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Abstract—There exists a practical need for incentivizing con-
tent providers to cache contents at distributed network edges
closer to users. However, this is a particularly challenging prob-
lem due to system environments that are uncertain, content place-
ments that couple adjacent time slots, and economic properties
that are desired but hard to ensure. In this paper, we present our
design of an auction-based incentive mechanism for online edge
caching. We formulate the long-term social cost minimization
problem as a nonlinear mixed-integer program that addresses
bid selections, user request dispatching, content placements,
and payment determination in repetitive auctions. To solve this
problem online, we devise a greedy approximation algorithm for
solving each auction individually, and a lazy-replacement-based
online algorithm that ties the series of auctions over time while
dynamically pursuing the balance between downloading contents
to new cache locations and keeping them at existing locations. We
formally prove the approximation ratio for each single auction,
the competitive ratio for the long-term social cost, as well as the
truthfulness, the individual rationality, and the computational
efficiency of our approach. Evaluations with real-world data have
also validated and confirmed the practical superiority of our
approach over multiple alternative algorithms.

I. INTRODUCTION

Edge caching refers to caching or placing contents at dis-

tributed “edges”, such as micro data centers or server clusters

co-located with cellular base stations, WiFi access points, and

neighbourhood spots in close proximity to end users [1], [2]. It

promises ultra-low latency and traffic localization for content

access, benefiting both end users and Content Providers (CPs).

In lots of cases, the edge caching infrastructures are often

built and managed by the Edge Network Operator (ENO) that

owns and operates the edge networks, charging end users for

network access [3], [4]. This scenario is illustrated in Fig. 1.

Unfortunately, in reality, CPs rarely, if not never, leverage

such emerging edge facilities for content caching. First, CPs

already have sophisticated business models and experiences

with Content Delivery Networks (CDNs) consisting of caches

across locations [5], [6]. While CDNs have seen great success

in reducing content access delay and improving end users’

perceived service quality, using edge caching seems to result

in only negligible further delay reduction and limited added-

value for CPs. Second, there exists no well-established revenue

sharing mechanism between CPs and the ENO [3]. While CPs

often pay Internet Service Providers (ISPs) (which are not

necessarily the ENOs) for network connections, they do not

typically pay the ENO that operates access networks. The ENO

does not pay CPs either, and may even limit the bandwidth as

users can generate enormous traffic when accessing contents.

Fig. 1: Edge networks with content caching

Therefore, there is a strong case in practice for the ENO

to incentivize CPs to cache their contents at distributed edges

via (monetary) subsidization. This could potentially lead to a

win-win situation and global optimization: CPs can gain direct

economic benefits and be motivated to utilize edge caching,

while the ENO can make the optimal use of cache and network

resources, offering best services to CPs and attracting more

end users. However, designing and implementing such an in-

centive mechanism is non-trivial and particularly challenging.

First, the incentivization is not a one-time transaction, but

needs to be continuously conducted over time while adapting

to unpredictable system dynamism and uncertainties. While

bandwidth, delay, storage overhead, and end users’ requests

may all be time-varying, the ENO needs to determine on the fly

which “packages” of contents to purchase from the CPs, and

for each content, where to place and replicate it within the edge

caching networks. Sometimes, the ENO may also have its own

supplementary content servers [7], which need to be jointly

managed for global optimal performance. More importantly,

content caching decisions are intrinsically coupled over time—

for example, in the case of no user requests toward a cache

location, continuing to keep a content there incurs storage cost

in the current time slot, but will save downloading cost for the

next time slot (as the content is already on premises) if it is

requested by users then; however, if it is not requested in the

next time slot, the storage cost incurred for the current time

slot will be wasted. Without knowing future inputs, it is not

easy to irrevocably determine content caching at each time slot

for long-term total cost optimization.

Second, each incentive transaction needs to guarantee the

desired economic properties. In contrast to fixed pricing, we

focus on the auction-based approach in this paper as auctions

can easily reflect real-time market dynamics and match de-

mands from the ENO (i.e., the auctioneer) and supplies from



the CPs (e.g., the bidders) agilely. For market efficiency, each

auction is expected to be truthful (i.e., each bid can maximize

its utility only by bidding its true price) and individually

rational (i.e., each bid always achieves non-negative utility),

where “utility” of a bid refers to the difference between the

received payment and the bidding price it wants to charge. The

classic Vickrey–Clarke–Groves (VCG) auctions [8] achieve

these properties, but entail solving the underlying cost min-

imization problem optimally; our problem turns out to be NP-

hard, and contains other control decisions beyond winning-

bid selections in each auction, making VCG computationally

infeasible and calling for the novel auction mechanism design.

Although there exist substantial research on edge caching

algorithms and optimizations [1], [2], [9]–[14], they generally

lack systematic studies of the economic interactions between

different entities in the system. Prior works on edge caching

incentives [3], [4], [8], [15]–[17] do not specifically focus on

the interplay between the ENO and the CPs, or do not explore

the auction perspective, not to mention continuous dynamic

auctions, failing to address the challenges above. See Section

VI for details. In this paper, we make multiple contributions:

We formulate a long-term social cost minimization problem

for the ENO to dynamically cache contents from the CPs in

distributed edge networks to serve end users. We optimize

the sum of (i) the ENO’s cost, including cost of user requests

dispatching, storage overhead of content caching, downloading

cost of content transference from content servers to edge

caches, cost of accessing the ENO’s own content servers,

and the payments made to CPs, and (ii) the CPs’ cost,

mainly the cost of bids minus the received payments (i.e.,

treated as negative cost). Our formulation is expressive and

can capture arbitrary system dynamics. Our problem is an

intractable, nonlinear mixed-integer program defined via a

series of auctions corresponding to consecutive time slots.

