
Online Scheduling of Federated Learning with
In-Network Aggregation and Flow Routing

Mingtao Ji1, Lei Jiao2, Yitao Fan1, Yang Chen3, Zhuzhong Qian1, Ji Qi4, Gangyi Luo4, Baoliu Ye1
1State Key Laboratory for Novel Software Technology, Nanjing University, China 2University of Oregon, USA

3Fudan University, China 4China Mobile (Suzhou) Software Technology Co. Ltd., China

Abstract—Continuously orchestrating in-network model aggre-
gations for federated learning faces fundamental challenges such
as the combinatorial nature of traffic reduction, the dynamic
trade-offs between system overhead and model convergence, and
the unpredictable inputs from uncertain system environments. In
this work, we model a nonlinear mixed-integer program to opti-
mize the long-term total cost of federated learning computation
overhead, traffic reduction, network delay, and programmable
switch reconfigurations over time. To attack the lexicographic
minimax, submodular, and online nature of this problem, we
propose a polynomial-time algorithmic framework to judiciously
designate the timing of reconfigurations, while designing and
invoking a linearized transformation for selecting routing paths, a
greedy sub-algorithm for selecting aggregation locations, and an
online learning sub-algorithm for controlling federated learning
convergence. We demonstrate our rigorous mathematical insights
behind our algorithms, and prove the competitive ratio as the
performance guarantee. Using trace-driven evaluations, we have
validated our approach’s superiority over existing methods.

I. INTRODUCTION

Federated Learning (FL) [1, 2] typically consists of a group
of client devices and a server that communicate via a network.
In each round, each FL client updates the model using its local
data and sends the updated model with related information to
the FL server for aggregation; then, each client downloads
the aggregated global model from the server, and continues to
update that model in the next round. This paradigm involves
excessive communication overhead between the FL clients and
the FL server, especially when the model becomes huge today
and needs many rounds of training [3]. Leaving such traffic
unmanaged can incur large traffic footprint and delay upon the
network and impact the performance of the entire FL system.

While different entities may use FL for different purposes,
service providers and network operators who control the net-
work infrastructures and conduct FL upon such infrastructures,
e.g., for management tasks [4, 5], are uniquely positioned to
address the above problem via in-network aggregation [6, 7].
In fact, with the deployment of programmable switches (e.g.,
P4 [8, 9]) and smart network interface cards, these service
providers can choose to aggregate the models sent from the FL
clients in the network before reaching the FL server, and due to
the associative property of aggregations, further aggregate the
already-aggregated models on the FL server to still obtain the
same global model. Such in-network aggregation reduces the
network traffic, alleviates the load on the FL server, improves
the overall resource efficiency, and more importantly, achieves
all these benefits by completing aggregation at line speed [10].

2023/7/31 3

f2

f3

f2

f3
f4

f1
1 2

f2

f3

f2/3

f4

f1
1 2

f2

f3

f2

f3
f4

f1
2

f2

f3
f4

f1
1 2f2/3

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…
…

…
1

(a) No Aggregation

2023/7/31 3

f2

f3

f2

f3
f4

f1
1 2

f2

f3

f2/3

f4

f1
1 2

f2

f3

f2

f3
f4

f1
2

f2

f3
f4

f1
1 2f2/3

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…
…

…
1

(b) Aggregation at Switch 1

2023/7/31 3

f2

f3

f2

f3
f4

f1
1 2

f2

f3

f2/3

f4

f1
1 2

f2

f3

f2

f3
f4

f1
2

f2

f3
f4

f1
1 2f2/3

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…
…

…
1

(c) Aggregation at Switch 22023/7/31 3

f2

f3

f2

f3
f4

f1
1 2

f2

f3

f2/3

f4

f1
1 2

f2

f3

f2

f3
f4

f1
2

f2

f3
f4

f1
1 2f2/3

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…
…

…
1

(d) Aggregation at Both

Fig. 1: Different In-Network Aggregation Decisions
However, to enable service providers to optimally operate

in-network aggregation jointly with federated learning is non-
trivial, due to multiple fundamental challenges as follows.

First, in-network aggregation actually possesses a complex
cost structure, making it difficult to precisely characterize its
benefit [7, 10]. Consider traffic reduction in terms of the
number of the reduced flows. In Fig. 1(d), there are two flows
before and one flow after Switch 1, and three flows before
and one flow after Switch 2. The traffic reduction for the two
switches in Fig. 1(d) is thus (2−1)+(3−1)=3; analogously,
the traffic reduction for Fig. 1(a), Fig. 1(b), and Fig. 1(c)
are (2−2)+(4−4)=0, (2−1)+(3−3)=1, and (2−2)+(4−1)=3,
respectively. Note that the traffic reduction of Fig. 1(d), with
aggregation at both switches, is not equal to the sum of the
traffic reduction of Fig. 1(b) with aggregation only at Switch
1 and that of Fig. 1(c) with aggregation only at Switch 2. That
is, the traffic reduction of downstream switches depends on the
in-network aggregation at upstream switches. A network with
a complicated topology only makes such dependency trickier.

Second, as in-network aggregation and federated learning
are intertwined, it is challenging to jointly control them in
an online manner in the uncertain system environments. To
achieve the global model convergence [1, 3], we need to ensure
a sufficient number of global aggregations cumulatively. In an
online setting, if we do not conduct the global aggregation
currently, it removes the need to orchestrate in-network aggre-
gations but can force us to do global aggregations later even
if the network conditions (e.g., delay) become worse then;
if we do the global aggregation now, it may turn out to be
unnecessary if the future network performance becomes better.
As how system environments vary in the future is unknown,
it is not easy to make the control decisions on the fly.

Third, controlling in-network aggregations continuously on
programmable switches incurs reconfiguration (a.k.a. switch-
ing) cost, e.g., the leading and initialization time for loading

new programs and/or data [11], which is not straightforward
to manage. Keeping existing in-network aggregation configu-
rations stable may not be ideal, because with dynamic routing,
the flows from the FL clients to the FL server that pass any
specific switch may change as time goes; but adjusting the in-
network aggregation configurations immediately in response
to flow routing variations may incur excessive reconfiguration
cost. Flow routing itself needs to be controlled as well, as it
impacts not only flow aggregation but also network delay.

Existing research on FL and distributed machine learning
with in-network aggregations falls short for addressing the
aforementioned challenges. Those on FL [12–17] have neither
characterized the traffic reduction impact in complex networks,
nor addressed the dynamic control of FL convergence with the
continuous reconfiguration of programmable switches in the
long term. Those on distributed machine learning and neural
networks [6–10, 18] are generally inapplicable, either, as their
solutions often fail to consider the FL and the online settings
of the problem. See Section VI for detailed discussions.

