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Abstract—To better support emerging interactive mobile applications such as those VR-/AR-based, cloud computing is quickly

evolving into a new computing paradigm called edge computing. Edge computing has the promise of bringing cloud resources to the

network edge to augment the capability of mobile devices in close proximity to the user. One big challenge in edge computing is the

efficient allocation and adaptation of edge resources in the presence of high dynamics imposed by user mobility. This paper provides a

formal study of this problem. By characterizing a variety of static and dynamic performance measures with a comprehensive cost

model, we formulate the online edge resource allocation problem with a mixed nonlinear optimization problem. We propose MOERA, a

mobility-agnostic online algorithm based on the “regularization” technique, which can be used to decompose the problem into separate

subproblems with regularized objective functions and solve them using convex programming. Through rigorous analysis we are able to

prove that MOERA can guarantee a parameterized competitive ratio, without requiring any a priori knowledge on input. We carry out

extensive experiments with various real-world data and show that MOERA can achieve an empirical competitive ratio of less than 1.2,

reduces the total cost by 4� compared to static approaches, and outperforms the online greedy one-shot solution by 70 percent.

Moreover, we verify that even being future-agnostic, MOERA can achieve comparable performance to approaches with perfect partial

future knowledge. We also discuss practical issues with respect to the implementation of our algorithm in real edge computing systems.

Index Terms—Edge computing, resource allocation, online optimization, competitive analysis
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1 INTRODUCTION

MOBILE applications have been serving as fundamental
elements in our daily life, providing functionalities

such as social networking, online commerce, as well as enter-
tainments. However, a critical problem has been observed
where mobile devices are being overwhelmed by sophisti-
cated mobile applications. On the one hand, modern mobile
applications, especially those VR-/AR-based, require tre-
mendous data processing (e.g., for scene rendering, object
tracking and recognition). On the other hand, mobile devi-
ces, due to the fact that they are designedmainly for portabil-
ity and energy efficiency, are capacity constrained in terms of
both computing and storage.

To mitigate this resource mismatch, researchers have
proposed various cloud-based solutions [1]. By leveraging
the abundant resources available in distant clouds, compu-
tation intensive tasks from mobile applications can be
devolved. One of the key issues in cloud-based task offload-
ing is the large latency (usually larger than 100 ms accord-
ing to our statistics [2]) between the mobile device and the
distant cloud due to the multi-hop structure of the Internet
core. However, for interactive mobile applications such as
those VR-/AR-based, the ideal delay is usually less than
10 ms [3], meaning that the access delay for distant clouds is

usually one order of magnitude larger than the requirement.
Many other examples can be found in the cyber physical
systems context, where time-critical decisions have to be
made for applications including remote control of robotics,
industrial automation, and autonomous driving [4]. This
largely restricts the practicality of cloud-based solutions
when it comes to real-world deployment, despite that many
proof-of-concept prototypes have been developed. In addi-
tion, cloud-based task offloading requires to stream all the
raw data to the distant cloud, resulting in substantial unnec-
essary traffic in the network.

Recently, edge computing was proposed to address these
issues. Edge computing is a new paradigm that aims to
bring computing or storage resources to the edge of the net-
work. Connected by dedicated networks or the Internet,
edge clouds may not have huge amounts of resources, but
they are in close proximity to end users at various locations
such as metropolitan centers, residential neighborhoods,
cellular base stations, or even WiFi access points [5], [6], as
illustrated in Fig. 1. Compared to distant clouds, serving
end users from edge clouds has many advantages, which
include lower or even bounded delay (�1 ms in 5G net-
works [7]) that can satisfy the requirement of advanced
interactive mobile applications, reduced wide-area network
traffic, and dedicated security or reliability.

One open challenge in the emerging edge computing
paradigm is dynamic resource allocation for mobile applica-
tions that are running in edge clouds [8]. This task is non-
trivial due to the fact that unlike large-scale distant clouds,
edge clouds are more heterogeneous and dynamic. Many
challenges are imposed by these unique features.

First, resource allocation for individual users may not be
a single-cloud transaction in terms of both operation cost
and service quality. When a user accesses the service in an
edge cloud system, they may eventually have resources
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allocated for them in multiple nearby edge clouds as a result
of performance optimization performed by the edge cloud
provider, as long as their service quality can be controlled.
The user’s perceived service quality in terms of the total
access delay may include the network delay between the
user and their access edge cloud they connect to and also
that between their access edge cloud and all the other
related edge clouds that hold their workload.

Further, resource allocation is not a one-shot task and
needs to be continuously adapted to accommodate user
movements, incurring the “adaptation cost” over time.
Every user can move arbitrarily in the system, and, from a
time-slotted view, a user may connect to the access point at
one edge cloud in one time slot and switch to another in the
next. In each time slot the system can have its own optimal
resource allocation, which may, however, become subopti-
mal if the adaptation cost during time-slot transition is con-
sidered. The adaptation cost refers to hardware wear-and-
tear (such as switching on/off a server) or the resource lead-
ing time (such as booting up or shutting down a virtual
machine) [9], [10], [11]; it can also account for the bandwidth
cost in the case of workload migration [12].

Finally, resource allocation needs to be performed on the
fly, without any knowledge about future resource price and
user location dynamics. It is usually hard or even impossible
to predict how the resource price at each edge cloud will
vary [10], [11] and how each user will move over time pre-
cisely [13]. Without such prediction, it is difficult to make an
informed and good decision of resource allocation in each
time slot; it is even more difficult to make decisions with
guaranteed approximation towards the best decisions that
can ever be made when assuming perfect knowledge about
the future, which, however, is under our consideration.

Despite extensive existing research on resource allocation
in the cloud context in general [14], [15], only a few have
studied online resource allocation in edge clouds, falling
short of addressing the three aforementioned challenges
simultaneously. Most of the works often assume statistical
knowledge about user mobility [16], [17], [18], or rely on pre-
diction of future costs [19]. In addition, the resource adapta-
tion cost has not been well considered until recently in the
cloud in general [9] and in edge clouds in particular [10],
[20]; nevertheless, none of them consider user mobility or its
influence on resource allocation and adaptation.