We design polynomial-time algorithms to solve this prob-

lem. We first temporarily ignore the content downloading cost

that could couple adjacent time slots, and design a greedy-

based approximation algorithm that determines the winning

bids of the CPs, the access to ENO’s own content servers,

and the user request dispatching for each individual auction

assuming that contents’ caching locations in the edge networks

are given. We then design an online algorithm to determine

such content caching locations dynamically without knowing

future inputs and tie these single auctions over time for

continuous incentivization. Our approach postpones changing

content locations across edges until the cumulative storage

cost since the last location-changing operation exceeds a pre-

specified parameter times the last content downloading cost,

preventing frequent content replacements while serving users.

We rigorously analyze the worst-case theoretical guarantees

provided by our algorithms. We prove that our single-auction

mechanism achieves a constant approximation ratio towards

each auction’s own optimal social cost. Satisfying the suf-

ficient conditions of bidding monotone and critical payment

[18], we also prove that our mechanism guarantees the desired

economic properties of truthfulness and individual rationality.

Absorbing the approximation ratio of each auction, we finally

prove that our online algorithm achieves a parameterized-

constant competitive ratio, i.e., the long-term social cost in-

curred online does not exceed this ratio times the optimal

long-term social cost offline where inputs to all the auctions

are envisaged to be known before the entire time horizon starts.

We finally carry out extensive evaluations to validate the

practical performance of our approach using real-world inputs

based on Youtube contents [19], hot spot edge locations [20],

and Amazon EC2 prices [21] in different settings. We find that

our approach (i) saves social cost by 5% ∼ 45% compared

to a greedy caching approach and the series of single-shot

optimums, (ii) achieves empirically an approximation ratio of

about 2 for each individual auction and a competitive ratio of

1.2∼1.4 with regards to the offline optimum, (iii) is robust for

cache capacities, adjustable to seek trade-offs among different

cost components, (iv) preserves truthful bidding and individual

rationality in practice, and (v) runs very fast compared to the

length of the time horizon under consideration.

II. MODELING AND FORMULATION

A. System Models

We summarize the key notations in Table 1.

Cache Infrastructures: We consider a set N of distributed

base stations managed by an Edge Network Operator (ENO).

These base stations connect to one another via sidehaul links

(e.g., X2) [22] and also connect to the Internet via backhaul

networks. We study the system over a series of consecutive

time slots T = {1, 2, .., T}. Each base station n ∈ N has a

co-located cache that can host at most Cn contents. At the

time slot t ∈ T , we use stn to denote the content hosting

cost (e.g., storage occupancy, maintenance overhead, or energy

consumption) of caching a content at the base station n, use btn
to denote the downloading or replacement cost (e.g., ingress

cost for edge networks, delay of loading the content to storage)

for the base station n, and also use btn,m to denote the unit

sidehaul transference cost between the base stations n and m

(e.g., delay or bandwidth consumption within edge networks).

Contents and Sources: We consider a set F = {1, 2, ..., F}
of contents for the entire system. Without loss of generality,

we assume that every single content has equal size. In reality,

this assumption can be removed as contents can be divided

into blocks of the same size with coding techniques and then

each block can be considered as a content. We consider a set

I = {1, 2, ..., I} of Content Providers (CPs) with their content

servers that host contents. In this paper, we also consider that

the ENO can have its own content servers, for the cases where

CPs may not offer every single content requested by users or

CPs may offer some contents at very expensive price. The

ENO’s own content servers may be hosted in a public or

private cloud. Then, we use ctf to denote the access cost (e.g.,

cloud egress cost) for accessing the content f from the ENO’s

own content servers [7] at the time slot t.

User Requests and Processing: We use λt
f,n to denote the

number of requests from end users sent to the base station n to

access the content f at the time slot t. We also use an indicator



TABLE I: Notations

Inputs Meaning

T Set of time slots

N Set of Base Stations (BSes)

F Set of contents

I Set of Content Providers (CPs)

Cn Capacity of BS (i.e., cache) n

stn Per-content hosting cost at BS n at the time slot t

btn Per-content downloading cost for BS n at t

btn,m Cost of sidehaul transference between BSes n and m at t

ct
f

Cost of accessing content f from ENO at t

λt
f,n

Number of requests sent to BS n for content f at t

δt
f,n

1 if λt
f,n

> 0, and 0 if λt
f,n

= 0

bti Bidding price of the bid i at t

Qt
i Set of contents offered by the bid i at t

Decisions Meaning

xt
i Whether to choose the bid i as a winning bid at t

wt
f

Whether to fetch the content f from ENO at t

zt
f,n,m

Proportion of requests for content f received at BS n and
dispatched to BS m at t

yt
f,n

Whether to cache the content f at BS n at t

pti Payment made to the bid i at t

δtf,n, with δtf,n = 1 if λt
f,n > 0 and δtf,n = 0 if λt

f,n = 0.

Requests received at one base station may be dispatched to

and served by (the cache of) another base station via sidehaul

links, if the requested contents are not found locally.

Auction Model: The ENO is the auctioneer and conducts an

auction at every time slot t where the CPs act as the bidders.

Fig. 2 depicts the operation of the auction at any t. First, the

ENO solicits bids and the CPs submit bids. Each CP i ∈ I
submits a bid {Qt

i, b
t
i}, where Qt

i represents the set of contents

offered by this bid (where we denote |Qt
i| = Qt

i) and bti is the

bidding price, i.e., the amount of money this bid wants to

charge for granting access to the contents Qt
i during the time

slot t. Second, the ENO decides the set of bids to purchase, i.e.,

the “winning” bids, and the cache location in the edge network

to place each content contained in the winning bids. The ENO

considers bids from both sources—from the CPs and from

the ENO’s own content servers—to purchase, download, and

cache contents. Each downloaded content can be replicated

and cached at multiple base stations simultaneously. Third, the

ENO decides the payment for each winning bid and makes the

payment to each corresponding CP. Note that the payment for

a bid is not necessarily the same as the bidding price of a

bid, because the calculation of the payment is often expected

to satisfy the economic properties of “individual rationality”

and “truthfulness”, which will be elaborated later. Fourth, the

ENO transfers each content from either the CPs or its own

content servers to the decided location in the edge network.

