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AbstractÐDecentralized federated learning across edge net-
works can leverage blockchain with consensus mechanisms for
training information exchange among participants over costly
and distrustful wide-area networks. However, it is non-trivial to
optimally operate the blockchain to support decentralized fed-
erated learning due to the complex cost structure of blockchain
operations, the balance between blockchain overhead and model
convergence, and the dynamics and uncertainties of edge network
environments. To overcome these challenges, we formulate a
non-linear time-varying integer program that jointly places
blockchain nodes and determines the number of training iter-
ations to minimize the long-term blockchain computation and
communication cost. We then design an online polynomial-time
approximation algorithm that decomposes the problem and solves
the subproblems alternately on the fly using only estimated
inputs. We rigorously prove the sublinear regret of our approach.
We further implement our approach with a prototype system,
and conduct extensive trace-driven experiments to validate the
superiority of our approach over other alternatives.

I. INTRODUCTION

Federated learning often adopts a star topology consisting

of multiple rounds of training where in each round the partici-

pating devices train local models and send them to the central

server for aggregation [1, 2]. This paradigm suffers from server

congestion, single point of failure, single point of attack,

and straggling participants. To overcome these performance

issues, one approach is to decentralize the federated learning

process, i.e., letting participants directly exchange informa-

tion among themselves and conduct iterative aggregations to

train the model collaboratively [3, 4]. Yet, this is still not a

panacea, especially when such decentralized federated learning

is deployed and operated across multiple network carriers or

Internet Service Providers (ISPs) [5]. In this case, information

exchange among participants through Wide Area Networks

(WANs) could be costly and distrustful [6], impairing the

quality and accuracy of the models being trained.

Blockchain can be a promising solution to facilitate across-

WAN decentralized federated learning by providing consensus

mechanisms to ensure consistent information sharing among

federated learning participants [7]. In fact, blockchain pro-

vides encryption, verification, and immutability, among others,

which could all be useful for securing and protecting privacy

for decentralized federated learning. As a distributed ledger,

blockchain can further provide incentivization functionalities

by tracing each participant’s contribution of training data. In

this paper, we study the scenario as shown in Fig. 1, where a

service provider would like to leverage a blockchain to help
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Fig. 1: Decentralized federated learning upon blockchain

with its decentralized federated learning across edge servers

in different networks operated by multiple carriers.

Unfortunately, provisioning the blockchain optimally to sup-

port decentralized federated learning faces multiple challenges.

First, the coexistence of the blockchain and the decentral-

ized federated learning requires careful orchestration upon a

complex cost structure. Traditionally, the consensus achieved

by blockchain is built upon any node that joins the blockchain.

Yet, the exchange of training information (e.g., intermediate

models and/or gradients) in decentralized federated learning is

directedÐonly desired participants are supposed to receive it.

Consequently, permission control is needed for the blockchain.

That is, in each edge network, one may choose edge servers

among those which exchange training information with others

across WANs to serve as blockchain nodes, while considering

the costs of blockchain operations including raw data encryp-

tion and decryption, intra- and across-WAN communication,

and ªProof of Workº for competing for new blocks [8, 9].

Second, the overhead of the blockchain and the quality (e.g.,

convergence) of the model being trained by the decentralized

federated learning need to be balanced. To reduce the over-

head of the blockchain operations triggered by decentralized

federated learning, one may decrease the frequency of training

information exchange in terms of the number of training

iterations; however, the model convergence actually relies on

sufficient training. The best suitable number of training itera-

tions needs to be found to address this trade-off. Unfortunately,

before actually performing the training process, it is typically

hard to calculate a precise number of training iterations.

Third, the edge network dynamics and uncertainties further

hamper us from continuously controlling the efficient provi-

sioning of the blockchain with decentralized federated learn-



ing. For example, as the transmission cost over WAN varies

over time [6], it is desirable to reconfigure the blockchain

placement accordingly. Note that such input variations about

the network environment are often unpredictable beforehand,

and we can only make changes to the blockchain placement

using the estimated inputs. What could be worse is that the

estimations could often be inaccurate compared to the actual

inputs revealed afterwards, and mislead the control decisions

irrevocably. It is therefore non-trivial to optimize the total

cumulative cost in the long run in this situation.

Existing research falls insufficient for addressing the afore-

mentioned challenges. Some focus on the design and opti-

mization of federated learning at edge [10±14] and others

focus on the management and application of blockchains at

edge [8, 9, 15±17], both covering only part of the scope and

not capturing the problem targeted in this paper. Those few

on decentralized federated learning with blockchains [18±22]

neither orchestrate the two systems jointly across WANs nor

consider online optimization under uncertainties.

We firstly model and formulate the optimization problem

that jointly places the nodes in the blockchain and determines

the number of training iterations in the decentralized federated

learning across edge networks. Our formulation optimizes over

continuous time epochs the total computation and communi-

cation cost of the blockchain triggered by the decentralized

federated learning, subject to the requirements of ensuring

eventual model convergence with at least one blockchain node

in each edge network at each time epoch. Our problem turns

out to be a non-linear integer program, which is NP-hard, and

is general to capture arbitrary time-varying system dynamics.