1.1 Summary of Contributions

To the best of our knowledge, we are the first to present a for-
mal study for optimizing the online resource allocation of edge
clouds.We jointly consider the costs of allocation, reconfigura-
tion, service quality, andmigration in distributed edge clouds,
under unpredictable resource prices and user movements. In
particular, wemake the following three contributions.

We build a comprehensive model to capture the optimization
problem of online resource allocation in edge clouds. Our model
includes four types of costs, but can capture a wide range of
performance measures in general. We pursue the optimiza-
tion of the total cost over time while serving user’s work-
loads with the capacity limit of each edge cloud respected.

We transform our problem and propose an efficient online algo-
rithm, for which, via rigorous competitive analysis, we prove a
parameterized competitive ratio. Our major contribution is the
design of an online algorithmbasedon the regularization tech-
nique [21], which decouples our original problem into a series
of subproblems that are solvable in each independent time
slot, only using the solution obtained for the previous time
slot as input. The series of solutions generated in each time
slot thus constitute a feasible solution to our original problem.
By relaxation and primal-dual properties, we are able to dem-
onstrate that our algorithm always outputs resource allocation
decisions for each mobile user in each time slot, with a prov-
able competitive guarantee even for theworst-case inputs.

We carry out extensive experiments to validate the performance
of our proposed online algorithm. We use two real-world data-
sets for the evaluation. The results show that our algorithm
produces near-optimal results regardless of the mobility pat-
tern, with an empirical competitive ratio at most 1.2 in both
real-world scenarios and outperforms the online greedy
approach by up to 70 percent. We further test the algorithm
with synthetic data and the results are consistent with those
in the real-world cases, proving the effectiveness and gener-
ality of our algorithm. In addition, requiring zero future
knowledge, our algorithm performs only slightly worse than
approaches assuming perfect partial future knowledge.
Finally, the remarkable gain of our algorithm is achieved
only at the expense of moderate execution time, which still
remains at the same level as in the online greedy approach.

1.2 Paper Organization

The remainder of this paper is structured as follows.
Section 2 provides examples to motivate the work. Section 3
describes our models and formulates the problem. Section 4
focuses on the design details of the MOERA algorithm.
Section 5 presents the formal competitive analysis. Section 6
describes the evaluations and interprets the results. Section 7
summarizes the related work. Section 8 concludes the paper
and outlooks the future work.

2 MOTIVATION

In this section, we motivate our work by explaining that
online resource allocation should be made by taking into
account multiple factors. In particular, we show that two
major mobility-driven factors, namely system reconfigura-
tion and workload migration, complicate the decision mak-
ing for online resource allocation in such a dynamic edge
computing environment.

System Reconfiguration.As no a priori information on future
workload is assumed available, the simplest way would be
to allocate the resource according to the current workload,

Fig. 1. An example scenario for edge computing. A set of Users are mov-
ing and are connected to different access points to access computing
resources at the access points. While a user can appear in different
physical locations over time, their service may not follow exactly the
same trace due to the fact that frequent service migration is costly. On
the other hand, serving a user from a different location will incur addition
network latency which translates into service quality degradation.
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e.g., adding or removing resources continuously to follow
workload changes. However, this can lead to very unex-
pected outcome where substantial cost has to be paid for sys-
tem reconfiguration. It is usually assumed that removing
resources from the system such as powering down a server
or switching off a virtual machine can be negligible, but add-
ing resources into the system can be costly. On the other
hand, keeping idle resources active all the time would save
this reconfiguration cost but will result in unnecessary opera-
tion costs. Therefore, a good decision making solution for
resource allocation would be able to make intelligent trade-
offs between the two types of cost in order to achieve the
optimal total cost and the real challenge consists in making
such decisions on the fly, without knowing future workload.

Workload Migration.We provide two intuitive examples to
show that workload migrations as a result of user mobility
cannot be efficiently handled.We use the online greedy solu-
tion that achieves optimal resource allocation locally in every
independent time slot for reference. We first consider the
case in Fig. 2a, where we have a systemwith two edge clouds
and one user is moving around them. The four types of pri-
ces, i.e., operation, service quality (measured by network
delay), reconfiguration, and migration, are given in the
figure and the user is assumed to have one unit of workload.
We consider three time slots where in the first time slot the
user is connected to edge cloud A and then, it moves to B in
the second time slot and moves back to A in the third time
slot.We now show that greedy can be too aggressive. Follow-
ing the greedy approach, the user workload would be
migrated from A to B in the second time slot. This is due to
the fact that if the user workload stays at A, the incurred cost
in the second time slot will be 4.6 (operation: 2.1, service-
quality: 2.5, migration: 0, reconfiguration: 0), while the
incurred total cost is 4.5 (operation: 1, service-quality: 1.5,
migration: 1, reconfiguration: 1) if the user workload is
migrated to B. The user workloadwould bemigrated back to
A again due to the fact that migrating to A would give a cost
of 4.5 (operation: 1, service-quality: 1.5, migration: 1, recon-
figuration: 1) while staying at B would give a cost of 4.6
(operation: 2.1, service-quality: 2.5, migration: 0, reconfigura-
tion: 0) in the third time slot. The total cost for the three time
slots would be calculated as 2:5þ 4:5þ 4:5 ¼ 11:5 in the
greedy strategy, where both migration and reconfiguration
costs are incurred in the last two time slots while the service
quality cost is minimized as the workload is following the
user all the time. However, with a holistic view on all the
time slots, the optimal solution would keep the user work-
load at A throughout the three time slots, resulting in a total
cost 2:5þ 4:6þ 2:5 ¼ 9:6 over the three time slots. The
second example in Fig. 2b shows that the greedy solution can
also be too conservative, where the greedy strategy would
keep the workload all the time at A with a total cost of 11.3

(computed in the same way as in the previous example),
while the optimal solution would migrate the workload to B
in the second time slot and bring a total cost of only 9.5.