The fourth step may alternatively happen before the third step,

depending on the agreement between the ENO and the CPs.

Control Decisions: The ENO makes the following control

decisions: (1) xt
i ∈ {1, 0}, denoting whether or not the bid i

wins the auction at the time slot t; (2) wt
f ∈ {1, 0}, denoting

whether or not the ENO accesses the content f from its own

content servers for caching at the time slot t; (3) ztf,n,m ∈
[0, 1], denoting the proportion of user requests received at the

base station n for the content f and dispatched to the base

Fig. 2: Auction in each time slot

station m at the time slot t; (4) ytf,n ∈ {1, 0}, denoting whether

or not to place or cache the content f at the base station n at

the time slot t; (5) pti ∈ [0,+∞), denoting the payment made

by the ENO corresponding to the bid i at the time slot t.

Total Cost of ENO: At each time slot t, the ENO in-

curs the following types of costs: (1) the sidehaul transfer

cost of dispatching users’ requests across base stations, i.e.,∑
f

∑
n

∑
m btn,mλt

f,nz
t
f,n,m; (2) the cost of hosting contents

in edge caches, i.e.,
∑

f

∑
n s

t
ny

t
f,n; (3) the replacement cost

incurred by downloading contents from their original sources,

either the CPs’ or the ENO’s content servers, and writing

such contents into new cache locations, i.e.,
∑

f

∑
n b

t
n[y

t
f,n−

yt−1

f,n ]+, where [·]+ = max{·, 0} (note that this means there

is no replacement cost if cache locations are unchanged, as

there is no need to re-download the same content to the same

location); (4) the cost of accessing contents on the ENO’s own

content servers, i.e.,
∑

f c
t
fw

t
f ; (5) the payment from the ENO

to the CPs, i.e.,
∑

i p
t
ix

t
i. The total cost of the ENO at t is

Ct
ENO =

∑
f

∑
n

∑
m btn,mλt

f,nz
t
f,n,m +

∑
f

∑
n s

t
ny

t
f,n

+
∑

f

∑
n b

t
n[y

t
f,n − yt−1

f,n ]+ +
∑

f c
t
fw

t
f +

∑
i p

t
ix

t
i.

Total Cost of CPs: From the CPs’ perspective, at each time

slot t, there exist two types of costs: (1) the cost incurred

by making contents available to the ENO via bidding, i.e.,∑
i b

t
ix

t
i, and (2) the received payment (treated as negative

cost), i.e.,
∑

i p
t
ix

t
i. Therefore, the total cost of all CPs at t is

Ct
CP =

∑
i(b

t
i − pti)x

t
i.

B. Problem Formulation and Algorithmic Challenges

Social Cost Minimization: The “social cost” of the system

is the sum of the total cost of the ENO and the total cost of

the CPs. We formulate the social cost minimization problem

P0 below (note that payments are cancelled automatically, but

still need to be decided later):

P0 : min
∑

t C
t =

∑
t(C

t
ENO + Ct

CP ) (2a)

s.t. ytf,n ≤
∑

i:f∈Qi
xt
i + wt

f , ∀f, ∀n, ∀t, (2b)

ztf,n,m ≤ ytf,m, ∀f, ∀n, ∀m, ∀t, (2c)∑
f y

t
f,n ≤ Cn, ∀n, ∀t, (2d)∑

m ztf,n,m ≥ δtf,n, ∀f, ∀n, ∀t, (2e)

xt
i ∈ {0, 1}, wt

f ∈ {0, 1}, ∀i, ∀f, ∀t, (2f)

ztf,n,m ≥ 0, ytf,n ∈ {0, 1}, ∀f, ∀n, ∀m, ∀t. (2g)

Constraint (2b) ensures that a content can only be cached if

the content is contained in any purchased bid or fetched from
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Fig. 3: Algorithm design

the ENO’s own content servers. Constraint (2c) ensures that

requests can only be dispatched to a base station if the content

to be accessed by such requests is cached at that base station.

Constraint (2d) ensures the capacity of each cache is respected.

Constraint (2e) indicates that all the original requests received

at each base station from users are fully dispatched.

Algorithmic Challenges: Solving the social cost minimiza-

tion problem in an online manner confronts critical challenges.

First, it is non-trivial to optimize the cache replacement cost

online, which couples every pair of adjacent time slots. For

example, at the time slot t − 1, we can determine yt−1

f,n to

minimize btn[y
t−1

f,n −yt−2

f,n ]+ as we already know yt−2

f,n ; however,

as we do not know ytf,n yet, which will only be determined at

the next time slot t, our yt−1

f,n determined at t−1 can therefore

hardly minimize btn[y
t
f,n − yt−1

f,n ]+. Second, the social cost

minimization problem is in fact NP-hard and difficult to handle

in the offline setting, not to mention online. Even without the

cache replacement cost, our problem consists of a series of

single-round problems, each of which can be reduced from

the weighted set cover problem, known to be NP-hard. Third,

while solving this problem to determine the winning bids,

we need to determine the payments accordingly and ensure

truthfulness and individual rationality, which are the keys

to designing efficient auctions. This is not straightforward,

particularly given the existence of the former two challenges.

III. SINGLE-AUCTION MECHANISM

In this section, we design a polynomial-time approximation

algorithm to determine winning bids, payments, content access

for different sources, and user request dispatching for a single

auction, assuming content placements are already determined.

We rigorously prove the approximation ratio, the truthfulness,

and the individual rationality as the performance guarantees

for our algorithm. We then determine content placements

strategically in an online manner in the next section. Our entire

approach can be structured as in Fig. 3.

