(∆jt+2bjt+|St|djej)

minj cj
.

(19a) and (19b) hold because {x̂∗
t
, ȳ∗

t
, ∀t} are not neces-

sarily the optimal solutions to PNL. (19c) holds because the

term
∑

t

∑
j 2bjtȳ

∗
jt−1 is non-negative. (19d) holds due to the

definition of (·)+, and x̂ijT+1τ = 0, bjT+1 = 0 and ȳj0 = 0.

(19e) is valid due to r1 > 1.

C. Proof of Theorem 3

We first bound the non-switching cost terms:
∑

t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ +

∑
t

∑
j 2bjtŷjt

+
∑

t

∑
τ

∑
j dj v̂jtτ

=
∑

t

∑
τ

∑
i

∑
j(βitτ − ϕjtτ)x̂ijtτ

+
∑

t

∑
j(ej

∑
τ ϕjtτ −

∆jt

η
ln

ŷjt+ε

ŷjt−1+ε
)ŷjt

+
∑

t

∑
τ

∑
j(αtτ + ϕjtτ)v̂jtτ (20a)

≤
∑

t

∑
τ

∑
j(
∑

i βitτ x̂ijtτ −
∑

i ϕjtτ x̂ijtτ)

+
∑

t

∑
τ

∑
j ejϕjtτ ŷjt

+
∑

t

∑
τ

∑
j(αtτ v̂jtτ + ϕjtτ v̂jtτ) (20b)

=
∑

t

∑
τ αtτ

∑
j v̂jtτ

−
∑

t

∑
τ

∑
j ϕjtτ (

∑
i x̂ijtτ − ej ŷjt − v̂jtτ)

+
∑

t

∑
τ

∑
i βitτ

∑
j x̂ijtτ (20c)

=
∑

t

∑
τ αtτ (

∑
i λitτ −

∑
j ejCj) +

∑
t

∑
τ

∑
i βitτλitτ

(20d)

=D (20e)

In (20a), the parameters are substituted with terms obtained

from KKT conditions (11a) ∼ (11c). In (20b), the log term is

removed and the inequality still holds due to its non-negativity.

Further explanation is given below. ∀p, ∀q, there are two facts:

p− q ≤ p ln p
q

(
∑

n pn ln
∑

n pn∑
n qn

) ≤
∑

n pn ln
pn

qn
.

Therefore, ∀j,

∑
t ŷjt ln

ŷjt+ε

ŷjt−1+ε

=
∑

t(ŷjt + ε) ln
ŷjt+ε

ŷjt−1+ε
−
∑

t ε ln
ŷjt+ε

ŷjt−1+ε

≥(
∑

t(ŷjt + ε)) ln
∑

t(ŷjt+ε)
∑

t(ŷjt−1+ε) + (ŷj0 + ε) ln
ŷj0+ε

ŷjT+ε

≥
∑

t(ŷjt + ε)−
∑

t(ŷjt−1 + ε) + ŷj0 − ŷjT
=0

(20c) makes rearrangements in terms of the dual variables.

(20d) is valid from (11d) ∼ (11f). (20e) follows from the

objective function of the dual problem.

Then we bound the switching cost term. Let Ĵ = {j|ŷjt ≥
ŷjt−1}, because when ŷjt ≤ ŷjt−1, the switching cost equals

zero thus there’s no need to consider. We have
∑

t

∑
j ∆jt(ŷjt − ŷjt−1)

+

=
∑

t

∑
j∈Ĵ ∆jt(ŷjt − ŷjt−1) (23a)

=
∑

t

∑
j∈Ĵ ∆jt((ŷjt + ε)− (ŷjt−1 + ε)) (23b)

≤
∑

t

∑
j∈Ĵ ∆jt(ŷjt + ε) ln

ŷjt+ε

ŷjt−1+ε
(23c)

≤
∑

t

∑
j∈Ĵ ∆jtCj ln

ŷjt+ε

ŷjt−1+ε
(23d)

≤ηmaxj Cj

∑
t

∑
j∈Ĵ(ej

∑
τ ϕjtτ − 2bjt) (23e)

≤ηmaxj Cj

∑
t

∑
τ

∑
j∈Ĵ ejβitτ (23f)

≤ηmaxj ejCj

∑
t

∑
τ

∑
j βitτ

∑
i λitτ (23g)

≤η|J |(maxj ejCj)D (23h)

where η = ln (1 + 1
ε
), ε ≥ 0.