In this paper, we present a comprehensive mathematical
and algorithmic study on the online optimization of network-
assisted federated learning. We make multiple contributions:

We first model a long-term total cost minimization problem
to jointly optimize the FL computational overhead, the pro-
grammable switches’ reconfiguration cost, the traffic reduction
due to in-network aggregation, and the maximum FL net-
work delay. Our formulation preserves the FL convergence as
specified and captures both the combinatorial nature of traffic
reduction and the lexicographic minimax nature of network
delay, while controlling FL, in-network aggregation, and flow
routing with almost no assumption on the time-varying inputs
from the system environments. Our problem is a non-linear
mixed-integer program, which is, unsurprisingly, NP-hard.

We then design three polynomial-time algorithms that fuse
together to solve this problem in an online manner. Our key
idea of the online control algorithm is to balance the switching
cost and the non-switching cost by judiciously postponing the
switching operation (i.e., changing the locations of in-network
aggregations) until the cumulative non-switching cost since the
last switching operation surpasses a controllable constant times
the switching cost of that last switching operation. Our online
control algorithm invokes two sub-algorithms. The first sub-
algorithm determines the routing paths by optimally solving
a continuous linear program transformed from our origi-
nal discrete min-max formulation, and chooses the network
switches for in-network aggregations by greedily collecting
the switches that bring the maximum increment to existing
traffic reduction. The second sub-algorithm achieves federated
learning convergence via online learning [19], using rectified
primal-dual steps to decide online in each round the number
of iterations for local training and whether to conduct global
aggregation, without worrying about unknown future inputs.

We further perform the theoretical analysis for our approach
and provide the mathematical insights behind our algorithm
design. We derive a parameterized-constant competitive ratio
for our entire approach, which indicates the multiplicative gap

between the total cost of our online approach and the offline
optimum. For the sub-algorithms, we prove the equivalence
between our lexicographic min-max optimization of the net-
work delay and a corresponding linear program [20, 21], and
establish the monotonicity and submodularity of our traffic re-
duction function [22], which leads to a small approximate ratio
against the optimal reduction. We also point out the sub-linear
growth of the regret in terms of the cumulative non-switching
cost compared to a sequence of one-shot optimizations and the
fit in terms of the cumulative violation of the FL convergence.

We finally conduct large-scale evaluations using real-world
data. We use NetworkX [23] to compose a network of 1,024
nodes, connecting an FL server with a varying number of FL
clients at different locations [10] with real path delay [24], and
implement an in-network aggregation protocol [7] upon real
P4 programmable switches to collect the required inputs to our
experiments. We adopt TensorFlow FL [25] to train a Support
Vector Machine (SVM) and a Convolutional Neural Network
(CNN) for the MNIST [26] and the CIFAR-10 [27] tasks.
Overall, (i) our approach reduces the total cost by 23% in real
time and by 19%∼47% cumulatively on average, compared to
combinations of existing methods; (ii) our approach performs
consistently well for different client distributions, gradient
sizes, and reconfiguration overhead; (iii) our approach finishes
in seconds, meeting real-world needs; and (iv) our approach
succeeds in training SVM and CNN models of high accuracy.

II. MODELING AND FORMULATION

A. System Settings and Models

Federated Learning (FL): We consider a Federated Learn-
ing (FL) system that consists of one FL server and a set
N = {1, ..., |N |} of FL clients, where the FL server and the
FL clients communicate via a network. To train the global
model w, we minimize the total “loss”. We define the loss on
the client i ∈ N as Fi(w) = 1

|Di|
∑
l∈Di

fl(w), where fl(·) is
the loss function corresponding to the data sample l and Di is
the set of all the data samples on the client i, and also define
the total loss as F (w) = 1∑

i∈N |Di|
∑
i∈N (|Di|Fi(w)). Train-

ing the global model w is to solve the problem minw F (w).
Without loss of generality, in this paper, we target the FL

approach as follows. We solve the problem minw F (w) using
κG global iterations, starting with the initial value w0 and end-
ing with the final value wκG . We desire F (wκG)−F (w∗) ≤
ε · (F (w0) − F (w∗)), where w∗ = argminw F (w), and
ε ∈ (0, 1) is a parameter that we can call “global convergence
accuracy”. To make this inequality hold, we need to conduct
the following number of global iterations [2, 3], where r0 is
a constant and x will be described next:

κG(ε, x) ≥ r0
log(1/ε)
1−x .

In the k-th global iteration, on each client i, we need to solve
the problem minwi,k

Ji,k(wi,k) through κL local iterations,
starting with the initial value w0

i,k = wk−1 and ending with
the value wκL

i,k , by executing the gradient-descent steps as
wτ
i,k = wτ−1

i,k − δ∇Ji,k(wτ−1
i,k). Here, δ is the step size,

A Federated Learning Algorithm
initialize w0 and ∇F (w0); ▷ Initialization on server
for k = 1, ..., κG do
▷ Local training on each client i:

download wk−1 and ∇F (wk−1) from server;
for τ = 1, ..., κL do

wτ
i,k = wτ−1

i,k − δ∇Ji,k(wτ−1
i,k);

upload wi,k = wκL

i,k and ∇Fi(wi,k) to server;
▷ Global aggregation on server:

wk = 1
|N |

∑
i∈N wi,k;

∇F (wk) =
1

|N |
∑
i∈N ∇Fi(wi,k);

and Ji,k(·) is a dedicated function defined as Ji,k(w) =
Fi(w)−[∇Fi(wk−1)−β1∇F (wk−1)]

T(w−wk−1)+
β2

2 ||w−
wk−1||2, where β1, β2 ≥ 0 are constant parameters. We desire
∥∇Ji,k(wκL

i,k)∥ ≤ x∥∇Ji,k(wk−1)∥, where x ∈ (0, 1) is a
parameter that we call “local convergence accuracy”. To make
this inequality hold, we need to conduct the following number
of local iterations on each client [2, 3], where q0 is a constant:

κL(x) ≥ q0 log2 (1/x) .

Note that in this paper we focus on synchronous FL, instead
of asynchronous FL which could be of independent interest.

In-Network Aggregations: We consider the network that
connects the FL clients and the FL server having a set of
programmable switches, denoted as J = {1, ..., |J |}, where
the in-network aggregations can happen. As indicated in the
aforementioned FL algorithm, in each global iteration k, every
FL client i sends a flow, containing wi,k and ∇Fi(wi,k), at
the end of the local training to the FL server for aggregation.
Due to programmable switches, flows that meet at a common
switch can choose to do an early aggregation on the switch,
and then the aggregated flow can continue to travel to the FL
server for any further aggregation. For any switch, the number
of outgoing flows is always 1 if the in-network aggregation
occurs at this switch. If we use Qj to represent the number of
incoming flows for the switch j, then we can define “traffic
reduction” for the switch j as Qj−1. In general, for a set S of
switches, we define the function ψ(S) as the traffic reduction
on S, i.e., the total traffic reduction if every switch in S
conducts in-network aggregation. Now, if we consider a switch
j ̸∈ S which currently performs no in-network aggregation,
then one and only one of the following cases must hold.