A. Problem Decomposition

At t, if the value of yt is given, denoted by ỹt, then we

can split the original problem at t into the two subproblems

P
t
1 regarding zt and P

t
2 regarding xt and wt, respectively:

P
t
1 : min ht(zt) =

∑
f

∑
n

∑
m btn,mλt

f,nz
t
f,n,m

s.t. ztf,n,m ≤ ỹtf,m, ∀f, ∀n, ∀m,∑
m ztf,n,m ≥ δtf,n, ∀f, ∀n,

ztf,n,m ≥ 0, ∀f, ∀n, ∀m.

P
t
2 : min gt(xt,wt) =

∑
i b

t
ix

t
i +

∑
f w

t
fc

t
f (4a)

s.t.
∑

i:f∈Qi
xt
i + wt

f ≥ maxn ỹf,n, ∀f, (4b)

xt
i, w

t
f ∈ {0, 1}, ∀i, ∀f. (4c)

While P
t
1 is in fact a linear program which can be optimally

solved in polynomial time by any standard linear program

solver, P
t
2 is NP-hard, which can be shown by exhibiting

that the weighted set cover problem is in fact a special

case of P
t
2. For the ease of presentation, we omit the time

index t of variables and parameters for the time being. For

P
t
2, consider {Q1, ...,QI ,QI+1, ...,QI+F }, with its indices

L = {1, ..., I, I+1, ..., I+F}. For 1 ≤ l ≤ I , Ql refers to the

set of contents offered by the CP l’s bid; for I < l ≤ I+F , Ql

refers to the single-element set {f}, where f = (l − I) ∈ F
represents the offered content, from the ENO. Accordingly,

each set l has its cost el, i.e., el = bl if 1 ≤ l ≤ I and

el = cl−I if I < l ≤ I +F . Then, Pt
2 is to determine whether

to select each set l in order to minimize the total cost while

covering every content f denoted by ỹf = maxn ỹf,n. This

is actually the weighted set cover problem, which is NP-hard.

Thus, Pt
2 is also NP-hard. Based on what has been discussed

above, the single-round problem of Pt
2 involving the variables

xt,wt can be reformulated as below.

P
′t
2 : min

∑
l elγl (5a)

s.t.
∑

l:f∈Ql
γl ≥ ỹf , ∀f, (5b)

γl ∈ {0, 1}, ∀l. (5c)

B. Primal-Dual-Based Auction Mechanism

We focus on designing a polynomial-time approximation

algorithm for P
′t
2 , with not only a provable approximation ratio

but also the provable truthfulness and individual rationality.

We relax and reformulate P
′t
2 as below, where γl is the

decision variable:

P : min
∑

l elγl (6a)

s.t.
∑

l:f∈Ql
γl ≥ ỹf , ∀f, (6b)

0 ≤ γl ≤ 1, ∀l. (6c)

We refer to this new formulation as our primal problem and

correspondingly derive the Lagrange dual problem below:

D : max
∑

f vf ỹf (7a)

s.t.
∑

f∈Ql
vf ≤ el, ∀l, (7b)

vf ≥ 0, ∀f. (7c)

where vf , ∀f are the dual variables. In this derivation, note

that γl ≤ 1 in (6c) is not needed, as it is inherently captured by

(6b). With the help of duality, we can derive an approximation

ratio for our algorithm, as elaborated next.

We design Algorithm 1 which is a greedy-based primal-

dual algorithm. Our key idea is selecting the set that has the

lowest “cost density” in each iteration until all the elements

(i.e., contents) are covered, while calculating the correspond-

ing payment based on the second lowest cost density and

maintaining a feasible dual solution to connect the primal

objective to the dual objective for proving the approximation

ratio. We introduce the following additional notations. We

define U = {f |ỹf = 1, ∀f} and Fl = Ql ∩ U , ∀l where



Algorithm 1: Single-Auction Mechanism

1 Inputs: U , Fl, el, ∀l; ỹ, bn,m, λf,n, δf,n, ∀n,m, f .
2 Initialization: rl = 0, xi = 0, wf = 0, vf = 0, zf,n,m = 0,

F̂l = Fl, ∀l, i, f, n,m; S = ∅.
3 while ∃f ∈ U not covered do
4 l∗ = argminl:F̂l ̸=∅

el

F̂l
;

5 if l∗ ≤ I then
6 γl∗ = xl∗ = 1, S = S ∪ {l∗};
7 l− = argminl∈L\l∗

el

F̂l
;

8 pl∗ = Fl∗ ·
e
l−

F̂
l−

;

9 else
10 γl∗ = wl∗−I = 1, S = S ∪ {l∗};
11 end

12 vf = 1

HU

el∗

F̂l∗
, ∀f ∈ F̂l∗ ;

13 F̂l = F̂l\Fl∗ , ∀l;
14 end

15 Given ỹ, obtain the optimal solution z̃ for Pt
1;

16 return x̃, w̃, z̃.

we further denote |U| = U and |Fl| = Fl. In each iteration

(starting in Line 4), the algorithm selects the set with the

lowest “cost density”, i.e., the ratio of the cost or weight

of the set over the number of the uncovered elements in

this set. If the selected set l is offered by the CPs (Line

5), then l becomes a winning bid and xl is updated (Line

6). Accordingly, the ENO calculates the payment for l via

the lowest cost density excluding the set l (Lines 7-8). This

is the key to ensuring truthfulness and individual rationality,

which will be elaborated later. Otherwise, if the selected set

l is offered by the ENO (Line 9), then wl∗−I is updated

(Line 10). After the winner determination, the dual variables

of each covered element are updated based on the cost density

(Line 12), where HU = 1 + 1

2
+ 1

3
+ ... + 1

U
. These covered

elements are also removed from the unselected sets, ensuring

that each element can only be covered once (Line 13). Finally,

we also obtain the optimal user request dispatching solution

by invoking any standard linear program solver (Line 15).

C. Performance Analysis

Theorem 1. Complexity and Feasibility. Algorithm 1 pro-

duces feasible solutions to the primal problem P and the dual

problem D in polynomial time.