(23a) holds due to the definition of Ĵ . (23b) introduces

the non-negative parameter ε. (23c) holds due to the fact

that ∀p, ∀q ≥ 0, p − q ≤ p ln p
q

. (23d) is valid due to

ŷjt ≤ Cj , ∀j, ∀t. (23e) introduces parameter η and follows

from (11b). (23f) removes the negative terms and follows from

(11a). Moreover, per problem settings there would be at least

one user request across all cloudlets in every time slot of every

time frame, i.e.,
∑

i λitτ ≥ 1, ∀t, ∀τ ∈ St. (23g) holds due to

(11e). (23h) follows from the objective function of the dual

problem.

Combining the results from above derivations, we have

proved that PNL(x̂t, ŷt) ≤ r2DNL({π(x̂t, ŷt, v̂t)}) and

obtained the fractional competitive ratio as r2 = 1 +
η|J |(maxj ejCj).

D. Proof of Theorem 4

Based on problem setting, {ŷt} need to be rounded to

integers while satisfying constraints (4c) and (4d). The non-

switching cost terms and the switching cost term that contain

ŷt are treated separately.

Let’s start with the expectation of the non-switching cost

terms.

E(
∑

t

∑
j 2bjtȳjt +

∑
t

∑
τ

∑
j(
∑

i x̂ijtτ − ej ȳjt)
+)

≤maxj,t 2bjt
∑

t(
∑

j∈J\J ′ ŷjt +
∑

j∈J ′⌈ŷjt⌉)

+
maxj dj

mini,j,t,τ aijtτ

∑
t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ (24a)

≤2maxj,t bjt
∑

t

∑
j Cj

+
maxj dj

mini,j,t,τ aijtτ

∑
t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ (24b)

=2maxj,t bjt
∑

t

∑
j(

Cj∑
τ

∑
i λitτ

)
∑

τ

∑
i λitτ

+
maxj dj

mini,j,t,τ aijtτ

∑
t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ (24c)

≤
2|J|maxj,t bjtCj

mint

∑
τ

∑
i λitτ mini,j,t,τ aijtτ

∑
t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ

+
maxj dj

mini,j,t,τ aijtτ

∑
t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ (24d)

≤δ′y
∑

t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ (24e)

≤δ′yPNL(x̂t, ŷt) (24f)

where δ′y =
2|J|maxj,t bjtCj

mint

∑
τ

∑
i λitτ mini,j,t,τ aijtτ

+
maxj dj

mini,j,t,τ aijtτ
.

(24a) decomposes {ȳt} based on Algorithm 3 and drops the

negative term. (24b) holds due to that ŷjt can never exceeds

the capacity of the cloudlet, i.e., ŷjt ≤ Cj , ∀j, ∀t. (24c) is

valid based on the problem settings where there would be at

least one user request across all cloudlets in every time slot of

every time frame, i.e.,
∑

τ

∑
i λitτ > 1, ∀t. (24d) and (24e)

make some rearrangements of the coefficients. (24f) is reached

per definition of PNL.

Then we bound the expectation of the switching cost.

E(
∑

t

∑
j ∆jt(ȳjt − ȳjt−1)

+)

≤E(
∑

t

∑
j ∆jtȳjt) (25a)

≤maxj,t ∆jtE(
∑

t

∑
j ȳjt) (25b)

≤δ′′y
∑

t

∑
τ

∑
i

∑
j aijtτ x̂ijtτ (25c)

≤δ′′yPNL(x̂t, ŷt) (25d)

where δ′′y =
|J|maxj,t ∆jtCj

mint

∑
τ

∑
i λitτ mini,j,t,τ aijtτ

.