• (Case I) All Qj outgoing flows of j go into some switch
k in S: ψ({j} ∪ S) = Qj − 1 + (Qk − (Qj − 1))− 1 +
ψ(S \ {k}) = Qk − 1 + ψ(S \ {k}) = ψ(S);

• (Case II) Some or all outgoing flows from S go into j:
ψ({j} ∪ S) = Qj − 1 + ψ(S);

• (Case III) None of Qj outgoing flows of j go into any
switch in S, and also no outgoing flows from S go into
j: ψ({j} ∪ S) = Qj − 1 + ψ(S).

That is,

ψ({j} ∪ S) =

{
ψ(S) Case I;
Qj − 1 + ψ(S) Cases II and III.

(1)

We envisage ∃j, such that Qj > 1; otherwise, we would have
Qj = 1, ∀j, with no need for in-network aggregation.

We study the system over a series of consecutive time slots
T = {1, 2, ..., |T |}. At each time slot t ∈ T , we impose a
threshold, denoted as Mt, as the maximum total number of
switches that are allowed to perform in-network aggregations
[10, 28]. This can be set by the service provider to restrict
the in-network aggregation overhead, or reserve programmable
switches for other purposes such as for non-FL workload.

Reconfiguration Cost: For any switch, at the time slot t,
if the in-network aggregation is conducted, then the system
needs to reconfigure this switch if it was not configured for
any in-network aggregation at the previous time slot t − 1.
Reconfiguration incurs overhead, denoted as b, including the
delay for sending the flow table entries to the programmable
switch and uploading the register states in the programmable
switch [11]. At t, if we continue with whatever the configu-
ration was at t− 1, the reconfiguration cost at t will be 0.

Flow Routing: For any FL client i to communicate with
the FL server, it needs to choose and use a path to go through
the network. Aligned with lots of existing studies [29, 30],
we focus on the case of unsplittable flows. We use Ri to
denote the set of the available paths for the FL client i. For
the path p ∈ Ri, we denote by dp,t the network delay of this
path at the time slot t. We also use mp,j ∈ {1, 0} to imply
whether or not the switch j is on the path p. A switch could be
simultaneously on multiple paths; but it is impossible for one
path to be simultaneously used by two or more FL clients, as
every path starts with an FL client and ends at the FL server.

Control Decisions: We focus on making four types of de-
cisions in this paper. xt ∈ (0, χ] denotes the local convergence
accuracy of the FL clients at the time slot t, where we consider
χ < 1 as the upper bound for the local convergence accuracy
pre-specified by the service provider. yt ∈ {1, 0} denotes
whether or not to conduct the global model aggregation for
FL at the end of the time slot t. zj,t ∈ {1, 0} denotes whether
or not to conduct the in-network aggregation at the switch j at
the time slot t, where we also denote St ≜ {j|zj,tj = j,∀j}.
wi,p,t ∈ {1, 0} denotes whether or not to use the path p to
route the flow of the FL client i at the time slot t.

Total Cost: The total cost at the time slot t has multiple
components. First, the computation overhead of local training
on all FL clients is

∑
i∈N κL(xt)|Di|at, where at is the

overhead for performing one local training iteration on a single
data sample on each client. Next, the reconfiguration cost
for configuring switches for the in-network aggregations is∑
j∈J [zj,t−zj,t−1]

+b, where [·]+ ≜ max{0, ·}. Then, the to-
tal traffic reduction, treated as inverse cost, is yt · 1

ψ(St)c
, where

c is size of the model plus the gradient information going from
each client to the server. To make it non-negative, we do not
use yt(−ψ(St)c). Finally, the network delay, depending on the
maximum path delay [6, 7], is ytmaxi∈N ,p∈Ri

wi,p,tdp,t.

B. Problem Formulation and Algorithmic Challenges

Control Problem: Based on the aforementioned models,
we formulate the optimization problem P for minimizing the

total cost over the entire time horizon:

min P ≜
∑
t∈T

{
κL(xt)

∑
i∈N

|Di|at +
∑
j∈J

[zj,t − zj,t−1]
+b

+ yt
ψ(St)c

+ ytmaxi∈N ,p∈Ri
wi,p,tdp,t

}
s.t. C1 :

∑
p∈Ri

wi,p,t = 1,∀i ∈ N ,∀t ∈ T ,
C2 : zj,t ≤

∑
i∈N ,p∈Ri

wi,p,tmp,j ,∀j ∈ J ,∀t ∈ T ,
C3 :

∑
j zj,t ≤Mt,∀t ∈ T ,

C4 :
∑
t∈T yt ≥ κG(ε,maxt∈T xt),

var. xt∈ (0, χ], yt∈ {0, 1}, zj,t∈ {0, 1}, wi,p,t∈ {0, 1},
∀j ∈ J ,∀p ∈ Ri,∀i ∈ N ,∀t ∈ T .

The optimization objective is the total cost. Constraint C1

ensures that at each time slot each FL client uses only one
path. Constraint C2 ensures that at each time slot the in-
network aggregation can only be done on a switch if there is
at least one path that contains this switch is used. Constraint
C3 ensures that at each time slot the total number of switches
to perform in-network aggregations does not exceed the pre-
specified threshold. Constraint C4 ensures that a sufficient
number of FL aggregations are conducted, so that the global
model is trained to the desired global convergence accuracy
ε. This problem is NP-hard due to the submodularity of the
function ψ(·) [22], which will also be elaborated later.

As in the above, to align with numerous existing research,
we treat multi-objective optimization here as a weighted sum
of the different objectives, transforming it into single-objective
optimization. That is, we actually maintain a weight for each
term in the objective, also because the units of such different
terms could be different. We can control the optimization by
adjusting such weights based on the service provider’s needs.

Algorithmic Goal: For the problem P, we aim to design a
polynomial-time online approach while rigorously satisfying
P({x̃t, ȳt, z̄t, w̄t,∀t}) ≤ r · P∗, where the objective function
P is evaluated with the solutions produced by our online
approach which only knows the inputs gradually on the fly as
time goes; P∗ is the offline optimal objective function value
assuming all the inputs over time are known in prior at once;
and r is a constant called the competitive ratio.

Algorithmic Challenges: Solving P online faces multiple
challenges. First, ψ(·) and max are both nonlinear and discrete
functions, which is difficult to address, as we need to explore
the combinations of the different decisions in a large search
space. Second, for the function [·]+, we note that at t− 1, as
we have no idea about what decision we will make for zt at
t, it is difficult to choose a right value for zt−1 at t − 1 to
minimize [zt−zt−1]

+. Third, due to the long-term constraint
C4, choosing a small yt early could force a large yt later in the
future, in order to respect C4; yet, as we have no idea how
St and dp,t in the objective will vary over time, a large yt
later can lead to the sub-optimum overall. Choosing a large yt
early may alleviate this concern, but can incur a large objective
value if, for example, dp,t becomes small in the future.