To solve this problem in polynomial time in an online

manner using only estimated inputs, we then design an online

approximation algorithm that decomposes the problem care-

fully into two subproblems and solves these two subproblems

alternately on the fly. In the first subproblem, we determine

the fractional number of training iterations for the current time

epoch based on the blockchain node placement in the previous

time epoch via a primal-dual-based online learning approach

[23]. This approach essentially solves a one-shot optimization

problem with a transformed objective in each individual time

epoch, while ensuring the time-averaged convergence violation

is upper-bounded and vanishes as time goes to infinity. In the

second subproblem, we determine the fractional blockchain

node placement for the current time epoch based on the

number of training iterations at the same epoch by applying

the null-space method [24] to a quadratic program through

a corresponding linear system that combines the original

constraint and the optimality conditions. For all the fractional

solutions, we design a randomized rounding algorithm to

round them into integers. To produce the estimated inputs for

these subproblems, we also design a lightweight input estima-

tion approach which explicitly tolerates inaccurate estimations.

Via a rigorous proof, next, we demonstrate the performance

analysis that the regret, which measures the gap between the

actual cost incurred by the online decisions of our proposed

approach based on the estimated inputs and the offline optimal

TABLE I: Major notations
Input Description

aijt Transmission cost across WAN from edge i to edge j in t
At Matrix indicating across-WAN transmission cost in t
W Matrix indicating information exchanges in decentralized FL
αt Unit cost of encryption and decryption in t
βt Cost for intra-carrier user information collection in t
γt Cost for operating one blockchain node in t
m Size of data to be exchanged
Gt Gradient (i.e., a column vector) involved in training in t
ε Required model convergence for decentralized FL

Pt,1,Pt,2 Objectives of subproblems at t after decomposition

Decision Description

xit Whether to place a blockchain node on edge i in t
yt Number of training iterations for decentralized FL in t

actual cost, only grows sublinearly along with time. This proof

is non-trivial, based on connecting different problems and

solutions and the design of all of our algorithms. This analysis

also in turn guides the design of our input estimation approach.

Finally, we implement our proposed algorithms with a pro-

totype system, and conduct extensive trace-driven experiments

to validate the superiority of our approach. Our prototype uses

FedML [4] for decentralized federated learning, and creates

a blockchain upon the distributed InterPlanetary File System

(IPFS) [25]. Our algorithms are implemented in AMPL [26],

invoking the IPOPT [27] optimization solver. Using real-world

edge network data [28], WAN cost [6], and binary classifi-

cation tasks [29], we observe the following results: (i) Our

approach reduces the real-time blockchain cost by around 30%

on average compared to multiple alternative approaches; (ii)

WAN pricing, intra-edge-network communication, blockchain

operation overhead, and the model size impact the blockchain

cost of our approach to different extents; (iii) Our approach

is robust to inaccurate estimations of inputs, reducing training

iterations conservatively while still guaranteeing convergence;

(iv) Our approach is efficient in execution time, only taking

hundreds of milliseconds for a time epoch of 15 minutes.

II. MODEL AND FORMULATION

A. System Settings and Models

We summarize all our major notations in TABLE I.

Edge Networks: We consider a set of edge networks, which

may be owned and operated by different carriers. Each edge

network is connected to end users through cellular or wireline

access, and these edge networks are connected to one another

via Wide Area Networks (WANs). Each edge network consists

of multiple edges, where an ªedgeº refers to a micro data

center [30] or server cluster co-located with a cellular base

station or a WiFi access point. We consider that each edge has

a globally unique index or ID across all the edge networks,

and use E to denote the set of all the edges in the system.

We also use K to denote the set of all the edge networks. We

study the system over a series of time epochs T = {1, ..., T}.

Decentralized Federated Learning: We consider a service

provider who uses the edge resources from the carriers to train

machine learning models at edge via decentralized federated

learning over time. The output for the service provider is the

final model at the end of the last (i.e., T -th) time epoch.



We adopt a pre-specified matrix W = (Wij) ∈ R
|E|×|E| for

the decentralized federated learning process. For i and j in E ,

Wij > 0 indicates that there is information exchange during

the decentralized federated learning process between the edges

i and j; and Wij = 0 indicates that there is no information

exchange between the edges i and j during this process. The

latter case occurs when, for example, at least one of these

two edges does not participate in the decentralized feder-

ated learning process. Without loss of generality, we enforce∑
j′∈N i

in

Wj′i = 1 (e.g., by normalization), where N i
in is the

set of the edges that exchange information with the edge i. As

W is fixed and pre-specified by the service provider, the edges

that participate in the decentralized federated learning process

stay unchanged over all the time epochs under consideration.

Within each epoch, decentralized federated learning consists

of multiple ªiterationsº. We assign a globally unique index to

each iteration of each epoch. That is, each iteration u at each

edge i that participates in the decentralized federated learning

process consists of multiple ªstepsº as follows:

• Step 1: The edge i uses its local model wi
u from the

previous iteration u − 1 to incur the loss f i
u(w

i
u) upon

its local training data. It then computes an intermediate

parameter zi
u+ 1

2

= ziu − γ∇f i
u(w

i
u), where ziu is also

obtained from u− 1 with the initial value zi1 = 0.

• Step 2: The edge i transmits the two-tuple information(
Wijz

i
u+ 1

2

, Wijϖ
i
u

)
to its each neighbor j. Wij is

defined as above. ϖi
u is another parameter prepared in

the previous iteration u− 1 for the edge i, whose initial

value is ϖi
1 = 1.