Proof. Polynomial Time: The “while” loop of Algorithm 1

contains at most L iterations, where |L| = L, to select one set

in each iteration. Lines 4-11 and Line 13 take at most O(LF );
Line 12 takes at most O(F ). Hence, the time complexity of

Algorithm 1 is O(L(LF + F )), plus the complexity of Line

15, depending on the solver. For example, the interior point

method converges in O(L)3.5 in general for L variables.

Primal Feasibility: Line 3 ensures that the algorithm only

terminates when all elements in U are covered, satisfying con-

straints (4b). Constraints (4c) holds, as variables are initialized

to 0 (Line 2) and some are updated to 1 (Lines 6 and 10).

Dual Feasibility: Suppose Fl is not selected by Algorithm 1.

We let the elements in Fl be listed in the reverse order in which

they were covered by Algorithm 1. As the “while” loop covers

Fl’s element fk, Fl has at least k elements uncovered. Then,

the cost density of Fl is at most el
k

. Recall that Algorithm 1

always selects the set with the smallest cost density, so the

cost density of the set selected by Algorithm 1 to cover fk
cannot be greater than el

k
. Suppose F

′

j with the cost ej is the

set selected Algorithm 1 to cover fk, then we have
∑

f∈Ql
vf=

1

HU

∑
fk∈Fl

ej

F
′

j

≤ 1

HU

∑Fl

k=1

el
k

≤ el
HU

HU

≤ el. (8a)

If Fl is selected, the inequality (8a) still holds. Thus, the right-

hand side of (7b) is always bounded by el.

Theorem 2. Approximation Ratio. Algorithm 1 outputs a

solution which incurs the cost at most α times the optimal

cost of the problem P
t
2, where α = HU .

Proof. Let p be the value of (6a) evaluated using the solutions

returned by Algorithm 1. Suppose Algorithm 1 requires K

(K ≤ L) iterations in total in the “while” loop to cover all the

elements in U . Denote by F
′

k the set picked up by Algorithm

1 at each the iteration k (k = {1, 2, ...,K}). Then

p =
∑

l elγl =
∑K

k=1
ekγk =

∑K
k=1

ek.

Denote by d the value of (7a). According to Line 12 of

Algorithm 1, we have

d =
∑

f∈F
vf ỹf

=
∑

f∈U
vf

=
∑K

k=1

∑
f∈F

′

k

1

HU

ek
F

′

k

= 1

HU

∑K
k=1

ek. (9a)

Therefore, we have d = 1

HU
p. By duality, we further have d ≤

OPTcost, where OPTcost is the optimal cost of P
t
2. Joining

them together, we have p = d ·HU ≤ HU ·OPTcost.

In the rest of this section, we concentrate on the economic

properties. We firstly define utility, and then based on it, we

define truthfulness and individual rationality, respectively, and

prove that our proposed Algorithm 1 achieves both of them.

Definition 1. Utility. The utility of a winning bid i is

ui(bi,b−i) = pi − vci, where bi is the bidding price of

the bid i, b−i represents the bidding prices of all the other

bids, pi represents the received payment for the bid i, and vci
represents the true cost of the bidder for composing the bid i

or making the bid i available. The utility of a losing bid i is

ui(bi,b−i) = 0.

Theorem 3. Truthfulness. An auction is truthful if for any bid

i using its true cost as the bidding price leads to its maximum

utility, i.e., ui(vci,b−i) ≥ ui(bi,b−i), for any bi ̸= vci and

any given b−i, ∀i. Algorithm 1 achieves truthfulness.

Proof. According to Myerson’s theorem [18], an auction with

bidding prices {el|∀l ∈ I} and payments {pl|∀l ∈ I} is

truthful if and only if (i) the auction result xl is monotonically



non-increasing in el, ∀l ∈ I; and (ii) the winners are paid with

the “critical” value. Hence, with Lemmas 1 and 2 as below and

their proofs, we can conclude that Algorithm 1 is truthful.

Lemma 1. Our auction is bid-monotonic. That is, for any bid

l ∈ I, compared to its original bidding price el, bidding a

lower price ẽl ≤ el leads to x̃l = 1 accordingly, if xl = 1.

Proof. Suppose CP l submits Fl with the price el and wins

the auction, i.e., xl = 1. Then, if CP l submits Fl with a

cheaper price ẽl ≤ el, we will have ẽl
Fl

≤ el
Fl

. Thus, according

to Algorithm 1, the new bid {Fl, ẽl} will also win, i.e., x̃l = 1.

Hence, our auction is bid-monotonic.

Lemma 2. The payments to winning bids are “critical”. That

is, for any bid l ∈ I, compared to the received payment pl
when xl = 1, bidding a lower price ẽl ≤ pl leads to winning

the auction, i.e., x̃l = 1; bidding a higher price ẽl > pl leads

to losing the auction, i.e., x̃l = 0.

Proof. According to Algorithm 1, we always have el
Fl

≤
e
l−

F
l−

,

because {Fl− , el−} is the first bid selected by the algorithm

when {Fl∗ , el∗} is excluded. Via setting pl = Fl
e
l−

F
l−

, the

algorithm guarantees ẽl
Fl

≤
e
l−

F
l−

when CP l bids a new price

ẽl ≤ pl, and guarantees ẽl
Fl

>
e
l−

F
l−

when ẽl > pl. Therefore,

the payment to every winner is at the critical value.

Theorem 4. Individual Rationality. An auction is individ-

ually rational if every bid always has a non-negative utility,

i.e., ul(bl,b−l) ≥ 0, for any given b−l, ∀l ∈ I. Algorithm 1

achieves individual rationality.

Proof. If CP l wins, we have el
Fl

≤
e
l−

F
l−

, and pl = Fl
e
l−

F
l−

≥ el.