III. ONLINE ALGORITHM DESIGN

A. Algorithms Overview

To tackle the aforementioned challenges, we design three
algorithms. Our overall online control algorithm is Algorithm
1, which invokes Algorithms 2 and 3. Algorithm 1 dynamically
balances the switch reconfiguration cost with all the other
types of cost in the problem P’s objective function. Algorithm
2 selects the paths for routing FL flows and the switches for in-
network aggregations. Algorithm 3 controls FL local training
and global aggregations. We elaborate these algorithms with
their rationales in the following sections sequentially. To that
end, we decompose the problem P into multiple sub-problems
as follows, and our algorithms work with these sub-problems
to produce the solution online to the original problem P.

First, we focus on path selection and from P, we extract the
following problem Pt,1, which centers on the max function:

min Pt,1 ≜ maxi∈N ,p∈Ri
wi,p,tdp,t

s.t. C1,

var. wi,p,t ∈ {0, 1},∀p ∈ Ri,∀i.
Second, we focus on switch selection and from P, we extract

the following problem Pt,2, which centers on the ψ(·) function:

max Pt,2 ≜ ψ(St)

s.t. zj,t ≤
∑
i∈N ,p∈Ri

w̄i,p,tmp,j ,∀j,
C3,

var. zj,t ∈ {0, 1},∀j,

where the solution w̄t from Pt,1 is placed in the constraints.
Third, we split the objective function of the problem P as

P = Ct¬S(xt, yt, zt,wt) + CtS(zt, zt−1):

Ct¬S (xt, yt, zt,wt) ≜ κL(xt)
∑
i∈N |Di|at + yt

ψ(St)c

+ytmaxi∈N ,p∈Ri wi,p,tdp,t,

CtS (zt, zt−1) ≜
∑
j [zj,t − zj,t−1]

+b,

which we call the non-switching cost and the switching cost,
respectively. Then, we place the solution z̄t from Pt,2 and the
solution w̄t from Pt,1 in P , and define the following problem
P3 for the FL control:

min
∑
t∈T Pt,3 ≜

∑
t∈T C

t
¬S (xt, yt, z̄t, w̄t)

s.t. C4,

var. xt ∈ (0, 1), yt ∈ {0, 1},∀t.

Note that Pt,1 and Pt,2 are defined for every time slot t ∈ T ;
and P3 is defined over the entire time horizon T .

B. Lazy-Switch-Based Online Control

Algorithm 1: Algorithm 1 postpones the switching opera-
tion that changes where to conduct the in-network aggregations
until the cumulative non-switching cost since the last switching
operation surpasses a parameter η times the switching cost
of that last switching operation. Line 2 checks whether or
not the condition for performing a potentially new switching
operation holds. If such condition holds, Lines 3∼4 invoke
the sub-algorithms to find the new control decisions for the

Algorithm 1 Overall Online Control Algorithm

Input: initialize t′ = 0, z̄0 = w̄0 = 0, z̄−1 = 0;
1: for t = 1, 2, 3, ..., |T | do
2: if Ct

′

S (z̄t′ , z̄t′−1)≤ 1
η

∑t−1
v=t′C

v
¬S (x̃v, ȳv, z̄v, w̄v) then

3: obtain z̄t, w̄t via Algorithm 2;
4: obtain x̃t, ỹt via Algorithm 3, given z̄t, w̄t;
5: if z̄t ̸= z̄t−1, then set t′ = t;
6: end if
7: if t′ < t then
8: set z̄t = z̄t−1, w̄t = w̄t−1;
9: obtain x̃t, ỹt via Algorithm 3, given z̄t, w̄t;

10: end if
11: round ỹt to ȳt, while ensuring E[ȳt] = ỹt;
12: end for

current time slot. In Line 5, if the new in-network aggregation
locations are indeed different from the existing locations, then
we record the current time slot in t′ to mark it as the latest
switching operation. In Line 7, if there is no switching at the
current time slot, we just reuse the existing decisions of the
switches z̄t−1 for in-network aggregations and the paths w̄t−1

for routing FL flows and then update the FL control decisions
x̃t and ỹt in Lines 8∼9. In Line 11, we conduct randomized
rounding, i.e., set ȳ = 1 with the probability ỹt and ȳ = 0 with
the probability 1− ỹt. That is, E[ȳt] = 1 · ỹt+0 ·(1− ỹt) = ỹt.

C. Linearized Path and Submodular Switch Selection

To select the routing path for each FL client toward the FL
server at the time slot t, we convert Pt,1, which is actually a
discrete lexicographic min-max optimization problem, into a
linear program P′

t,1 solvable in polynomial time by standard
linear program solvers. The problem P′

t,1 is as follows:

min P ′
t,1 ≜

∑
i∈N

∑
p∈Ri

{(
(
∑
i∈N |Ri|)dp,t − 1

)
· wi,p,t

}
s.t. C1,

var. 0 ≤ wi,p,t ≤ 1,∀p ∈ Ri,∀i.

Solving P′
t,1 will automatically result in the optimal integer

solution of Pt,1. Though not obvious, these two problems are
actually equivalent, as shown by Theorem 1 in Section IV.

To select network switches for in-network aggregations, we
need to solve Pt,2. We motivate our algorithm design by Fig.
1. In Fig. 1(a)∼Fig. 1(d), denoting the set of the switches
performing in-network aggregations as S1 = {}, S2 = {1},
S3 = {2}, and S4 = {1, 2}, respectively, we have ψ(S1) = 0,
ψ(S2) = 1, ψ(S3) = 3, and ψ(S4) = 3. We see the following:

• While S2 ⊂ S4 and S3 ⊂ S4, we have ψ(S2) ≤ ψ(S4)
and ψ(S3) ≤ ψ(S4);

• While S1 ⊂ S2, if we add the switch “2” to S1 and
S2, the additional traffic reductions are ψ(S1 ∪ {2} =
S3) − ψ(S1) = 3 and ψ(S2 ∪ {2} = S4) − ψ(S2) = 2,
respectively, i.e., ψ(S1 ∪ {2})−ψ(S1) ≥ ψ(S2 ∪ {2})−
ψ(S2). This is also aligned with Equation (1).

Shown by Theorem 2 in Section IV, the above two phenomena
correspond to monotonicity and submodularity, which hold in
general for the function ψ(·). Based on this, we can “grow”

Algorithm 2 Path and Switch Selection Algorithm, ∀t
Input: initialize zt = 0, S = Ø;

1: obtain w̄t by solving P′
t,1 via a linear program solver (e.g.,

CVXPY [31]);
2: obtain Jt ≜ {j|w̄i,p,tmp,j = 1,∃p ∈ Ri,∃i ∈ N};
3: for l = 1, 2, 3, ..., |Jt| do
4: find the switch j∗ = argmaxj∈Jt

{ψ({j}∪S)−ψ(S)}
using Equation (1);

5: set S = {j∗} ∪ S, Jt = Jt \ {j∗};
6: set zj,t = 1, ∀j ∈ S , and zj,t = 0, ∀j ̸∈ S;
7: if zt violates Constraint C3, then break;
8: set z̄t = zt;
9: end for

Algorithm 3 Federated Learning Control Algorithm, ∀t
Input: initialize step sizes α, µ;

1: observe ft(It), gt(It) given z̄t, w̄t, based on (2) and (3);
2: obtain Ĩt by solving (4);
3: update λt+1 by (5);

the set of switches for in-network aggregations in an iterative
manner, where in each iteration we add the one switch that
brings the largest increment to the existing traffic reduction.