• Step 3: The edge i receives
(
Wj′iz

j′

u+ 1
2

,Wj′iϖ
j′

u

)
from

its each neighbor, and conducts the updates as follows

for the next iteration u+ 1: ziu+1 =
∑

j′∈N i

in

Wj′iz
j′

u+ 1
2

;

ϖi
u+1 =

∑
j′∈N i

in

Wj′iϖ
j′

u ; and wi
u+1 = ziu+1/ϖ

i
u+1.

The training data are produced and contributed by end users.

Due to regulatory restrictions, the training data often have

to stay within each corresponding edge network. Distributed

federated learning is thus used, where only the (intermediate)

models and/or parameters leave the edge network boundaries.

For the decentralized federated learning process described as

above, we actually know the following convergence result [3]:

Proposition 1. For a model trained by the decentralized

federated learning process, the following holds:

∑U
u=0

∑n
i=1 ||w

i
u+1 − z̄u+1||

2
2 ≤ 4κ2C2s2

δ2
min

(1−s)2

∑U
u=0 ||Gu||

2
F ,

where U is the total number of iterations; wi
u+1 is the local

model produced on the edge i at the end of the iteration u;

z̄u+1 is the average of {ziu+1, ∀i}; Gu is the gradient in the

iteration u (i.e., [∇f1
u(w

1
u), ...,∇f i

u(w
i
u), ...,∇f

|E|
u (w

|E|
u )]); κ

is the learning rate; C, s, and δmin are constants; and || · ||F
is the Frobenius Norm.

Based on the above, if we set κ = 1/U , then we have

∑U
u=0

∑n
i=1 ||w

(i)
u+1 − z̄u+1||

2
2 ≤ 4C2s2

Uδ2
min

(1−s)2
{||G||2F }avg,

where {||G||2F }avg=
∑U

u=0 ||Gu||
2
F /U is the averaged gradient.

Introducing a ªmodel convergence parameterº ε to ensure the

right-hand side, the number of required training iterations is

U ≥ O({||G||2F }avg/δ
2
min)/ε.

Blockchain: We consider a blockchain in the system, which

is mainly used to make the consensus for the information

exchanged among the edges during the decentralized federated

learning process. For the best resource utilization, we allow the

dynamic selection of the edges as the ªblockchain nodesº.

Gradient transmission over blockchain runs as follows in

each training iteration. Consider transferring the gradient from

the edge i to the edge j. First, the gradient is encrypted,

where a unique password is used to produce the encrypted

gradient and the corresponding hash value. Here, encryption is

to ensure trustful transmission. Second, the hash value, instead

of the raw or the encrypted gradient, is recorded into the

blockchain. Only the last block of the blockchain manages

these hash values, and once the life cycle of the last block is

terminated, blockchain nodes will compete for a new block

which will be attached to the end of the blockchain. Third,

the edge j sends the password, and the edge i verifies it by

by re-generating a new hash value and comparing it to the

existing hash value in the blockchain. Then the edge i sends

the encrypted gradient and the edge j gets and decrypts it.

Control Decisions: We make two types of control decisions

for the decentralized federated learning process and for the

blockchain, respectively. We denote by yt ∈ Z
+ the number of

training iterations conducted in t for decentralized federated

learning. We use xit ∈ {1, 0} to denote whether or not the

edge i is selected as a blockchain node in t. Note that an edge

that participates in decentralized federated learning can also

be selected as a blockchain node simultaneously.

Blockchain Computation Cost: Two pieces of information

are recorded into the blockchain. The first is the hash values of

the gradients to be transferred across edges. We denote by m
the size of the gradient. Note that the model being trained has

a fixed model structure or a fixed number of model parameters;

the training process just determines the values of these model

parameters, and so the size of the exchanged information (e.g.,

gradient) stays unchanged over time. We also denote by αt

the amount of computation resources consumed for encrypting

and decrypting a single-unit information of gradients within a

training iteration. Thus, the cost per training iteration is mαt.

The second is the contribution (e.g., amount) of training data

from end users, which can often be recorded in the blockchain

for potential further rewards from the service provider. We

denote by βt the amount of resources consumed for collecting

the user contribution from the edges. Regarding the resources

consumed for Proof of Work when creating a new block,

we denote by γt the cost for running one blockchain node,

including the resources for competing blocks and the resources

for achieving the consensus. The total computation cost is thus

yt · {mαt + βt + ||xt||0γt},



where xt is the column vector of {xit, ∀i}, and ||xt||0 is the

norm counting the number of non-zero values in the vector.

Blockchain Communication Cost: We adopt a matrix

At = (aijt) ∈ R
|E|×|E|, where aijt ≥ 0 equals the transmis-

sion cost (e.g., network delay) from the edge i to the edge j
at the time epoch t for transferring encrypted gradients across

the WAN, and aijt equals positive infinity if either at least

one of the two edges does not participate in the blockchain or

there is no across-WAN transmission involved. The blockchain

WAN communication cost is thus

x⊤
t Atxt =

∑
i

∑
j xitxjtaijt.

Note that, for xitxjtaijt and xjtxitajit, the involved links over

WAN could be the same. Therefore, without loss of generality,

we assume that At is symmetric. Note that, decentralized

federated learning incurs its own cost of computation and

(intra- and/or inter-WAN) communication; as the participating

edges for decentralized federated learning stay unchanged, we

can incorporate all cost of decentralized federated learning per

training iteration at t into βt.