Summary. The one-shot greedy solution is far from opti-
mal in many cases and a holistic view is necessary. The situ-
ation becomes even worse when system reconfiguration is
intwined with workload migration, meaning that online
resource allocation decisions have to be made by jointly con-
sidering the two factors. Unfortunately, none of the existing
algorithms would fit in this highly dynamic environment in
a distributed edge computing system. Our motivation in
this paper is thus to design an effective resource allocation
algorithm that can simultaneously overcome all the above
issues residing in the exiting solutions.

3 PROBLEM FORMULATION

We present our models for the system, the user, and four
types of cost, based on which we formulate the edge
resource allocation problem in this section. Table 1 lists the
main notations we will use throughout the paper.

3.1 Edge Cloud System

We consider a time-slotted system over h time slots,
denoted by the set T ¼ ft1; . . . ; thg, where we assume that
system settings will change across time slots and remain sta-
ble inside every time slot. We envisage an edge computing
system with n edge clouds, denoted by S ¼ fs1; . . . ; sng,
which are interconnected by a metropolitan area network
(MAN). An edge cloud is a micro data center which is usu-
ally colocated with a cellular basestation or a WiFi access
point. The hardware resources in the edge cloud are virtual-
ized through some lightweight virtualization technology
and thus, resources can be flexibly shared for multiplexing.
Each edge cloud is equipped with a certain number of serv-
ers and the maximum capacity of an edge cloud s 2 S is
given by Cs. The network delay between two edge clouds s1
and s2, i.e., the inter-cloud delay, is given by dðs1; s2Þ, where
dðs; sÞ , 0; 8s 2 S. An edge cloud is supposed to cover a
small geographical area and any user in the system will
only receive coverage from the closest edge cloud.

Fig. 2. Examples to show the complexity of decision making for online
resource allocation for edge computing: (a) Shows that the greedy strat-
egy can be too aggressive in the sense that migrating too often is harm-
ful; (b) shows that the greedy strategy can be too conservative where
migrations and migrations can be helpful if carefully done.

TABLE 1
List of Main Notations

Symbol Meaning

T set of time slots, i.e., ft1; . . . ; thg
S set of edge clouds, i.e., fs1; . . . ; sng
Cs capacity of edge cloud s
dðs; s0Þ delay between edge clouds s and s0

U set of users, i.e., fu1; . . . ; umg
�u workload of user u
lu;t location of user u in time slot t
s�u;t access edge cloud for user u in time slot t

dðlu;t; s
�
u;tÞ access delay for user u in time slot t

as;t operation price for edge cloud s in time slot t
cs reconfiguration price for edge cloud s
bouts outbound migration price of edge cloud s

bins inbound migration price of edge cloud s
wout

s;t amount of workload being migrated out of edge
cloud s in time slot t

win
s;t amount of workload being migrated into edge

cloud s in time slot t
xs;u;t amount of resources allocated to user u in edge

cloud s in time slot t
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3.2 User and Workload

We consider an edge-compatible mobile service where a set
of m users, denoted by U ¼ fu1; . . . ; umg, are distributed in
the considered metropolitan area and are moving around
over time. In a certain time slot t 2 T , a user u 2 U is
assumed to be connected to the access point at an edge
cloud s�u;t that covers the vicinity of the user and offloads
computation tasks to the edge clouds, incurring a workload
of �u in total in the system. Taking augmented reality as an
example, the computation tasks of a user mainly include
object recognition and tracking as well as scene rendering.
For the sake of tractability we only consider additive resour-
ces such as CPU and memory in our model.

Taking advantage of the heterogeneity of the edge
clouds, the edge cloud operator may distribute the user
workload to any of the edge clouds in order to achieve sys-
tem-wide cost optimization; user workload may also be
migrated across edge clouds over time in order to adapt to
system dynamics. We denote by xs;u;t the amount of resour-
ces that are allocated for user u in edge cloud s at time t. We
assume that only a subset of the edge clouds such as those
with the closest proximity, denoted by Su � S, is eligible for
hosting the workload from user u. To accommodate the
user workload from each user u successfully, we enforce the
constraint that

P

s2Su
xs;u;t � �u, meaning that the total

amount of resources allocated for each user by the system
should be no less than the workload of the user. The access
delay for user u in time slot t, defined as the delay between
the location lu;t of the user and her access point s�u;t,

1 is

denoted by dðlu;t; s
�
u;tÞ. Standing as a major novelty of our

model, no assumptions are made on user mobility patterns,
i.e., lu;t can change arbitrarily over time.

3.3 Costs

The performance of the system is characterized with four
general types of cost: the operation cost, the service quality
cost, the reconfiguration cost, and themigration cost. The for-
mer two costs fall into the category of static cost that is inde-
pendently incurred inside each time slot, while the latter two
costs belong to the category of dynamic cost that is only
charged for decision transitions across consecutive time slots.

Operation Cost. This cost refers to the usage of virtual
machines including hardware resources such as CPU and
memory, regular maintenance overhead on hardware or
software, energy consumption, or even carbon emission,
which is proportional to the total workload in each edge
cloud. Denote by as;t > 0 the “operation price”, i.e., the cost
for each unit of workload, of edge cloud s in time slot t. The
total operation cost in the edge computing system can be
generally captured by

EO ¼
X

t2T

X

s2S

as;t
X

u2U

xs;u;t: (1)

Note that we allow arbitrary variations on the operation
price over time, and such variations can be heterogeneous
for different edge clouds due to different hardware or soft-
ware specifications or energy prices.

Service Quality Cost. This cost aims to capture the user-per-
ceived quality of service, which is proportional to the

network delay between the user and her workload. While
the workload of a user may be distributed to multiple edge
clouds for the sake of cost optimization, the user-perceived
quality of service must be controlled. For a given edge cloud
s and a user u, the service quality cost is characterized by the
user’s access delay dðlu;t; s

�
u;tÞ and the weighted sum of the

delay between the access edge cloud and each of the edge
clouds that host the workload of user u. As a result, the total
service quality cost in the system can be expressed by

EQ ¼
X

t2T

X

u2U

dðlu;t; s
�
u;tÞ þ

X

s2Su

xs;u;t

�u
dðs�u;t; sÞ

 !