Algorithm 2: With the above insights, Algorithm 2 selects
the routing paths and the network switches on such routing
paths. Line 1 can invoke any standard linear program solver,
which, for example, can find the ε-accurate optimal solution
in O((

∑
i |Ri|)2 log(1/ε)) iterations via the interior point

method. Line 2 finds out the set of all the switches, each of
which is on at least one path used the FL flow. In Line 3, we
conduct up to |Jt| iterations as we add exactly one switch in
each iteration. For Lines 4∼5, this is our greedy step based on
submodularity. In Lines 6∼7, given zt, we will check whether
the threshold for the total number of switches that conduct in-
network aggregations is still satisfied. If so, we continue to
update z̄t to select more switches; otherwise, we just keep z̄t
in the previous iteration. Overall, compared to a brutal force
approach of O(2|Jt|), our Lines 3∼9 take only O(|Jt|2).

D. Online-Learning-Based Federated Learning Control

We introduce the following notations regarding P3:

ft = Pt,3 = Ct¬S (xt, yt, z̄t, w̄t) , (2)
gt = κG(ε, χ)/|T | − yt. (3)

If we denote It = (xt, yt)
⊤ and define It ≜ (0, χ]× [0, 1], we

can write P3, with yt, ∀t in the continuous domain, as follows:

min
∑
t ft(It), s.t.

∑
t gt(It) ≤ 0, var. It ∈ It,∀t.

In the following, we also denote Ĩt = (x̃t, ỹt)
⊤ as the solution

produced by Algorithm 3 at the time slot t.
Algorithm 3: Algorithm 3 solves P3 on the fly using alter-

nate primal and dual steps as time moves forward. Specifically,
note that P3 can be equivalently written as

minIt∈It,∀tmaxλ≥0

∑
t (ft(It) + λgt(It)),

where λ is the Lagrange multiplier. Denoting Lt(It, λ) =
ft(It) + λgt(It), we alternate between (4) and (5):

min
It∈It

∇ft−1(Ĩt−1)(It − Ĩt−1) + λtgt−1(It) +
||It−Ĩt−1||2

2α ,

(4)
λt+1 = [λt + µ∇λ(Lt(Ĩt, λt))]+ = [λt + µgt(Ĩt)]

+, (5)

with the initial value Ĩ0, the initial value λ1 = 0, and the pre-
set step sizes α and µ. We perform the primal step by solving
(4) efficiently via any standard convex optimization solver.
Note that our primal descent step is a rectified variant which
is different from that in standard primal-dual algorithms. In our
version here, we directly penalize the constraint itself, instead
of the first-order approximation, with the carefully-designed
regularization term against the previous control decision, i.e.,
||It−Ĩt−1||2

2α . We perform the dual ascent step following the
calculation as in (5), where we take Ĩt from the primal step.

We highlight that our design described in the above falls into
the paradigm of online learning, which we leverage to control
federated learning at each time slot t with provably guaranteed
performance as shown in Section IV, without worrying about
the long-term convergence requirement in P3’s constraint and
the unknown future inputs beyond t in P3’s objective.

IV. THEORETICAL ANALYSIS

We prove Theorems 1 and 2 as the motivation for Algorithm
2. We also state Propositions 1 and 2 and prove Theorem 3 to
characterize the performance of all our algorithms.

Theorem 1. Our problems Pt,1 and P′
t,1 are equivalent, i.e.,

their optimal solutions are the same.

Proof. See Appendix A. To prove this equivalence, we first
show that P′

t,1 as a continuous linear program automatically
has the discrete integer optimal solution due to total unimod-
ularity [20], and then show that the linear objective function
as in P′

t,1 has preserved the optimal solution of Pt,1 through
separable convex functions and “λ-representation” [21].

Theorem 2. Our traffic reduction function ψ(·) satisfies both
monotonicity and submodularity: ∀S ⊂ T ⇒ ψ(S) ≤ ψ(T);
and ∀S ⊂ T, ∀j /∈ T ⇒ ψ(S ∪ {j})− ψ(S) ≥ ψ(T ∪ {j})−
ψ(T).

Proof. See Appendix B. To prove this, we exploit our previous
Equation (1), and also analyze the different cases of the switch
j versus the sets S and T .

Proposition 1. Algorithm 2 achieves an approximate ratio of
1− 1/e for the problem Pt,2 [22].

Proposition 2. Algorithm 3 achieves the regret and the fit for
the problem P3 as follows [19]:∑
t{ft(Ĩt)− ft(Ĩ

∗
t)}≤O(|T |α1), ∥[

∑
t gt(Ĩt)]

+∥ ≤ O(|T |α2),

where Ĩt is the control decision produced by Algorithm 3 at
t; Ĩ∗

t ∈ argminI∈{I|gt(I)≤0;I∈It} ft(I); and α1, α2 ∈ (0, 1)
are constants.

We skip the proofs of these two propositions as they directly
follow our Theorem 2 and Algorithm 3, respectively, which
have also been proved in existing literature as indicated.

Theorem 3. Algorithm 1 achieves the following competitive-
ness, where θ and ξ are constants:

E[P({x̃t, ȳt, z̄t, w̄t},∀t)] = P({x̃t, ỹt, z̄t, w̄t,∀t})
≤ θ(1 + ξ) · P∗.

Proof. See Appendix C, where we repetitively use the relation
between the switching cost of each switching operation and the
cumulative non-switching until the next switching operation,
as enforced in Algorithm 1, and then handle the last switching
operation in the entire time horizon separately.

V. EXPERIMENTAL EVALUATIONS

A. Evaluation Settings

Federated Learning: We adopt MNIST [26] and CIFAR-
10 [27], which are among the most representative datasets
for machine learning. MNIST contains 70k images, where we
use 60k for training and 10k for testing; CIFAR-10 has 60k
images, where we use 50k for training and 10k for testing. The
task for MNIST is digit recognition and for CIFAR-10 is image
classification. The training data are evenly distributed to the FL
clients. We use TensorFlow Federated [25] to train a Support
Vector Machine (SVM), and a Convolutional Neural Network
(CNN) which consists of nine layers, including convolutional,
max pooling, and local response normalization layers.

Network Topology: We construct a simulated network with
1,024 nodes using NetworkX [23] based on the U.S. backbone
network [32]. For our evaluations, we envisage that every node
in this network is a programmable switch. This network has
128 leaf nodes, where we use one of them to connect the
FL server and all the rest to connect the FL clients. This is
to simulate the scenario of using the cloud server as the FL
server and the edge servers as the FL clients. We vary the
number of the FL clients for each leaf node [10]: (i) uniform,
where each leaf node randomly selects an integer from the
range [1, 9] as the number of the FL clients; (ii) power-law,
where the numbers of the FL clients for the leaf nodes follow
a power-law distribution within the integer range (1, 63), with
a variance of 97; (iii) skewed, where the numbers of the FL
clients for the leaf nodes vary significantly; (iv) mixed, where
each leaf node uses one of the above three strategies regarding
the number of the FL clients and different leaf nodes may use
different strategies. By default, we consider 4 available paths
from each FL client, where each path to the FL server contains
about 10 nodes en route with real-world path delay [24].