The utility of l is

ul(bl,b−l) = Fl
e
l−

F
l−

− vcl = Fl
e
l−

F
l−

− el ≥ 0,

where vcl = el is because of Theorem 3. If CP l loses, then

we have ul(bl,b−l) = 0 by definition. Therefore, the utility

of every bid is non-negative.

IV. LONG-TERM ONLINE MECHANISM

In this section, we design an online algorithm to make the

content placement decisions regarding cache locations while

invoking our previous greedy-based primal-dual approxima-

tion algorithm to tie the series of single auctions altogether

over time. We also rigorously prove the competitive ratio as

the overall performance guarantee of our entire approach.

A. Lazy-Replacement-Based Online Algorithm

We can split the objective function of the single-shot prob-

lem P
t
0 into two components: Ct = Ct

−RC + Ct
RC , where

Ct
−RC(x

t,wt, zt,yt) =
∑

f

∑
n

∑
m btn,mλt

f,nz
t
f,n,m

+
∑

f c
t
fw

t
f +

∑
i b

t
ix

t
i

+
∑

f

∑
n s

t
ny

t
f,n

is the non-replacement cost and

Ct
RC(y

t,yt−1) =
∑

f

∑
n b

t
n[y

t
f,n − yt−1

f,n ]+

Algorithm 2: Online Edge Caching Algorithm

1 Initialize t̂ = 1, ỹ0, 0 < β ≤ 1;

2 Get the optimal solution ŷ
1 to P

1

3;

3 Given ỹ
1 = ŷ

1, get x̃1, w̃1, z̃1 by Algorithm 1;
4 for t = 2, 3, ..., T do

5 if C t̂
RC(ỹ

t̂, ỹt̂−1) ≤ β
∑t−1

τ=t̂
Cτ

−RC(x̃
t, w̃t, z̃t, ỹt) or

P
1

t or P2

t infeasible given ỹ
t−1 then

6 Get the optimal solution ŷ
t to P

t
3;

7 Given ỹ
t = ŷ

t, get x̃t, w̃t, z̃t by Algorithm 1;

8 if ỹt ̸= ỹ
t−1 then

9 t̂ = t;
10 end
11 end

12 if t̂ < t then

13 ỹ
t = ỹ

t−1;

14 Given ỹ
t, get x̃t, w̃t, z̃t by Algorithm 1;

15 end
16 end

is the replacement cost. Now, by Ct
−RC and the corresponding

constraints, we define the following problem:

P
t
3 : min

∑
f

∑
n s

t
ny

t
f,n

s.t.
∑

f y
t
f,n ≤ Cn, ∀n,∑

n y
t
f,n ≥ maxn δ

t
f,n, ∀f,

ytf,n ≥ 0, ∀f, ∀n.

We denote the optimal solution to P
t
3 as ŷt. Note that even

though we use a standard linear program solver to solve P
t
3 in

polynomial time, the optimal solutions ŷtf,n, ∀f , ∀n we get are

automatically integers in {0, 1}. This is because the coefficient

matrix of the constraints in P
t
3 is a “totally unimodular matrix”

[23]. Also, according to Constraints (2c), (2d), and (2e), given

ŷt, the other decision variables xt, wt, and zt are all feasible.

Based on this, we design Algorithm 2, an online algorithm

which balances Ct
−RC and Ct

RC dynamically in real time. Our

key idea is to postpone changing content caching locations

until the cumulative non-replacement cost times a pre-specified

constant (i.e., β) exceeds the most recent replacement cost,

or until the current cache locations lead to infeasible bid

selection or request dispatching decisions (i.e., making P
t
1

or P
t
2 infeasible). This is actually Line 5 of the algorithm,

where we denote the time slot of changing content caching

locations as t̂. If we need to change content caching locations,

we solve P
t
3 to get the new locations (Line 6) and given such

new locations, we invoke Algorithm 1 to get all the other

control decisions (Line 7) and update t̂ if needed (Lines 8-

10). Otherwise, if it turns out that we do not change the

content caching locations (Line 12), we keep contents at

current locations (Line 13) and given such locations, invoke

Algorithm 1 to get all the other control decisions (Line 14).

B. Performance Analysis

We analyze the competitive ratio, defined as the maximum

ratio of the objective function’s value evaluated with the

solutions produced by an online algorithm over the objective

function’s value evaluated with the offline optimum solutions,

under all possible inputs. An online algorithm observes inputs



that sequentially and dynamically arrive and makes irrevocable

control decisions at each time slot on the fly, while the offline

optimum observes the inputs over the entire time horizon at

hindsight and solves the problem over time optimally at once.

Theorem 5. Competitive Ratio. The social cost achieved via

Algorithm 2 is at most α · (1 +max{β,maxt γ
t}) · maxn stn

minn stn

· maxt
{ ∑

n Cn

maxn

∑
f δt

f,n

}
times the offline optimal social cost,

where α is defined in Theorem 2; β is the parameter introduced

in Algorithm 2; and γt =
∑

n btnCn∑
f

∑
n λt

f,n
maxm btn,m

, ∀t.

Proof. We use ỹt to denote the value of yt we obtain from

Algorithm 2, and use x̃t, w̃t, and z̃t to denote the values of

xt, wt, and zt, respectively, which we obtain from Algorithm

1 given ỹt. We use {x̂t, ŵt, ẑt} to denote the optimal solution

to the problem of minimizing gt(xt,wt)+ht(zt) at t given ỹt.

Further, we use {x∗t,w∗t, z∗t,y∗t} to denote the joint optimal

solution to the single-shot problem of minimizing Ct
−RC at t,

and use
{
{x̄t, w̄t, z̄t, ȳt}, ∀t

}
to denote the offline optimal

solution to our social cost minimization problem.