: (2)

Reconfiguration Cost. This cost is associated with the increase
of workload across time slots in each edge cloud. As users
move, the edge cloud provider may redistribute the work-
load from each user to reduce the service quality cost, which
results in adapting the amount of resources being allocated
in each edge cloud. Such adaptation involves powering up
physical servers, which would incur some inevitable delay
due to hardware or software preparation and some implicit
cost caused by frequent hardware wear-and-tear. We
assume the reconfiguration cost is proportional to the
amount of increasedworkload and the reconfiguration price,
i.e., the cost for increasing unit resource, is given by cs > 0

for each cloud s 2 S. By defining function ðxÞþ ¼ maxfx; 0g
for all x 2 R, the total reconfiguration cost is calculated as

ER ¼
X

t2T

X

s2S

cs
X

u2U

xs;u;t �
X

u2U

xs;u;t�1

 !þ

; (3)

where
P

u2U xs;u;t �
P

u2U xs;u;t�1

� �þ
captures the workload

increase in edge cloud s when transitioning from time slot
ðt� 1Þ to time slot t. The cost associated with removing
resources is omitted here as that can usually be completed
without bringing extra delay to the user and thus, the cost is
negligible.

Migration Cost. This cost characterizes the overhead
incurred by migrating some workload from one edge cloud
to another. This overhead includes the bandwidth cost on
the network and the migration delay. We denote by bouts and
bins the migration price, i.e., the cost of migrating unit work-
load, associated with data moving out of and into edge
cloud p, respectively and by wout

s;t and win
s;t the amount of

workload being migrated out of and into edge cloud s at
time t, respectively. We have the following equations:

wout
s;t ¼

X

u2U

xs;u;t�1 � xs;u;t

� �þ
;

win
s;t ¼

X

u2U

xs;u;t � xs;u;t�1

� �þ
:

(4)

The total migration cost EQ thus can be captured by

EM ¼
X

t2T

X

s2S

bouts wout
s;t þ bins w

in
s;t: (5)

All the above cost models are illustrated in Fig. 3. We
believe that these cost models are general enough and can
capture a wide range of practical performance measures in
an edge computing system from the perspective of edge
cloud provider. Note that there is a big difference between
the reconfiguration cost and the migration cost, i.e., the
migration cost is calculated independently for each user,

1. With a slight abuse of notation, we also use the edge cloud s�u;t to
represent the access point that user u is connected to in time slot t.
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while the reconfiguration cost is associated with the collabo-
rative workload changes on each edge cloud.

3.4 Problem Formulation

The overall performance measure, i.e., the total cost of the
system, is defined as the weighted sum of all the aforemen-
tioned costs, as given by

E ¼ EO þER þ EQ þ EM : (6)

For the simplicity of expression,we omit the tradeoff weights
in our models. Nevertheless, these weights can be incorpo-
rated implicitly in the parameters in the cost models, e.g., as;t
for the operation cost and cs for the reconfiguration cost. We
will discuss the impact of the weights in our evaluations.
Our goal is to develop an online algorithm which takes the
user’s workload and location as input and continuously
decides how much resources to be allocated in each edge
cloud that belongs to subset Su, such that the workload
demands from every user can be satisfied while the overall
cost of the edge computing system is minimized over time.
In each time slot t 2 T , the resource allocation decision
xs;u;t�1 for the previous time slot ðt� 1Þmight become subop-
timal due to the variation of as;t as well as the change of lu;t as
a result of user movement. Therefore, the optimizer will
need to redistribute the workload among all the edge clouds
in order to maintain optimal cost efficiency. However, the
redistribution of workload comes with additional (dynamic)
costs, i.e., ER for reconfiguring the edge clouds and EM for
migrating the workload. Ideally, the optimizer would make
the best tradeoff between the static and the dynamic costs.

Combining all the aforementioned models, the edge
resource allocation problem can further be formulated with
the following linear program, denoted as P0

min P0 ¼ EO þ EQ

zfflfflfflfflffl}|fflfflfflfflffl{
static

þER þ EM

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
dynamic

s:t:
X

s2Su

xs;u;t � �u; 8u; 8t;
(7a)

X

u2U

xs;u;t 	 Cs; 8s; 8t; (7b)

xs;u;t � 0; 8s; 8u; 8t: (7c)

Constraint (7a) ensures sufficient resources are allocated for
every user; constraint (7b) guarantees that the capacity con-
straint for each edge cloud is not violated. Note that all the
costs have time-varying factors corresponding to the uncer-
tainties or dependencies across consecutive time slots. As a
result, there is no once-for-all solution for the problem in
each separate time slot from an online perspective.

We observe that the problem can be solved by directly
applying a linear program solver (e.g., GLPK) if we are given

in advance all the input data including the operation prices
and the user mobility patterns in all time slots. However, this
is impossible in the online setting, where the input data are
revealed step by step over time. Without any a priori knowl-
edge, a natural solution would be greedily adopting the best
decision in each independent time slot. However, we have
already shown (see Section 2) by concrete examples that the
online greedy approach is suboptimal for multiple reasons.
Thus, we aim to develop an efficient online algorithm that
can deal with arbitrary system dynamics.

4 ONLINE ALGORITHM DESIGN

We present MOERA - Mobility-agnostic Online Edge Resource
Allocation for the formulated problem. At the beginning,
MOERA carries out a gap-preserving transformation to sim-
plify the original problem. MOERA is then based on solving
a subproblem with a carefully designed logarithmic objec-
tive in each time slot, and the solutions for all the subpro-
blems will finally constitute a feasible solution for the
original resource allocation problem over time.