B. Problem Formulation, Goal, and Challenges

Control Problem P: Having the system models above, we

formulate the total cost optimization problem:

min
∑

t Pt ≜
∑

t{x
⊤
t Atxt + yt{mαt + βt + ||xt||0γt}}

s.t.
∑

t yt ≥ O({||G||2F }avg/δ
2
min)/ε, (1)

∀t, k : 1⊤
k xt ≥ 1, (2)

∀t : xt ∈ {1, 0}n, yt ∈ Z
+. (3)

In the above,
∑

t yt refers to the total number of the iterations

over all the time epochs; Gt refers to the gradient revealed at

the end of the last iteration in the time epoch t; and 1k is a

column vector specified by the edge network k ∈ K, where the

i-th element equals 1 if the edge i is within this edge network

and equals 0 if not. The optimization objective is the total

blockchain computation and communication cost. Constraint

(1) ensures a sufficient number of training iterations for the

desired convergence of the model being trained. Constraint (2)

ensures at least one blockchain node in each edge network.

Constraint (3) specifies the domains of the decision variables.

Control Problem P̂ with Estimated Inputs: We highlight

that the inputs, including αt and βt, are posterior. That is,

these inputs are only revealed at (the end of) each epoch t after

the actual execution of the decentralized federated learning. If

we want to make control decisions on the fly at (the beginning

of) each epoch t, as is desired, then we have to estimate these

inputs and make control decisions based on such estimations,

because the actual inputs remain unknown at that time point.

Therefore, we can also formulate the following problem:

min
∑

t P̂t ≜
∑

t{x
⊤
t Atxt + yt{mα̂t + β̂t + ||xt||0γt}}

s.t.
∑

t yt ≥ O({||G||2F }avg/δ
2
min)/ε,

∀t, k : 1⊤
k xt ≥ 1,

∀t : xt ∈ {1, 0}n, yt ∈ Z
+,

Algorithm 1 Controlling Blockchain with Decentralized FL

1: Initialize x̂1, ŷ1 as a feasible fractional solution;

2: for t ∈ [1, T ] do

// Obtain and implement decisions for current epoch

3: Round ŷt, x̂t to integers ȳt, x̄t, respectively;

4: Place blockchain and run decentralized FL by ȳt, x̄t;

// Make fractional decisions for next epoch

5: Estimate inputs for P̂t+1,1 and P̂t+1,2;

6: Solve ŷt+1 from P̂t+1,1 via ªonline learningº, given x̂t;

7: Solve x̂t+1 from P̂t+1,2, given ŷt+1;

8: end for

where ·̂ means the estimation. We note that {Gt, ∀t} are also

only revealed after the actual training in t; however, as it is

involved in a long-term constraint accumulated over time, we

choose to treat it differently and resort to dynamically adjust-

ing the control decisions to restrict the cumulative violation

of this constraint, instead of estimating Gt on the fly.

Algorithmic Goal: Given the two problem formulations as

above, we clarify the goal of our algorithm design. We use

{x̄it, ∀i} and ȳt to represent the decisions at t produced by

our online algorithms, whose aggregated representations are

denoted as {x̄t, ȳt, ∀t}. We also use {x∗
t , y

∗
t , ∀t} to represent

the offline optimal solutions (i.e., oracle) of the problem P

assuming all the actual inputs over time are all given at once.

We define the performance metric of regret as

r = P({x̄t, ȳt, ∀t})− P({x∗
t , y

∗
t , ∀t}).

We use P to refer to the objective function of P (and use P̂
to refer to the objective function of P̂). Our goal is to design

online algorithms that can produce {x̄t, ȳt} on the fly at each

time epoch t via appropriately solving the problem P̂ with the

estimated inputs {α̂t, β̂t} and can provably upper-bound the

regret r sublinearly when evaluating {x̄t, ȳt, ∀t} in P .

Algorithmic Challenges: It is fundamentally non-trivial to

design online algorithms to achieve the aforementioned goal.

First, the inputs need to be strategically estimated on the fly,

such that solving P̂ can produce online solutions that have

provably bounded regret with regards to P. Second, even with

inputs known, P̂ has the long-term constraint accumulated over

time regarding yt, making it not straightforward to assign any

value to yt as time goes to t. At t, setting yt small could end

up having to increase yt as time goes closer to the end, which

could increase the objective P̂ and damage the minimization;

setting yt large could in contrast lead to sub-optimality in the

first place. Third, P̂ contains non-linear terms in the objective

with integer domains. The problem is actually NP-hard even

in the offline setting, due to minimizing ||xt||0 [31]. Requiring

to solve it online can only escalate the difficulty.

III. ONLINE ALGORITHM

To overcome all the aforementioned challenges, we propose

Algorithm 1. Section III-A presents the overall structure and

idea of our algorithm, and Sections III-B∼III-D elaborate the

different parts of our algorithm mathematically.
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A. Algorithm Overview with Problem Decomposition

We design the following decomposition and decompose the

problem P̂ into two problems, P̂1 and P̂2, for the decentralized

federated learning and for the blockchain, respectively.

min
∑

t P̂t,1(yt) ≜
∑

t{yt{mα̂t + β̂t + (1⊤xt)γt}}

s.t.
∑

t Ct,1(yt) ≜
∑

t{O(||G||2F /δ
2
min)/ε− yt} ≤ 0,

∀t : yt ∈ Z
+.

min
∑

t P̂t,2(xt)≜
∑

t{x
⊤
t Atxt + yt{mα̂t + β̂t + γ⊤

t
xt}}

s.t. ∀t : Ct,2(xt) ≜ [...,−1
⊤
k xt, ...]