First, due to Algorithm 2, we have

∑T
t=1

Ct(x̃t, w̃t, z̃t, ỹt)

=
∑

t

(
Ct

−RC(x̃
t, w̃t, z̃t, ỹt) + Ct

RC(x̃
t, w̃t, z̃t, ỹt)

)

≤
(
1 + max{β,maxt γ

t}
)∑

t C
t
−RC(x̃

t, w̃t, z̃t, ỹt). (12a)

We explain (12a). Consider those time slots recorded by

the variable t̂ when executing Algorithm 2. Let us denote

those time slots as {t̂1, t̂2, ...}. Consider any k ≥ 1. For the

consecutive time slots {t̂k, t̂k+1, ..., t̂k+1−1}, we either have

C t̂k
RC(ỹ

t̂k , ỹt̂k−1) ≤ β ·
∑t̂k+1−1

t=t̂k
Ct

−RC(x̃
t, w̃t, z̃t, ỹt)

or have

C t̂k
RC(ỹ

t̂k , ỹt̂k−1) ≤ γt · C t̂k
−RC(x̃

t̂k , w̃t̂k , z̃t̂k , ỹt̂k)

due to Line 5 of Algorithm 2. This is because, from the

formulation of the original social cost minimization problem,

we have Ct
RC ≤

∑
n btnCn∑

f

∑
n λt

f,n
maxm btn,m

· Ct
−RC = γtCt

−RC ,

∀t. Summing up these inequalities for all k leads to (12a).

Then, recall Ct
−RC(x

t,wt, zt,yt) = gt(xt,wt) + ht(zt) +∑
f

∑
n s

t
ny

t
f,n. At each t, we have the following inequalities:

gt(x̃t, w̃t) + ht(z̃t) +
∑

f

∑
n s

t
nỹ

t
f,n

≤α
(
gt(x̂t, ŵt)+ht(ẑt)+

∑
f

∑
n s

t
nỹ

t
f,n

)
(13a)

≤α
(
gt(x∗t,w∗t)+ht(z∗t)+

∑
f

∑
n s

t
nỹ

t
f,n

)
(13b)

≤α
(
gt(x∗t,w∗t)+ht(z∗t)+maxn s

t
n

∑
n Cn

maxn

∑
f δt

f,n

∑
f,n y

∗t
f,n

)

(13c)

≤α
maxn stn
minn stn

∑
n Cn

maxn

∑
f δt

f,n

(
gt(x∗t,w∗t)+ht(z∗t)+

∑
f,n s

t
ny

∗t
f,n

)

(13d)

≤α
maxn stn
minn stn

∑
n Cn

maxn

∑
f δt

f,n

· Ct
−RC(x̄

t, w̄t, z̄t, ȳt). (13e)

(13a) follows from Algorithm 1 and also Theorem 2, where we

have gt(x̃t, w̃t) ≤ αgt(x̂t, ŵt), α ≥ 1, and ht(z̃t) = ht(ẑt).

(13b) holds because {x̂t, ŵt, ẑt} minimizes gt(xt,wt) +
ht(zt). (13c) is due to the following. By Constraints (2c), (2d),

and (2e), we have maxn
∑

f δ
t
f,n ≤

∑
f

∑
n y

t
f,n ≤

∑
n Cn,

and therefore have
∑

f

∑
n ỹ

t
f,n ≤

∑
n Cn

maxn

∑
f δt

f,n

∑
f

∑
n y

∗t
f,n.

(13d) constructs the term
∑

f

∑
n s

t
ny

∗t
f,n. (13e) holds because

{x∗t,w∗t, z∗t,y∗t} minimizes Ct
−RC at t.

V. EXPERIMENTAL EVALUATIONS

A. Experimental Settings

Edges: We utilize the taxi data which contain over 10,000

records in 2013∼2014 regarding the trajectories of 442 taxis

in Porto, Portugal [20]. We select the 25 most-visited locations

in this dataset as “hot spots”, and for each of such locations,

we envisage a cellular base station (i.e., an edge) is deployed.

The connections among these edges are generated as small-

world networks [24]. We use this approach to simulate the

edges because the true locations of real-world base stations

are often proprietaries of mobile network carriers. We set the

total length of the time horizon to 100 consecutive time slots,

and obtain the content requests for each time slot (which can

correspond to one hour in reality, for example) as follows.

Content Requests: We adopt the Youtube data [19]. We

rank all the 1,500 contents in this dataset in terms of popu-

larity, i.e., the accumulated number of user views. We only

consider the 800 most popular videos in our evaluations. We

get the average number of views of all the videos, and use

it as the mean of a Poisson distribution. We further draw 25

random values from this distribution, and use these values as

the corresponding total number of user requests received at the

edges. At each edge, in proportion to the popularity, we then

generate the number of user requests for each single video of

the 800 videos out of the total number of views at this edge.

Costs: We set the per-content hosting cost at edge caches as

within the range of [0.1, 1], and set the sidehaul transference

cost between two base stations in proportion to the correspond-

ing geographic distance, within [0.01, 0.1] which is the same

order of magnitude as Amazon EC2 pricing [21]. We set the

per-content downloading cost as being uniformly distributed in

[0.5, 5], considering the delay to remote servers is higher than

the delay within edge networks. We generate the accessing

cost for the ENO’s own servers by scaling the average CP

bidding price, described next. We note that we can associate

proper non-negative weights to these different types of costs

to indicate how the importance of each type of cost can impact

the results. In reality, ENOs can tune such weights and run our

approaches to seek trade-offs among different types of costs.

Bids: We consider 9 CPs. The bidding price of each CP’s

bid in each time slot is proportional to the sum of the view

counts of all the contents (i.e., videos) contained in the bid

[3]. To compose each CP’s bid in each time slot, we randomly

select at least half of all the contents under consideration.

Algorithms: We implement multiple algorithms in Python:

(i) Greedy Caching with Auction (GCA): This approach

places contents following the local demands at each base
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Fig. 4: Social cost
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Fig. 5: Impact of cache cap
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Fig. 6: Component cost
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Fig. 11: Running time

station in each time slot [25], and then solves all the other

control variables using our proposed action component.