4.1 Problem Transformation

Wenotice that themigration cost in P0 is counted bidirection-
ally, i.e., workload migration from edge cloud s1 to edge
cloud s2 would incur both outboundmigration cost at s1 and
inbound migration cost at s2, which is too complicated to
handle. To simplify this expression, we carry out a transfor-
mation on the migration cost in the objective of P0, from
whichwe generate the following new linear program P1

min P1 ¼ EO þ ER þ EQ þ
X

t2T

X

s2S

bsw
in
s;t

s:t: ð7aÞ; ð7bÞ; ð7cÞ;

where we define bs , bouts þ bins . The intuition behind this
transformation is to combine the migration costs counted in
both directions into a combined cost that is counted on only
one direction. The transformation is gap-preserving while
improving the tractability of the problem. More specifically,
by following similar techniques used in [12], we are able to
show that

Lemma 1. Any r-competitive online algorithm that solves P1

also yields a r-competitive online algorithm for P0.

Proof. For each edge cloud s 2 S, we have that the accumu-
lative workload xs during the whole time period ½t1; th
 is
bounded by the capacity Cs of the edge cloud, i.e.,

xs ¼

�
�
�
�

X

t2T

win
s;t �

X

t2T

wout
s;t

�
�
�
�
	 Cs: (8)

Consequently, the following result can be derived

P0 ¼
X

t2T

X

s2S

ðbouts wout
s;t þ bins w

in
s;tÞ

¼
X

t2T

X

s2S

bouts win
s;t � xs

� �

þ
X

s2S

bins w
in
s;t

 !

�
X

t2T

X

s2S

bouts þ bins
� �

win
s;t �

X

t2T

X

s2S

bouts Cs

� P1 �
X

t2T

X

s2S

bouts Cs:

(9)

Fig. 3. The breakdown of the overall system cost: Operation cost, ser-
vice quality cost, reconfiguration cost, and migration cost.
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As s ¼
P

t2T

P

s2S b
out
s Cs is a constant and we have that

P1 	 P0 þ s, this indicates that P1 is upper bounded by
P0 plus a constant s. This completes the proof as any
online algorithm that produces a solution with objective
value bounded by r times the optimal of P1 will also be a
solution that is bounded by r times the optimal of P0

within a constant rs. tu

The above result provides us the convenience to consider
only the problem P1 hereafter. We also observe that the
migration cost can be decomposed individually for each of
the users. By introducing auxiliary variables ws;u;t where
we define ws;u;t ¼ ðxs;u;t � xs;u;t�1Þ

þ and combining with
win

s;t ¼
P

u2U ws;u;t, we rewrite the objective function of P1 as

follows:

P1 ¼ EO þ ER þEQ þ
X

t2T

X

s2S

X

u2U

bsws;u;t: (10)

4.2 Design of MOERA

We now present the design of the proposed algorithm for
the edge resource allocation problem. To measure the qual-
ity of the solutions produced by an online algorithm, we
introduce competitive ratio, which is defined as the ratio of
the objective of an online algorithm for a given online opti-
mization problem where the input is revealed over time
and the optimal objective obtained assuming all the input
for the problem is pre-given, i.e., offline optimal. To sim-
plify the presentation, we denote by xs;t the total amount of
resources allocated in edge cloud s in time slot t, i.e.,
xs;t ¼

P

u2U xs;u;t.

The MOERA algorithm is based on the algorithmic
technique called regularization [21], i.e., solving P1 with reg-
ularized objective functions. The pseudo code of MOERA
is listed in Algorithm 1. At the beginning of each time
slot t 2 T , observing lu;t and taking x�s;u;t�1 (x�s;u;0 , 0) which
is the workload assignment decision made in time slot
ðt� 1Þ, as inputs, we solve the following problem P2ðtÞ
and obtain the resource allocation decisions x�s;u;t for the
current time slot t

min P2ðtÞ ¼
X

s2S

X

u2U

as;txs;u;t

þ
X

u2U

dðlu;t; s
�
u;tÞ þ

X

s2Su

xs;u;t
�u

dðs�u;t; sÞ

 !

þ
X

s2S

cs
hs

xs;t þ "1
� �

ln
xs;t þ "1
x�s;t�1 þ "1

� xs;t

 !

þ
X

s2S

X

u2U

bs
ts;u

xs;u;t þ "2
� �

ln
xs;u;t þ "2
x�s;u;t�1 þ "2

� xs;u;t

 !

s:t:
X

s2Su

xs;u;t � �u 8u;

(11a)
X

k2Sns

X

u2U

xk;u;t �
X

u2U

�u � Cs; 8s; (11b)

xs;u;t � 0; 8s; 8u; (11c)

where hs ¼ ln 1þ Cs="1ð Þ, ts;u ¼ lnð1þ �u="2Þ, and "1 > 0,
"2 > 0 are parameters. Note that the objective function
P2ðtÞ is convex and the constraints are all linear. As a result,
P2ðtÞ can be optimally solved by any solver for convex pro-
grams. Combining the optimal solution to P2ðtÞ in every

time slot t 2 T , denoted by x�s;u;t, we construct an approxi-
mate solution to the original problem P1 by simply follow-
ing exactly the same resource allocation decisions. We show
in the following that the produced solution is feasible to P1

inherently.

Algorithm 1.MOERA

1: gap-preserving transformation P0 ) P1;
2: regularize the objective P1 ) P2ðtÞ for t 2 T ;
3: initialize xs;u;0  0 for all s 2 S; u 2 U ;
4: for t 2 T do " online resource allocation
5: update P2ðtÞ using lu;t and x�s;u;t�1;
6: solve P2ðtÞ via convex programming;
7: t tþ 1;
8: end for

Theorem 1 (Feasibility). The optimal solution x�s;u;t to P2ðtÞ in
every time slot t 2 T constitutes a feasible solution to P1.