System Parameters: We implement an existing in-network
aggregation protocol [7] on our real-world P4 device, i.e., a
Wedge100BF switch. We can thus measure the average leading
time b ≈ 3s for the switch reconfiguration. We also have an
Inspur Rack SN5160M4 edge server, equipped with a GeForce
RTX 2080Ti GPU and an Intel(R) Xeon(R) Silver 4210R
CPU, on which we measure the time-varying per-unit training
computation latency. We get at ≈ 0.001s on average for SVM

0 50 100 150 200 250 300
Time Slot

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 C
os

t
G
R-P

R-N
L-P

L-N
OCA

Fig. 2: Real-Time Cost

0 50 100 150 200 250 300
Time Slot

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 C
os

t

G
R-P

R-N
L-P

L-N
OCA

 G L-N L-P R-N R-P OCA0.0

0.5

1.0

Av
er

ag
e C

os
t

Fig. 3: Cumulative Cost

uniform pl. skewed mixed
FL Client Distributions

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
os

t G
L-N

L-P
R-N

R-P
OCA

Fig. 4: Impact of Distribution

0.1x 0.4x 1x 2x 2.4x
Scaled Gradient Size

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
os

t G
L-N

L-P
R-N

R-P
OCA

Fig. 5: Impact of Gradient Size

0.5x 1x 3x 5x 6x
Scaled Per-Unit Switching Cost

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
os

t G
L-N
L-P
R-N
R-P
OCA

Fig. 6: Impact of Switching Cost

0 50 100 150 200 250 300
Time Slot

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Ti
m

e
(s

)
OCA Average

Fig. 7: Running Time

0 5 10 15 20 25 30 35
Time Slot

0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y SVM step size=0.005
SVM step size=0.01
SVM step size=0.02
CNN step size=0.02
CNN step size=0.01
CNN step size=0.005

Fig. 8: MNIST Accuracy

0 50 100 150 200
Time Slot

0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
cc

ur
ac

y Acc. of Step=0.005
Acc. of Step=0.01
Acc. of Step=0.02

0
2
4
6
8
10
12

Lo
ss

Loss of Step=0.005
Loss of Step=0.01
Loss of Step=0.02

Fig. 9: CIFAR-10 Accuracy

and at ≈ 0.016s on average for CNN. We set other parameters
as r0 = 15, q0 = 4, ε = 0.001, c = 500 MB, Mt = 128,
χ = 0.9, and η = 2 [5]. As we have 1024/10 ≈ 102 paths on
average, the value of Mt is set to cover all the paths.

Algorithms: Our proposed approach is represented as OCA,
invoking the CVXPY [31] tool to solve the sub-problems as
specified by our algorithms. For comparison, we implement
the combinations of different algorithms as follows1. The fol-
lowing algorithms select switches for in-network aggregations:

• L-∗ chooses leaf switches, i.e., the switches that directly
connect the FL clients;

• R-∗ chooses N switches randomly, where N is calculated
by our online learning algorithm.

The following algorithms select paths for routing flows:
• ∗-P chooses the path for each flow from the paths that

have been used before;
• ∗-N chooses the path with the best delay for each flow

at each time slot.
We also consider a state-of-the-art FL algorithm:

• G represents the FedAvg algorithm [1], which ignores the
effect or control of in-network aggregations.

B. Evaluation Results

Cost Advantage: Fig. 2 and Fig. 3 visualize the real-time
total cost at each time slot and the cumulative total cost until
each time slot, respectively, incurred by different algorithms.
In the former figure, OCA outperforms others, with an average
cost reduction of about 23%. Compared to G, OCA reduces
at least 40% total cost. The cost fluctuations are mainly due
to the dynamic path delay and per-unit training latency. In the
latter figure, OCA possesses a slower growth than others.

Performance Consistency: Fig. 4, Fig. 5, and Fig. 6 depict
the cumulative total cost over the entire time horizon for
different approaches under different settings. In Fig. 4, for the

1The mark of * serves as a wildcard to match different switch selection
algorithms and path selection algorithms.

skewed FL client distribution, compared to L-* algorithms, the
average cost reduction of OCA is only 10.1%. In the skewed
distribution, some leaf switches connect to a large number of
clients; then, L-* that use such leaf switches for in-network
aggregations achieve large traffic reduction. Even so, OCA
consistently has the best performance with the average cost
reduction of about 30.6%. In Fig. 5, as the size of the model
and the gradient grows, the total cost grows. OCA achieves
the average cost reduction of about 33%. In Fig. 6, as we
increase the per-unit reconfiguration cost, the total cost grows.
*-P algorithms show the benefits when the unit reconfiguration
cost is high, as they use the same paths (but may not use the
same switches), resulting in only a slight reconfiguration cost.

Execution Efficiency: Fig. 7 exhibits the execution time of
OCA at each time slot. The average execution time per time
slot is merely 0.76s, which is sufficiently fast and efficient to
meet the need in many real-world scenarios.

Inference Accuracy: Fig. 8 and Fig. 9 show the inference
accuracy of the different models trained through OCA. As time
goes, the accuracy grows. Both SVM and CNN models have
high accuracy as expected on MNIST (SVM is not specifically
designed for images). On CIFAR-10, we show the accuracy
and the loss of CNN. Compared to MNIST, the classification
task is more complex, leading to slower accuracy growth.

VI. RELATED WORK

Federated Learning with In-Network Aggregation: Su
et al. [12] designated FL clients to upload quantized model
updates to programmable switches with limited memory for
aggregation. Chen et al. [13] optimized FL over wireless mesh
networks through model aggregation on routers with routing
and spectrum allocation. Dinh et al. [14] minimized the FL
aggregation latency with routing and resource management in
multi-layer edge networks. Luo et al. [15] designed protocols
for the edge nodes en route to eliminate duplicated model
downloads and pre-aggregate gradients in FL. Sacco et al. [16]
defined an in-band protocol to cache model parameters and

adapted P4 switches to aggregate gradients for FL. Pan et al.
[17] exploited both in-network and in-storage homomorphic
encryption to expedite cross-silo FL aggregations.

This line of research could be the closest to our work. Yet,
none of them have rigorously analyzed the traffic reduction
impact in complex networks. Also, none have addressed the
dynamic control of FL together with in-network aggregations
and flow routing, not to mention reconfiguration cost incurred
at programmable switches. Unlike our work, some have even
overlooked the issue of attaining provable convergence in FL.