⊤ ⪯ −1,

xt ∈ {1, 0}n.

We introduce some new notations used in the above and also

in the rest of this paper. We use P̂t,1(yt) and Ct,1(yt) to denote

the objective and the constraint functions at t for P̂1, and use

P̂t,2(xt) and Ct,2(xt) to denote the objective and the constraint

functions at t for P̂2. P̂1 treats {yt, ∀t} as the decision

variables and treats {xt, ∀t} as the inputs. P̂2 treats {xt, ∀t} as

the decision variables and treats {yt, ∀t} as the inputs. In P̂1,

we have ||xt||0 = ||xt||1 = 1
⊤xt when xt takes the integers

{1, 0}. In P̂2, we have ∀k, 1⊤
k xt ≥ 1 as in Constraint (2); then,

Ct,2(xt) is a column vector that aggregates such constraints

{−1
⊤
1 xt, ...,−1

⊤
|K|xt} and is organized in the standard form,

i.e., ⪯ −1. Also, we denote by P̂t,1(yt) and P̂t,2(xt) the

objectives with the estimated inputs; analogously, we denote

by Pt,1(yt) and Pt,2(xt) the objectives with the actual inputs.

Algorithm 1 proceeds as follows. At each time epoch t, we

first round the fractional decisions into integers and implement

such integral decisions for t, as in Lines 3∼4; next, we

estimate the inputs for the next epoch t+1, and solve P̂t+1,1

(given x̂t) and P̂t+1,2 (given ŷt+1), respectively, to acquire

the fractional decisions of the number of training iterations

and the placement of blockchain nodes for t+ 1, as in Lines

5∼7. This algorithm can be visualized in Fig. 2.

B. Controlling Decentralized Federated Learning

We focus on Line 6 of Algorithm 1 in this section.

First, note that the optimization

min
∑

t P̂t,1(yt), s.t.
∑

t Ct,1(yt) ≤ 0, yt ∈ Z
+,

can be equivalently written in the convex-concave form:

minyt∈Z+ maxλt∈R≥0

∑
t

(
P̂t,1(yt) + λtCt,1(yt)

)
,

where λt is the Lagrange multiplier and the domain of yt is

positive integers, making it hard to solve as already mentioned

previously. Thus, we relax the problem:

minyt∈R+ maxλt∈R≥0

∑
t

(
P̂t,1(yt) + λtCt,1(yt)

)
.

Second, we split the relaxed problem to a series of subprob-

lems over the entire time horizon and solve each of them in

an online manner as time goes. That is, ∀t+ 1, we have

min
yt+1∈R+

{
∇P̂t,1(ŷt)(yt+1−ŷt)+

||yt+1−ŷt||
2

ξ1
+λt+1Ct,1(yt+1)

}
, (4)

where we can introduce new additional terms, i.e., the first two

terms in (4), to approximate P̂t+1,1(yt+1), with the parameter

ξ1 as the step size. λt+1 is then updated as

λt+1 = [λt + ξ2Ct,1(ŷt)]
+, (5)

where ξ2 is the step size, and [·]+ ≜ max{·, 0}.

We are essentially conducting online learning here, as we do

not use any information for t+1 but only use the information

from before t + 1 when determining the value of yt+1.

Specifically, at each t, we execute (5), and then solve (4) via

any existing standard convex optimization solver. Note that

we have broken the original constraint of
∑

t Ct,1(yt) ≤ 0,

which is accumulated over time, into individual constraints

of Ct,1(yt) ≤ 0 and incorporated each of such constraints

into the objective at each corresponding t, as in (4). We will

later show that this transformation, with the approximation

introduced in the above, can provably upper-bound the cumu-

lative violation regarding the original constraint. The factional

control decision, i.e., ŷt+1, will also be rounded as described

later for controlling decentralized federated learning at t+ 1.

Following a previous literature [23], we have Proposition 2

which upper-bounds the regret and the constraint violation for

P̂1, respectively, when {x̂t, ∀t} is given.

Proposition 2. The following inequalities hold for P̂1:

∑
t{P̂t,1(x̂t, ŷt)− P̂t,1(x̂t, ŷ

∗
t )} ≤ O(T τ ),

O({||Gt||
2
F }avg/δ

2
min)/ε−

∑
t ŷt ≤ O(T τ ′

),

where ŷ∗t is the fractional optimal solution for P̂1 at t given

x̂t at t; and τ < 1 and τ ′ < 1 are constants.

C. Controlling Blockchain

We focus on Line 7 of Algorithm 1 in this section.

For the optimization

min
∑

t P̂t,2(xt), s.t. Ct,2(xt) ⪯ −1, xt ∈ {1, 0}n,

we can transform the inequality constraint to an equality

constraint via replacing its right-hand side by a constant vector.

Such a constant vector c for the optimum can be enumerated

through the binary lookup. Thus, we have, ∀t+ 1,

min
1

2
x⊤
t+1(2At+1)xt+1 + ŷt+1γ

⊤
t
xt+1 + ŷt+1(mα̂t + β̂t)

s.t. Ct+1,2(xt+1) = c, xt+1 ∈ {1, 0}n,

where c = [c1, ..., c|K|] ∈ R
|K|
− such that c ⪯ −1. Note that

xt+1 still falls into the integer domain. We relax the problem:

min
1

2
x⊤
t+1(2At+1)xt+1 − x⊤

t+1b (6)

s.t. Bxt+1 = c, xt+1 ∈ [0, 1]n,



where the matrix B⊤ = [−11, ...,−1|K|] indicates related

domains of the edges and each row of it corresponds to an edge

network; and the column vector b is [−ŷt+1γt, ...,−ŷt+1γt].
We can actually combine the stationarity condition in the

Karush-Kuhn-Tucker (KKT) optimality conditions and the

above equality constraint to characterize the optimal solution.