Proof Sketch. The proof is conducted by showing that the
optimal solution obtained for P2ðtÞ also satisfies the
constraints (7a), (7b), and (7c) in P1. For more details
please refer to Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2018.2867520. tu

4.3 Time Complexity

It is convenient to check that the MOERA algorithm can be
finished in polynomial time since it only relies on solving a
series of convex programs over time, which are known to be
polynomial time solvable [22]. There are many solution
approaches available for convex programming, from which
we choose the Interior Point method due to its practical per-
formance. In general, the Interior Point method converges
in time OððmnÞ3:5Þ where mn is the total number
of variables in the convex program instance P2ðtÞ in each
time slot t.

5 COMPETITIVE ANALYSIS

In this section, we carry out rigorous theoretical analysis on
the performance of MOERA following the definition of
competitive analysis. Competitive analysis is a standard
method for quantifying the performance of online algo-
rithms. The general idea is to compare the performance of
an online algorithm to that of the optimal offline algorithm
that can view the input sequence in advance. In particular,
we prove that our algorithm has guaranteed performance
by showing a parameterized competitive ratio. We first
present the rationale behind the proof, followed by the
detailed derivations step by step.

5.1 Rationale

The competitive analysis for MOERA will be conducted fol-
lowing three high-level steps:

(1) relax the program P1 by linearizing the objective
function via introducing auxiliary variables ys;t and
zs;u;t, from which we obtain a linear program P3;

(2) derive the dual problem of P3 to obtain a program D;
(3) construct a feasible solution for D from the optimal

solution x�s;u;t generated by optimally solving P2ðtÞ.
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The rationale of adopting the regularization-based approach
is that the optimal solution for P2ðtÞ shares some common
properties with the solution we constructed for D, which
can be exploited by deriving the Karush-Kuhn-Tucker
(KKT) conditions, i.e., the first-order necessary conditions
for a solution to be optimal, for P2ðtÞ and compare them
with the constraints in D. As a result, a connection between
the optimal solution to P2ðtÞ and the constructed solution to
D can be established. More formally, we aim to derive the
following inequalities:

P1 � P3 � D �
1

r

X

t2T

P2ðtÞ; (12)

where the inequality P1 � P3 follows by the fact that P3

is relaxed from P1, as a result of which it produces the
-optimal solution no larger than that of P1. The inequa-
lity P3 � D is obtained by applying the Weak Duality
Theorem, and the inequality rD � P2 follows by compar-
ing the solutions to D with that to P2ðtÞ. These inequalities
together lead to the result that the proposed online
algorithm MOERA, is r-competitive, where the competi-
tive ratio r will be determined later.

5.2 Auxiliary Programs

Following the above rationale, we first provide the for-
mulation for the relaxed program P3. As already men-
tioned, we introduce auxiliary variables ys;t and zs;u;t to
reformulate the nonlinear terms in the objective function
of P1. We also enforce lower bounds on the new varia-
bles in the constraints. The formal formulation of P3 is
given below:

min P3 ¼
X

t2T

X

s2S

X

u2U

as;txs;u;t

þ
X

t2T

X

u2U

X

s2Su

xs;u;t

�u
dðs�u;t; sÞ

þ
X

t2T

X

s2S

csys;t þ
X

t2T

X

s2S

X

u2U

bszs;u;t

s:t: ys;t �
X

u2U

xs;u;t �
X

u2U

xs;u;t�1; 8s; 8t;

(13a)

zs;u;t � xs;u;t � xs;u;t�1; 8s; 8u; 8t; (13b)

X

k2Sns

X

u2U

xk;u;t �
X

u2U

�u � Cs

 !þ

; 8s; 8t; (13c)

ys;t � 0; 8s; 8t; (13d)

zs;u;t � 0; 8s; 8u; 8t;

ð7aÞ; ð7cÞ;
(13e)

where function ðxÞþ can be applied to the right-hand term
of (13c) due to the fact that xs;u;t � 0. Note that we omit
P

t2T

P

u2U dðlu;t; s
�
u;tÞ from the service quality cost EQ

because this component of cost is independent of the
resource allocation decision once the user is connected to a
base station. We now derive the Lagrangian dual of P3 to
generate program D. To this end, we introduce dual varia-
bles for each of the constraints in P3: Let as;t, bs;u;t, rs;t, and

uu;t be the dual variables associated with (13a), (13b), (13c),
and (7a), respectively. Denote by gs an indicator where
gs;u ¼ 1 if s 2 Su for u 2 U and gs;u ¼ 0 otherwise. The dual
program D can be derived as follows:

max D ¼
X

t2T

X

u2U

�ugs;uuu;t

þ
X

t2T

X

s2S

X

u2U

�u � Cs

 !þ

rs;t

(14a)

s:t: �as;t � gs;u
dðs�u;t; sÞ

�u
þ as;tþ1 � as;t þ bs;u;tþ1

�bs;u;t þ
X

k2Sns

rk;t þ gs;uuu;t 	 0; 8s; 8u; 8t;
(14b)

�cs þ as;t 	 0; 8s; 8t; (14c)

�bs þ bs;u;t 	 0; 8s; 8u; 8t (14d)

as;t � 0; rs;t � 0 8s; 8t; (14e)

bs;u;t � 0; uu;t � 0; 8s; 8u; 8t: (14f)

On the other hand, we derive the KKT conditions of the pro-
gram P2ðtÞ. We associate dual variables u0u;t, r

0
s;t, and d0s;u;t to

constraints (11a), (11b), and (11c), respectively. Conse-
quently, we have

as;t þ gs;u
dðs�u;t; sÞ

�u
þ

cs
hs

ln
xs;t þ "1
x�s;t�1 þ "1

þ
bs
ts;u

ln
xs;u;t þ "2
x�s;u;t�1 þ "2

� gs;uu
0
u;t �

X

k2Sns

r0k;t � d0s;u;t ¼ 0; 8s; 8u;
(15a)

u0u;t

 

�u �
X

s2Su

xs;u;t

!

¼ 0; 8u; (15b)

r0s;t

 
X

u2U

�u � Cs �
X

k2Sns

X

u2U

xk;u;t

!