Distributed Training with In-Network Aggregation: Sa-
pio et al. [6] designed programmable switch processing with
end-host protocols and machine learning frameworks to ac-
celerate distributed parallel training. Lao et al. [7] exploited
in-network aggregation at rack switches in the multi-rack,
multi-job distributed deep neural network training settings.
Segal et al. [10] reduced network congestion via in-network
traffic aggregation for distributed machine learning workloads.
Qiu et al. [8] placed training tasks and selected switches for
in-network aggregations using Steiner-Tree-based algorithms
to reduce communication time and traffic. Bao et al. [18]
controlled batch sizes and in-network aggregation locations
to reduce training time. Liu et al. [9] addressed the case of
multiple parameter servers, using in-network aggregations to
improve the efficiency of distributed training.

These works are on distributed machine learning in general,
rather than for FL specifically. Their settings are thus typically
different from FL, and their models and formulations do not
apply to FL with in-network aggregations. Their algorithms
and methods are not directly applicable, either, because they
have not captured the online, combinatorial, and lexicographic
minimax nature of the problem as in our work.

VII. CONCLUSION

In-network aggregation provides a tremendous opportunity
for service providers to address the traffic footprint and perfor-
mance issues of federated learning. While most existing works
have not systematically exploited it from a rigorous online
algorithmic perspective, this paper fills the gap. We study the
mathematical nature of this problem, and jointly schedule in-
network aggregations, flow routing, and federated learning. We
conduct both theoretical analysis and practical experiments to
validate the advantages of our approach. For future work, we
intend to continue to investigate in-network aggregations, with
other related issues such as security and privacy.

ACKNOWLEDGMENT

This work was supported in part by the Nanjing University-
China Mobile Communications Group Co., Ltd. Joint In-
stitute, by the U.S. National Science Foundation (CNS-
2047719 and CNS-2225949), by the National Natural Science
Foundation of China (No. 62072115), and by the Shang-
hai Science and Technology Innovation Action Plan Project
(No. 22510713600). The corresponding authors are Lei Jiao
(ljiao2@uoregon.edu), Zhuzhong Qian (qzz@nju.edu.cn), and
Ji Qi (qiji@cmss.chinamobile.com).

APPENDIX

A. Proof of Theorem 1

First, note the following proposition:

Proposition 3. For the problem min c⊤x, s.t. Ax = b, x ≥ 0,
its optimal solution is integral if A is a totally unimodular
matrix [20].

For the matrix “A” from Constraint C1, every entry is either
0 or 1, and every column has exactly one 1 entry. That is, A
is totally unimodular [20]. Due to Proposition 3, the optimal
solution of P′

t,1 is integral.
Second, note the following two propositions:

Proposition 4. For a problem with the max objective function,
e.g., max{r1, r2, ..., rκ}, the optimal solution keeps unchanged
after replacing the objective by the separable convex functions,
i.e.,

∑κ
i=1 κ

ri [21].
Proposition 5. Separable convex functions can be transformed
into a single linear function via “λ-representation”: f(x) can
be written as f(x) =

∑
h∈H f(h)λh, where

∑
h∈H hλh = x,∑

h∈H λh = 1, and λh ≥ 0, ∀h ∈ H. H is a set of all the
possible values of x [21].

Using Proposition 4, Pt,1’s objective maxi∈N ,p∈Ri
wi,p,tdp,t

can be transformed to
∑
i∈N

∑
p∈Ri

{(
∑
i∈N |Ri|)wi,p,tdp,t}.

Afterwards, applying Proposition 5, we can write Pt,1 as

max
∑
i∈N

∑
p∈Ri

∑
h∈H{(

∑
i∈N |Ri|)h·dp,tλi,p,h}

s.t.
∑
h∈H hλi,p,h = wi,p,t,∀p ∈ Ri,∀i,∑
h∈H λi,p,h = 1,∀p ∈ Ri,∀i,

C1,

var. 0 ≤ wi,p,t ≤ 1, λi,p,h ≥ 0,∀p ∈ Ri,∀i.

Due to H = {0, 1} in our case, the above formulation can be
further expanded as the following:

max
∑
i∈N

∑
p∈Ri

{1− λi,p,1 + (
∑
i∈N |Ri|)dp,tλi,p,1}

s.t. λi,p,1 = wi,p,t,∀p ∈ Ri,∀i,
C1,

var. 0 ≤ wi,p,t ≤ 1, λi,p,1 ≥ 0,∀p ∈ Ri,∀i.
After removing the constant 1 from the objective and the
variable λi,p,1 from the entire formulation, we have P′

t,1.

B. Proof of Theorem 2

First, we prove monotonicity. Note that ψ(S) ≤ ψ(S∪{j})
always holds, due to Equation (1). Then, ∀S ⊂ T , we take
T \ S ≜ U = {j1, j2, ..., j|U |}. We thus have ψ(S) ≤ ψ(S ∪
{j1}) ≤ ψ(S ∪ {j1} ∪ {j2}) ≤ ... ≤ ψ(S ∪ U) = ψ(T).

Next, we prove submodularity. Consider a switch j ̸∈ T ,
where j currently performs no in-network aggregation, and
also consider S ⊂ T . One of the following cases must hold.

• All Qj outgoing flows go into some switch k in S:
ψ({j} ∪ S) − ψ(S) = Qj − 1 + (Qk − (Qj − 1)) −
1 + ψ(S \ {k}) − ψ(S) = ψ(S) − ψ(S) = 0, and
ψ({j} ∪ T) − ψ(T) = Qj − 1 + (Qk − (Qj − 1)) −
1 + ψ(T \ {k})− ψ(T) = ψ(T)− ψ(T) = 0;

• All Qj outgoing flows go into some switch k in T \ S:
ψ({j} ∪ S)−ψ(S) = Qj − 1+ψ(S)−ψ(S) = Qj − 1,
and ψ({j} ∪ T)− ψ(T) = Qj − 1 + (Qk − (Qj − 1))−
1 + ψ(T \ {k})− ψ(T) = ψ(T)− ψ(T) = 0;

• None of Qj outgoing flows go into T , or all other cases:
ψ({j}∪S)−ψ(S) = Qj−1+ψ(S)−ψ(S) = Qj−1, and
ψ({j}∪T)−ψ(T) = Qj − 1+ψ(T)−ψ(T) = Qj − 1.

That is, it is always ψ(S∪{j})−ψ(S) ≥ ψ(T ∪{j})−ψ(T).