(25a) holds due to the definition of (·)+. (25b) ∼ (25d)

follow from the previous progress as (24a) ∼ (24f) similarly.

We have r3 = δ′y + δ′′y in the end.

REFERENCES

[1] “Tia position paper edge data centers,” https://www.tiaonline.org/
wp-content/uploads/2018/10/TIA Position Paper Edge Data Centers-
18Oct18.pdf.

[2] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE

Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737, 2017.
[3] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for

capacitated cloudlet placements,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 10, pp. 2866–2880, 2016.
[4] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s hard

to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in IEEE ICDCS, 2018.

[5] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM, 2019.

[6] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
agile vm handoff for edge computing,” in ACM/IEEE SEC, 2017.

[7] K. Cai, X. Liu, Y.-Z. J. Chen, and J. C. Lui, “An online learning
approach to network application optimization with guarantee,” in IEEE

INFOCOM, 2018.
[8] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware

resource allocation for edge computing,” in IEEE EDGE, 2017.
[9] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic right-sizing

for power-proportional data centers,” in IEEE INFOCOM, 2011.
[10] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “Moera:

Mobility-agnostic online resource allocation for edge computing,” IEEE

Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–1856, 2019.
[11] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-

managed service placement for mobile edge computing: An online
learning approach,” in IEEE INFOCOM, 2019.

[12] W. Deng, F. Liu, H. Jin, and C. Wu, “Smartdpss: Cost-minimizing multi-
source power supply for datacenters with arbitrary demand,” in IEEE

ICDCS, 2013.
[13] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data

centers power reduction: A two time scale approach for delay tolerant
workloads,” in IEEE INFOCOM, 2012.

[14] X. Chen, W. Ni, T. Chen, I. Collings, X. Wang, R. P. Liu, and G. B.
Giannakis, “Multi-timescale online optimization of network function
virtualization for service chaining,” IEEE Transactions on Mobile Com-

puting, vol. 18, no. 12, pp. 2899–2912, 2019.
[15] G. Gao, H. Hu, Y. Wen, and C. Westphal, “Resource provisioning

and profit maximization for transcoding in clouds: A two-timescale
approach,” IEEE Transactions on Multimedia, vol. 19, no. 4, pp. 836–
848, 2017.

[16] G. Goel, N. Chen, and A. Wierman, “Thinking fast and slow: Optimiza-
tion decomposition across timescales,” in IEEE CDC, 2017.

[17] L. Jiao, L. Pu, L. Wang, X. Lin, and J. Li, “Multiple granularity online
control of cloudlet networks for edge computing,” in IEEE SECON,
2018.

[18] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal of

Combinatorial Optimization, vol. 8, no. 3, pp. 307–328, 2004.
[19] N. Buchbinder, S. Chen, and J. S. Naor, “Competitive analysis via

regularization,” in ACM-SIAM SODA, 2014.
[20] R. D. C. L. K. Fleischer, V. J. Leung, and C. A. Phillips, “Strengthening

integrality gaps for capacitated network design and covering problems,”
in ACM-SIAM SODA, 2000.

[21] “Api: Last 24 hours,” https://hourlypricing.comed.com/api?type=
5minutefeed.

[22] “London underground passenger counts data,” https://tfl.gov.uk/info-for/
open-data-users/.

[23] “Amazon ec2 spot instances pricing,” https://aws.amazon.com/ec2/spot/
pricing/.

[24] “How to check concurrent visitors with google analytics,”
https://www.cloudways.com/blog/checking-concurrent-visitors-with-
google-analytics/.

[25] “Ampl: Streamlined modeling for real optimization,” https:
//www.ampl.com/.

[26] “Coin-or interior point optimizer ipopt,” https://www.coin-or.org/Ipopt/.
[27] “Gurobi optimizer,” https://www.gurobi.com/.