(ii) Online Single-shot Optimum (OSO): This approach ig-

nores the downloading cost that couples adjacent time

slots, and solves the problem (i.e., all the control vari-

ables) in each corresponding time slot optimally through

invoking the Gurobi [26] optimization solver.

(iii) Edge Caching Incentive (ECI): This is our holistic online

approach as proposed in this paper.

(iv) Offline Optimum (OO): This approach treats the long-

term problem as an offline problem and solves it opti-

mally over the entire time horizon all at once by Gurobi.

B. Experimental Results

Fig. 4 depicts the social cost over time, where N and F

represent the number of edges and the number of contents

considered in the system, respectively. In this figure, we focus

on smaller-scale settings, as computing the offline optimum

often takes an unacceptably long time even with the state-

of-the-art optimization solver. Our approach ECI outperforms

OSO and GCA by reducing 5%∼ 45% social cost, with the

competitive ratio of 1.2∼1.4 regarding the offline optimum.

Fig. 5 exhibits how the social cost is impacted by edge cache

capacity. In this figure, our approach ECI saves 53%∼ 60%
social cost compared to GCA. Although capacity impacts con-

tent placements, ECI always balances the cost of downloading

contents to new caches and the cost of maintaining contents at

existing caches, incurring only slightly different social costs.

Fig. 6 visualizes the sidehaul transference cost, the content

hosting cost, and the content downloading cost accumulated

over time in our proposed approach, as the controlling weights

for them vary. Increasing sidehaul transference cost incurs

less content hosting cost while increasing the content hosting

cost incurs slightly less sidehaul transference cost. The content

downloading cost increases because, with the increase of the

other two types of costs, it becomes easier to trigger the

operation of downloads according to Algorithm 2.

Fig. 7 illustrates the impact of the control parameter β as

in Algorithm 2 on the social cost. When the weight of the

replacement (or downloading) cost is given, the increase of β

enables the control condition in Algorithm 2 to be met more

easily. Thus, more frequent content downloads from remote

servers can happen and lead to excessive downloading cost

(and thus excessive social cost). When the parameter β is

given, a higher weight on the replacement cost may delay the

necessary content downloading, resulting in an increase in the

accumulated non-replacement cost (and thus in social cost).

Figs. 8, 9, and 10 verify the different properties provably

achieved by our single-auction mechanism. Fig. 8 demon-

strates that our approach actually achieves a very low approxi-

mation ratio of about less than 2 for any single time slot, where

the number of contents in the system are set to 100 and 250,

respectively. Fig. 9 verifies the truthfulness where CP1 and

CP2 are two of the CPs in our evaluations selected randomly.

The highest utilities are achieved as they bid their true costs

(606 and 474, respectively). Since our payment depends on

the second smallest cost density (the critical value) according

to Algorithm 1, a bid would win if its bidding price is between

the true cost and the second smallest value, and would lose

otherwise. Fig. 10 verifies the individual rationality. When

CP1 wins the auction, the payment is always no lower than

the bidding price (assuming true cost) and the utility is non-

negative; when it loses, the payment and the utility are zero.

Fig. 11 displays the execution time of our approach. As the

length of the entire time horizon in terms of the total number

of time slots increases, the total execution time of our approach

grows moderately. This execution time is measured on a lab

desktop, up to 725 seconds, and is much shorter than the time

horizon under consideration, often hours to days in reality.

VI. RELATED WORK

Edge Caching Algorithms: A substantial body of research

have been done for edge caching algorithms. Xia et al. [1]

developed a caching strategy to optimize edge transmit power



and data retrieval rates. Asheralieva et al. [2] investigated

content sharing in wireless CDNs with edge caching and

device-to-device (D2D) communications. Abolhassani et al.

[9] proposed freshness-driven content and update-rate selec-

tion algorithms for edge networks. Zhang et al. [10] balanced

service delay and content freshness in mobile edge caching.

Multiple works [11]–[14] exploited reinforcement learning and

deep learning for edge caching to address privacy, spatial-

temporal dynamics, popularity prediction, and D2D assistance.

These works focus on the various caching algorithms and

optimizations for performance and cost from purely the system

operator’s or users’ perspective. They do not typically study

the interactions between different entities, i.e., the caching

system and the content owners, thus inapplicable to our case.

Edge Caching Incentives: There are also some existing

research on edge caching incentives. Wang et al. [15] set

CPs’ pricing to maximize utilities for edge contents by Stack-

elberg and stochastic games. Xiong et al. [16] studied the

interplay among wireless network operators, CPs, and users as

a three-stage non-cooperative game. Zhang et al. [8] cached

contents among users with reduced redundancy via auctions,

and decided payments via a bargaining game. Cao et al.

[4] proposed to cache the most profitable contents by using

auctions to allocate cache space and payments to maximize

revenue. Ahmadi et al. [3] applied coalition games to design

subsidization from access network operators to CPs. Liu et

al. [17] investigated the scenario where the network operator

leased small-cell resources to CPs via contract theory.

These works do not often focus on the specific interplay

between the ENO and the CPs. The majority take a game-

theoretic perspective, lacking auction-related economic proper-

ties. One other unique differentiator of our work is the auction

intertwined with the switching-cost-aware online optimization,

which never appeared in existing edge caching incentives.

VII. CONCLUSION

The economic interaction between the ENO and the CPs is

the key to realizing commercial edge caching in reality, but

has been largely ignored by existing research. In this paper, we

fill this gap by devising an online auction-based mechanism

which incentivizes CPs to cache contents continuously in

distributed edge caches while enabling the ENO to determine

bid selection, request dispatching, and cache updating to adapt

to dynamic and uncertain environments. We rigorously prove

multiple theoretical properties and guarantees, and conduct

extensive evaluations using real-world data to validate the

superior performance of our approach in practice. For future

work, we intend to utilize the algorithmic techniques in this

paper to study more online caching scenarios (e.g., caching

machine learning models to serve users in edge networks).
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