¼ 0; 8s (15c)

�xs;u;td
0
s;u;t ¼ 0; 8s; 8u; (15d)

ð11aÞ; ð11bÞ; ð11cÞ; u0u;t � 0; r0s;t � 0; 8s; 8u; (15e)

where Equation (15a) is due to stationarity; Equations (15b),
(15c), and (15d) are due to complementary slackness;
inequalities in (15e) are due to primary or dual feasibility.
Using the optimal solutions obtained from solving P3 in
time slot t, i.e., x�s;u;t and the dual variables u0u;t and r0s;t, we
construct a solution SD for program D by following the
mappings below:

as;t ¼
cs
hs

ln
Cs þ "1

x�s;t�1 þ "1
;bs;u;t ¼

bs
ts;u

ln
Cs þ "2

x�s;u;t�1 þ "2

uu;t ¼ u0u;t; rs;t ¼ r0s;t:

We are able to show that

Lemma 2. The solution SD is feasible for program D.

Proof Sketch. The proof is conducted by showing that
when substituted in D, SD satisfies all the constraints. For
details please refer to Appendix B, available in the online
supplemental material. tu

5.3 Competitive Ratio

We now focus on the last inequality rD �
P

t2T P2ðtÞ in (12)
and derive the competitive ratio r. We first partition the
total cost into two parts and show that each part can be
bounded by a certain factor. Then, we combine the results
for both parts and derive the competitive ratio.
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Lemma 3. The total static cost, i.e., the sum of the operation cost
and the service quality cost in P1, is upper bounded by D when
evaluated at x�s;u;t, i.e., EO þEQ 	 D.

Proof Sketch. The proof is conducted by applying the
Equations (15a), (15b), (15c), and (15d) obtained from the
KKT conditions of P2ðtÞ to the total static cost in the objec-
tive function P2ðtÞ. For more details please refer to
Appendix C, available in the online supplemental
material. tu

Lemma 4. The total dynamic cost, i.e., the sum of the reconfigu-
ration cost and the migration cost in P1, is upper bounded by
constant times of D when evaluated at x�s;u;t, i.e., ER þ EM 	
gnD where

g ¼ max
s2S

ðCs þ "1Þ ln 1þ
Cs

"1

� 	

; ðCs þ "2Þ ln 1þ
Cs

"2

� 	
 �

:

Proof Sketch. The proof is conducted by applying the
Equations (15a), (15b), (15c), and (15d) obtained from
the KKT conditions of P2ðtÞ to the total dynamic cost in
the objective function P2ðtÞ. For more details please refer
to Appendix D, available in the online supplemental
material. tu

Combining all the results in Theorem 1, Lemmas 3, and 4,
the following theorem on the competitive ratio can be
obtained for our proposed MOERA algorithm.

Theorem 2. MOERA produces feasible solutions to P0 with a
competitive ratio r ¼ 1þ gn0.

Remark. The above result is reasonably good as it can be
observed that r is monotonically decreasing with the
parameters "1 and "2, and n0 can be small, meaning that
each user is limited to access a small subset of the edge
clouds due to hardware or software specifications or data
privacy concerns for example. We will further evaluate
the empirical competitive ratio of the algorithm with real-
world data in the next section.

6 EVALUATION

We built a discrete-time simulator in Python to validate the
performance of MOERA. We conducted experiments using
both real-world and synthetic data and we report the exper-
imental results in this section. All the measurements were
performed on a Linux server equipped with Intel Xeon CPU
E5-2687W (3.0 GHz) and 512 GB of RAM. We modeled the
linear and convex programs by Pyomo and solved them by
invoking IPOPT.

6.1 Datasets and Experimental Settings

We use various datasets obtained from different real-
world application scenarios to validate the performance of
MOERA. In the following, we describe these datasets in
detail and provide the experimental settings that will be
used throughout our evaluations.

Rome Taxi Dataset. The first real-world dataset we use is
the Roma taxi trajectory traces [23]. This dataset contains the
trajectory of taxis in the city of Rome over onemonth. To rep-
resent an edge computing application scenario, we envision
that an edge cloud system would be deployed in the center
area of Rome city with 15 edge clouds that are located at 15
selected metro stations, as shown in Fig. 4a. The edge clouds
in the system will be used by the customers (termed as users
hereafter) sitting in taxis, whose mobility patterns are pro-
vided by the trajectories of the taxis. The number of users
varies from hour to hour but is generally around 300 in the
dataset. We collect the GPS locations for the 15 edge clouds
(i.e., metro stations) manually on Google Maps. We average
the locations of the users within eachminute to generate per-
minute location data points for each user.

Darmstadt Kraken Dataset. The kraken.me project [24]
aims to analyze user behavior and enable personal assis-
tance for its users. Part of the project includes an Android
application to collect and track user trajectory and other
behaviors. Over the course of several weeks, we collected
more than 26 million unique location data points from about
200 users. In this application scenario, we consider using the
location of home routers for potential edge cloud locations.
This is due to the fact that home routers are ubiquitously
available in urban areas and the feasibility of using home
routers as cloudlets or edge cloud discovery brokers has
already been confirmed [2], [25].

We captured the location of WiFi access points in the city
of Darmstadt, Germany with the help of a mobile applica-
tion that senses WiFi signals as well as the information
about the network. Participants walked around the city and
collected a total of 23,744 access points. The exact location of
the access point is estimated from multiple measurements
of the same access point using trilateration. We eliminate
duplicate access points based on the BSSID/MAC address
of the devices. Then, by doing a vendor lookup for the
addresses, we eliminate all manufacturers that do not pro-
duce home routers. While this might still lead to some

Fig. 4. Distributions of edge clouds and users in the two selected cities:
Rome (Italy) and Darmstadt (Germany).
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wrong data (i.e., devices that are not home routers), we still
argue that overall, the data gives us a good indication of the
number of routers available in an urban area. From the
remaining data, we select 50 routers to act as edge clouds.
The locations of these edge clouds are publicly available
[26]. We place those manually as shown in Fig. 4b. The
placement is done such that we cover areas populated by
the users of kraken.me, for instance we place multiple
routers close to their homes and workplaces. Since most of
the kraken.me users were students, we know the locations
of the university and the student dorms. Other routers are
placed in between those areas to model transitions that will
occur whenever users are on the move.