That is, we have the following linear system:

K

(
x̂t+1

φ∗

)
≜

(
2At+1 B⊤

B 0

)(
x̂t+1

φ∗

)
=

(
b

c

)
, (7)

where x̂t+1 is the optimal solution to P̂t+1,2 and φ∗ is the

Lagrange multiplier for the equality constraint.

Now, let us observe the following two propositions. Propo-

sition 3 holds because each row of B is mapped to a unique

edge network, and all these edge networks have no overlap

by definition. That is, B has full row rank, as no row can be

omitted. Proposition 4 follows from an existing literature [24],

where Z is a matrix whose columns form a basis of the kernel

of B so that Z has full column rank and BZ = 0.

Proposition 3. The matrix B has full row rank.

Proposition 4. If Z⊤At+1Z is positive definite, K is non-

singular; further, the KKT system in (7) has a unique solution.

Then, we adopt the null-space method [24] to solve (7) for

x̂t+1. That is, we can write x̂t+1 in the form of

x̂t+1 = Y wY +ZwZ , (8)

where Y is a matrix such that [Y Z] is nonsingular. Putting

(8) into the equality constraint of (6), we have

Bx̂t+1 = BY wY +BZwZ = BY wY + 0 = c,

because BZ = 0. This actually implies that Y wY satisfies the

equality constraint of (6). Then, putting (8) into the stationarity

condition (7), we have

2At+1Y wY + 2At+1ZwZ +B⊤φ∗ = 0.

Multiplying the above equation by Z⊤ and using Z⊤B⊤ =
(BZ)⊤ = 0, we have

Z⊤(2At+1)ZwZ = Z⊤
0−Z⊤(2At+1)Y wY ,

where wZ can be directly solved using the Cholesky factor-

ization upon the solved wY . Finally, x̂t+1 for the epoch t+1
can be obtained from (8) accordingly.

D. Rounding Decisions and Estimating Inputs

We focus on Lines 3∼5 of Algorithm 1 in this section.

Randomized Rounding: After obtaining the fractional de-

cisions x̂t and ŷt for the epoch t, we need to convert them to

integers. We employ randomized rounding:

u = x̂i,t or ŷt, u =

{
⌊u⌋, with prob. ⌈u⌉ − u

⌈u⌉, with prob. u− ⌊u⌋
.

This ensures E[ȳt] = ŷt and E[x̄t] = x̂t. Then, as shown

in Line 4 of Algorithm 1, we use x̄t to place the blockchain

nodes and use ȳt to set the number of training iterations for

decentralized federated learning in the time epoch t. After

such implementations of these control decisions, the results

revealed (i.e., ||Gt||F ) will help the decision update for the

next epoch (i.e., for constructing Ct+1,1(·)).
Input Estimation: As stated earlier, we need to obtain the

estimated inputs {α̂t, β̂t} on the fly at t as our algorithm runs.

Unlike previous works that estimate inputs via solving addi-

tional optimizations [6, 32], we adopt a lightweight approach

here for reducing the overall algorithmic runtime overhead. In

fact, in the next section, we will show a non-trivial theorem

that we actually only require
∣∣P̂t,1(·)− Pt,1(·)

∣∣ ≤ ν and
∣∣P̂t,2(·)− Pt,2(·)

∣∣ ≤ ν,

where ν is a constant, in order to upper-bound the regret

incurred by our algorithm. Note that this constant ν can always

exist. For example, if for any t the above differences are νt,1
and νt,2, then we can set ν = maxt

{
max{νt,1, νt,2}

}
. In

practice, we may want to make ν as small as possible. In

our realization, we choose to calculate the estimations at t as

α̂t =
1

t−1

∑t−1
τ=1 ατ and β̂t =

1
t−1

∑t−1
τ=1 βτ .

IV. PERFORMANCE ANALYSIS

We upper-bound the regret sublinearly based on the design

of our algorithms. We introduce and recap some notations,

based on which we present Theorem 1 and derive its proof.

(i) The fractional decisions produced by our online approach

are {x̂t, ŷt, ∀t}; the integer decisions produced by our

online approach are {x̄t, ȳt, ∀t}.

(ii) For problems with estimated inputs, given x̂t at t, the

fractional optimal solution for P̂1 at t is ŷ∗t ; given ŷt at

t, the fractional optimal solution for P̂2 at t is x̂t.

(iii) For problems with actual inputs, the fractional offline

optimal solution for P1 is {x̃∗◦
t , ỹ∗◦t , ∀t}; the fractional

offline optimal solution for P2 is {x̃∗⋄
t , ỹ∗⋄

t , ∀t}.

(iv) For problems with actual inputs, the fractional offline

optimal solution for P is {x̃∗
t , ỹ

∗
t , ∀t}; the integer offline

optimal solution for P is {x∗
t , y

∗
t , ∀t}.

Theorem 1. The regret is upper-bounded as

r = E[P({x̄t, ȳt, ∀t})]− P({x∗
t , y

∗
t , ∀t}) ≤ O(T τ ) + Ω,

where τ < 1 and Ω are constants.