C. Proof of Theorem 3

In this proof, we define Īt = {x̃t, ȳt, z̄t, w̄t} as the solution
at t produced by our online approach proposed in this paper,
and Ĩt = {x̃t, ỹt, z̄t, w̄t} as the solution at t produced by our
online approach before rounding ỹt into ȳt. We define Ī and
Ĩ as {Īt,∀t} and {Ĩt,∀t}. We define I∗ as the offline optimal
solution to P, i.e., P(I∗) = P∗, and I∗

t as the part of I∗ at t.
We use t′w to represent the time slot when the w-th switching

operation occurs. We denote w ∈ W ≜ {1, 2, ..., w′}, where
w′ refers to the last switching operation. From Algorithm 1,
we know that the cumulative non-switching cost from t′w to
t′w+1 − 1 is at least η times the switching cost at t′w:

C
t′w
S (Ĩt′w) · η ≤

∑t′w+1−1

t=t′w
Ct¬S(Ĩt). (6)

Meanwhile, when a switching operation occurs at t, we have

Ct
S(Ĩt)

Ct
¬S(Ĩt)

≤ Mtb
κL(χ)

∑
i∈N |Di|at ≜ κt. (7)

First, we derive the following chain of inequalities:∑|T |
t=1 C

t
S(Ĩt) =

∑
w∈W\{w′} C

t′w
S (Ĩt′w) + C

t′
w′
S (Ĩt′

w′
)

(a)
≤

∑
w∈W\{w′}{

1
η

∑t′w+1−1

t=t′w
Ct¬S(Ĩt)}+ κt′

w′
C
t′
w′

¬S (Ĩt′w′
)

(b)
≤

∑t′1−1
t=1 Ct¬S(Ĩt) +

1
η

∑t′
w′−1

t=t′1
Ct¬S(Ĩt) +

∑|T |
t=t′

w′
κtC

t
¬S(Ĩt)

≤ max{ 1
η ,maxt{κt}} ·

∑|T |
t=1 C

t
¬S(Ĩt) ≜ ξ ·

∑|T |
t=1 C

t
¬S(Ĩt),

where Inequality (a) holds due to Inequalities (6) and (7); and
Inequality (b) holds as we add non-negative values to the sum.

Next, if we define θ = maxt
maxIt C

t
¬S(It)

minIt C
t
¬S(It)

, then we have

Ct¬S(Ĩt) ≤ θ · Ct¬S(I
∗
t), ∀t. Based on this, we have

E[P(Ī)]
(c)
=P(Ĩ)=

∑
t(C

t
S(Ĩt)+C

t
¬S(Ĩt))≤(1+ξ)

∑
tC

t
¬S(Ĩt)

≤ θ(1+ξ)
∑
t C

t
¬S(I

∗
t) ≤ θ(1 + ξ)P∗,

where Equality (c) holds due to our rounding step.

REFERENCES

[1] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[2] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM, 2019.

[3] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935–1949, 2021.

[4] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:

A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[5] Y. Jin, L. Jiao, M. Ji, Z. Qian, S. Zhang, N. Chen, and S. Lu,
“Scheduling in-band network telemetry with convergence-preserving
federated learning,” IEEE/ACM Transactions on Networking, vol. 31,
no. 5, pp. 2313–2328, 2023.

[6] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtárik, “Scaling distributed
machine learning with in-network aggregation,” in USENIX NSDI, 2021.

[7] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“ATP: In-network aggregation for multi-tenant learning,” in USENIX
NSDI, 2021.

[8] Y. Qiu, G. Zhao, H. Xu, H. Huang, and C. Qiao, “PARING: Joint
task placement and routing for distributed training with in-network
aggregation,” IEEE/ACM Transactions on Networking, 2024.

[9] J. Liu, Y. Zhai, G. Zhao, H. Xu, J. Fang, Z. Zeng, and Y. Zhu, “InArt:
In-network aggregation with route selection for accelerating distributed
training,” in ACM Web Conference, 2024.

[10] R. Segal, C. Avin, and G. Scalosub, “Constrained in-network computing
with low congestion in datacenter networks,” in IEEE INFOCOM, 2022.

[11] L. Zeno, D. R. Ports, J. Nelson, D. Kim, S. Landau-Feibish, I. Keidar,
A. Rinberg, A. Rashelbach, I. De-Paula, and M. Silberstein, “SwiSh:
Distributed shared state abstractions for programmable switches,” in
USENIX NSDI, 2022.

[12] X. Su, Y. Zhou, L. Cui, and S. Guo, “Expediting in-network federated
learning by voting-based consensus model compression,” in IEEE IN-
FOCOM, 2024.

[13] X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated learning over multi-
hop wireless networks with in-network aggregation,” IEEE Transactions
on Wireless Communications, vol. 21, no. 6, pp. 4622–4634, 2022.

[14] T. Q. Dinh, D. N. Nguyen, D. T. Hoang, T. V. Pham, and E. Dutkiewicz,
“In-network computation for large-scale federated learning over wireless
edge networks,” IEEE Transactions on Mobile Computing, vol. 22,
no. 10, pp. 5918–5932, 2022.

[15] S. Luo, P. Fan, H. Xing, L. Luo, and H. Yu, “Eliminating communi-
cation bottlenecks in cross-device federated learning with in-network
processing at the edge,” in IEEE ICC, 2022.

[16] A. Sacco, A. Angi, G. Marchetto, and F. Esposito, “P4FL: An architec-
ture for federating learning with in-network processing,” IEEE Access,
vol. 11, pp. 103 650–103 658, 2023.

[17] X. Pan, Y. An, S. Liang, B. Mao, M. Zhang, Q. Li, M. Jung, and
J. Zhang, “Flagger: Cooperative acceleration for large-scale cross-silo
federated learning aggregation,” in ACM/IEEE ISCA, 2024.

[18] J. Bao, G. Zhao, H. Xu, H. Wang, and P. Yang, “InGo: In-network
aggregation routing with batch size adjustment for distributed training,”
in IEEE/ACM IWQoS, 2024.

[19] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization
approach to proactive network resource allocation,” IEEE Transactions
on Signal Processing, vol. 65, no. 24, pp. 6350–6364, 2017.

[20] B. H. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial optimiza-
tion. Springer, 2011.

[21] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling tasks closer to data across
geo-distributed datacenters,” in IEEE INFOCOM, 2016.

[22] A. Krause and D. Golovin, “Submodular function maximization.”
Tractability, vol. 3, pp. 71–104, 2014.

[23] “NetworkX,” https://networkx.org/, 2024.
[24] “Bandwidth from edges to aliyun,” https://www.aliyun.com/, 2024.
[25] “TensorFlow federated,” https://www.tensorflow.org/federated, 2024.
[26] “MNIST database,” http://yann.lecun.com/exdb/mnist/, 2024.
[27] “CIFAR-10 and CIFAR-100 datasets,”

https://www.cs.toronto.edu/ kriz/cifar.html, 2024.
[28] R. Segal, C. Avin, and G. Scalosub, “SOAR: Minimizing network

utilization with bounded in-network computing,” in ACM CoNEXT,
2021.

[29] X. Yuan, L. Pu, L. Jiao, X. Wang, M. Yang, and J. Xu, “When com-
puting power network meets distributed machine learning: An efficient
federated split learning framework,” in IEEE/ACM IWQoS, 2023.

[30] L. He, S. Wang, Y. Xu, P. Kuang, J. Cao, Y. Liu, X. Li, and S. Peng,
“Enabling application-aware traffic engineering in ipv6 networks,” IEEE
Network, vol. 36, no. 2, pp. 42–49, 2022.

[31] “Welcome to CVXPY 1.5,” https://www.cvxpy.org, 2024.
[32] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib

1.0—survivable network design library,” Networks: An International
Journal, vol. 55, no. 3, pp. 276–286, 2010.