Proof. First, we note the following set of inequalities:

∑
t{Pt,1(x̃

∗
t , ỹ

∗
t )− Pt,1(x

∗
t , y

∗
t )} ≤ 0, (9)

∑
t{Pt,1(x̃

∗◦
t , ỹ∗◦t )− Pt,1(x̃

∗
t , ỹ

∗
t )} ≤ 0, (10)

∑
t{Pt,1(x̂t, ỹ

∗◦
t )− Pt,1(x̃

∗◦
t , ỹ∗◦t )} = Ω′

1, (11)
∑

t{P̂t,1(x̂t, ỹ
∗◦
t )− Pt,1(x̂t, ỹ

∗◦
t )} ≤ ν, (12)

∑
t{P̂t,1(x̂t, ŷ

∗
t )− P̂t,1(x̂t, ỹ

∗◦
t )} ≤ 0, (13)

∑
t{P̂t,1(x̂t, ŷt)− P̂t,1(x̂t, ŷ

∗
t )} ≤ O(T τ ). (14)

(9) follows from (iv); (10) follows from (iii); (11) defines the

constant Ω′
1; (12) follows from the input estimation, i.e., Line

5 of Algorithm 1; (13) follows from (ii); and (14) follows from

Line 6 of Algorithm 1 with Proposition 2, where τ < 1.



Second, summing up (9)∼(14) and replacing P̂t,1(x̂t, ŷt)

by E[P̂t,1(x̄t, ȳt)], ∀t in (14), we have
∑

t{E[P̂t,1(x̄t, ȳt)]− Pt,1(x
∗
t , y

∗
t )} ≤ Ω1 +O(T τ ), (15)

where Ω1 = Ω′
1 + ν. Here, note that the first term on the left-

hand side of (9) cancels the second term on the left-hand side

of (10); the first term on the left-hand side of (10) cancels

the second term on the left-hand side of (11); ... and so on.

The replacement mentioned above and the adoption of the

expectation is due to randomized rounding, following from

Line 3 of Algorithm 1.

Third, analogously, following steps similar to the above, we

can actually also get the following:
∑

t{P̂t,2(x̄t, ȳt)− Pt,2(x
∗
t , y

∗
t )} ≤ Ω2. (16)

Different from (15), when deriving (16), we note that in the

inequality corresponding to (14) regarding P̂t,2, the left-hand

side is actually ≤ 0, following from Line 7 of Algorithm 1.

Finally, summing up (15) and (16), we complete the proof,

where Ω = Ω1 +Ω2.

V. EXPERIMENTAL EVALUATIONS

A. Evaluation Settings

System Implementation: We implement our control algo-

rithms as part of a prototype system, as in Fig. 3. We adopt

FedML [4] for decentralized federated learning, and create a

blockchain on top of the distributed InterPlanetary File System

(IPFS) [25]. Data Sender and Data Receiver communicate

with each other as described in Section II-A. Hash is done

via AES256-CBC. Proof-of-Work is via calculating a specific

target hash value (e.g., with the prefix ª0000º). We mainly use

Python for our prototype implementation. For the proposed

algorithms, we implement them by AMPL [26], invoking the

IPOPT [27] optimization solver. To realize large-scale exper-

iments, we conduct emulations on our lab testbed consisting

of three servers, and use threads to emulate edges. Each

thread runs either the FedML codes, or both the FedML and

the blockchain codes. Inter-edge communication is therefore

implemented as inter-thread communication.

Edge Networks and Training Data: We get real-world ISP

edge networks data [28], containing four ISP edge networks

of 49, 18, 16 and 4 edges, respectively. 20 out of these edges

are on the borders of the edge networks, connecting to other

edge networks via WANs. WAN transmission pricing is from

TraceRoute [6]. We use the Occupancy Detection [29] dataset,

which contains 20,000 data samples for binary classification

of room occupancy from temperature, humidity, light, etc. We

train a logistic regression model on 10 edges via decentralized

federated learning. For inputs such as resource consumption

for encryption and decryption and for competing for the new

block, we measure the real-time CPU and memory usage and

conduct estimation on the fly based on historical measure-

ments. We consider 100 time epochs, each of 15 minutes.

Algorithms: We compare our approach with the following

alternatives, each of which selects edges to serve as blockchain

nodes and ensures one blockchain node in each edge network:
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Fig. 4: Cost with algorithmic details

• wanOriented (or ªouterº) selects edges with the mini-

mum across-WAN communication cost;

• userOriented (or ªinnerº) selects edges with the mini-

mum intra-edge-network communication cost;

• minerOriented (or ªminerº) selects edges with the mini-

mum computation cost of encryption and decryption and

running blockchain nodes;

• fixBorder (or ªfixº) selects edges randomly in each edge

network;

• lowerIteration (or ªlowerº) conducts training with 80%

iterations involved upon the edges selected as in ªfixº.

All algorithms execute in an online manner using the same

estimated inputs. Also, all of them take the number of the

training iterations determined by our approach in each epoch.

B. Evaluation Results

Blockchain Cost: Fig. 4(a) compares the real-time cost of

all approaches. Our approach decreases the average cost per

time epoch by at least 31%, compared to others. The peak

cost of our approach is only 75% of the maximum of all

algorithms, shown in the bottom sub-figure of Fig. 4(a). In

Fig. 4(b), the first two sub-figures show the cost incurred by

our two decoupled subproblems. The third and the fourth sub-

figures exhibit the dynamic selections of the edges to serve as

blockchain nodes, where the selection for the first 10 edges

in the same edge network is displayed in detail in the latter.

The fifth sub-figure shows the number of training iterations (in

red) and the norm of the gradients (in grey) per time epoch.

Impact of Different Factors: Fig. 5(a) illustrates the impact

of WAN pricing on the total cost. As WAN price increases,

the gap between our approach and ªouterº becomes smaller,

because the WAN cost gradually becomes the dominant cost.

The cost reduction of our approach over others is 5%∼46%.

Fig. 5(b) shows the impact of the intra-ISP communication

overhead, including collecting user contributions information,

on the total cost. With the increase of the number of the end

users, the gap between our approach and ªinnerº becomes
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smaller due to similar reasons as stated for Fig. 5(a). The cost

reduction of our approach over others is at least 15%. Fig. 5(c)

depicts the impact of the blockchain operations (i.e., encryp-

tion/decryption and running blockchain nodes) overhead on

the total cost. With the increase of the blockchain operations

overhead, the gap between our approach and ªminerº becomes

smaller. The cost reduction of our approach over others is

11%∼32%. Fig. 5(d) reveals the impact of the model size

on the total cost. Such model size also impacts the size of

the gradients. As the model size grows, the gap between our

approach and others increases (the vertical axis of this figure

is in the logarithmic scale). The cost reduction is up to 210%.

Impact of Input Estimations: In Fig. 6(a) and Fig. 6(b), ª1

×Rangeº refers to the range of variations of the actual inputs

as in the original dataset; ª2×Rangeº means that we manually

enlarge each actual input to 2 times its original value; and

so on. Estimation is always based on averaging the historical

values; thus, as such range increases, the absolute gap between

the actual input and the estimated input becomes larger.

Fig. 6(a) shows that, as such range for increases, the total cost

increases. This is because the control decisions are made based

on more inaccurate estimations. Fig. 6(b) shows the impact

on the number of training iterations by decisions made based

on estimated inputs. Although the minimum number of the

training iterations decreases as the estimations become less

accurate, such minimum number of the training iterations is

still 88% of the original value, ensuring model convergence.

Impact of Algorithmic Parameter: Fig. 6(c) investigates

the impact of ξ on the number of training iterations. We set

ξ1 = ξ2 = ξ, where ξ1 and ξ2 are the algorithmic parameters as

in Section III-B. As in the formulation (4), as ξ increases, the

number of training iterations at one time epoch does not have

to follow that at the previous time epoch; thus, the number of

training iterations can change vastly as time goes. When ξ is

small, it is harder to change the number of training iterations

as time goes. The minimum number of training iterations is

80% of its value at the beginning of the time horizon.

Execution Time: Fig. 6(d) shows the execution time, where

the solving process takes only hundreds of milliseconds.

VI. RELATED WORK

Federated Learning at Edge: Wang et al. [10] studied

model aggregations under a given resource budget. Zhou

et al. [11] controlled the throughout of data training for cost-

efficient federated learning in edge networks. Feng et al. [12]

optimized model compression, sample selection, and user

selection in wireless mobile edges. Lu et al. [13] clustered

clients based on training data distribution and selected partici-

pants via auctions for energy efficiency. Jin et al. [14] jointly

managed data transference from user devices, resource provi-

sioning at edge servers, and the federated learning process.

These works focus on federated learning at the network

edge, but do not typically explore consensus mechanisms over

distrustful networks such as WANs. They lack consideration

of blockchains and cannot capture our work.

Blockchain at Edge: Qiu et al. [15] used reinforcement

learning for computation offloading in blockchain-empowered

edge computing. Feng et al. [8] optimized the performance

of blockchain and mobile edge computing via the Markov

decision process. Guo et al. [9] studied adaptive resource allo-

cation and block generation to improve blockchain throughput.

Chen et al. [16] presented a resource authentication approach

based on blockchain group key management. Du et al. [17]

designed edge resource markets with the Proof-of-Stake con-

sensus for transaction verification and award allocation.

These works investigate the optimization and the applica-

tion of blockchains in edge computing. They do not exploit

blockchains for federated learning, and thus are inapplicable

to our work tailored to decentralized federated learning.



Decentralized Federated Learning with Blockchain: Li

et al. [18] proposed to let clients join blockchain and federated

learning simultaneously and broadcast gradients for aggrega-

tion. Li et al. [19] employed blockchain for storage to replace

central federated learning servers. Hu et al. [20] decentralized

federated learning using a ring topology and used blockchain

for security. Wilhelmi et al. [21] used blockchain to store

model updates and studied ledger inconsistencies and age of

information. Feng et al. [22] explored smart contracts with the

blockchain to authenticate participants and aggregate models.

These works often study a different type of decentralized

federated learning, leverage a specific aspect of blockchain,

or loosely couple these two. None has captured the cost trade-

offs with online resource optimization under uncertainties.

VII. CONCLUSION

Orchestrating the blockchain dynamically and continuously

in a cost-minimizing manner to facilitate decentralized feder-

ated learning across distrustful networks has been less studied,

and this paper fills this gap. Our proposed online optimization

algorithm innovatively decomposes the problem and solves

subproblems alternately on the fly only based on estimated

inputs. We theoretically prove the sublinear regret of our online

approach, practically implement the prototype system, and ex-

perimentally exhibit the cost benefits from multiple angles. For

future work, we will continue to explore the interaction and

intersection of blockchain and federated learning techniques.
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