We now generate the trajectory input data for the evalua-
tion as follows: We choose the most active day (being it with
the most mobile users) and we consider the time between 1
to 8 pm (7 hours). We divide the time period into one-minute
time slots and for each of those time slots we obtain the edge
cloud (i.e., the router) that is closest to the reported position
of this user at that particular time. If there is no up-to-date
location data in one particular time slot, we assume the posi-
tion stays the same. We do however count the number of
those “inaccurate” positions that occur for each user within a
day. If it is greater than 50 percent of all time slots, we discard
the user completely. In case there is more than one position
update in the time slot, we average the positions.

User Workload. To understand the impact of the distribu-
tion of user workload on the effectiveness of MOERA, we use
three different workload distributions: uniform, normal,
and power-law. The power-law distribution represents
highly skewed workload, which can be observed in typical
online social network services, where the number of friends
of each user on the social network satisfies the power law.
For all the distributions, we first fix a base workload as
base. For the uniform distribution, the workload is gener-
ated in the range of ½v; 2� v
 uniformly at random. For the
normal distribution, we set the average as v and the vari-
ance as 0:5v with the negative tail cut. For the power-law
distribution, we draw samples in ½0; 1
 from a power distri-
bution with probability density function P ðx;vÞ ¼ vxv�1

with positive exponent v� 1. Note that the absolute value
of v does not affect the performance of the algorithms as we
will set the capacity of the edge clouds according to the total
generated workload in the system.

The total capacity of the edge clouds is assumed to be
slightly larger than the total workload in the system by
design. More specifically, we assume that the overall utiliza-
tion of the system keeps at the level of 80 percent. As a
result, the total capacity is set to be 1.25 times the total work-
load. The capacity will be distributed to all the edge clouds
proportionally to the frequency of users being attached to
them, i.e., the total number of direct user connections in all
the relevant time slots.

Edge Cloud Prices. We generate the operation price as fol-
lows: For each edge cloud, we first determine its base opera-
tion price reversely proportional to its capacity. This is
reasonable due to the economy-of-scale effect on both
energy and maintenance. The real-time operation price for
each edge cloud follows Gaussian distributions, where we
set the the mean value as the base price we just generated
and the standard deviation as half of the base price [10]. The
network delay is used to calculate the service quality cost
and for each user the network delay can be partitioned into
two parts: the delay between the user and the access point

and the weighted average delay between the access point
and the recruited edge clouds by the user. The delay in our
model is measured by the geographical distance between
any two entities based on their GPS locations. The service
quality price is set to be proportional to the measured delay.
The migration cost is associated with the bandwidth price
and the bandwidth usage during the migration. In our
model the bandwidth price is not assumed to be time-varying.
However, different edge clouds may connect to the Internet
via different Internet providers. We categorize all the edge
clouds in three clusters, each of which is subscribed to one
of the three Internet providers: Tiscali Italia, Vodafone Ita-
lia, and Infostrada-Wind. The per-month flat rate prices
averaged for 1Mbps connection are 2.49 Euro, 4.86 Euro,
and 1.25 Euro, respectively [27]. We will use the relative
ratios between these prices to set the bandwidth prices for
the three categories of edge clouds. We generate the reconfig-
uration price following a Gauss distribution with a cutoff of
the negative tail.

6.2 Empirical Competitive Ratio

The theoretical analysis has already proven an upper bound
on the competitive ratio for the online algorithm. We now
validate how MOERA would perform in reality. We carry
out experiments using the above settings and we compare
the results of MOERA with two groups of algorithms: atom-
istic and holistic. Atomistic algorithms only consider the
static part in the total cost and they include:

� The perf-opt algorithm aims at minimizing only
the service quality cost EQ in every time slot.

� The oper-opt algorithm minimizes only the opera-
tion cost EO in each time slot.

� The stat-opt algorithm minimizes the total static
cost EO þ EQ in each time slot and ignores the
dynamic costs for reconfiguration and migration.

The algorithms in the holistic group include:

� The offline-opt algorithm minimizes P0 assuming
a global view on all the time slots in advance. This is
considered impractical and only serves as a baseline.

� The online-greedy algorithm directly minimizes
the objective value of P0 in every time slot. Decision
making is based on the outcome of the previous time
slot, but considers no future information.

Single-Objective versus Multi-Objective. The experimental
results are shown in Fig. 5. From the Roma taxi traces, we
select the data from date Feb 12, 2014 and we choose six
hours from 3 PM through 9 PM as six independent test cases.
We set the length of a time slot to one minute and thus each
of the test cases consists of 60 time slots. All the values are
normalized by the offline optimal objective. The experiments
are repeated independently for five times and the plots show
the mean values as well as the standard deviations. As we
can see from the figure that the algorithms from the atomistic
group perform poorly as expected. Among them, the perf-
opt performs the best, thanks to the reduced frequency of
workload migration because of the moderate mobility in the
Roma taxi dataset. The online-greedy algorithm in the
holistic group performs better than any of the atomistic algo-
rithms. However, we still notice a considerable gap to the off-
line optimal, which is mainly due to the reasons we already
discussed at the end of Section 2. In contrast, our online algo-
rithm (denoted as online-moera) can produce near-
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optimal results, achieving an improvement of up to 60 per-
cent compared to the online greedy algorithm.

Different Workload Distributions. Fig. 6 illustrates the
performance of our algorithm under different workload sce-
narios, where we generate the user workload using uniform
and normal distributions in addition to the power-law dis-
tribution. As we can see that MOERA preserves similar
properties, i.e., producing near-optimal solution and up to
70 percent improvement compared to online-greedy,
under any of the workload distributions and MOERA per-
forms even slightly better under uniform workloads.

Different Mobility Levels. Fig. 7 shows the performance of
MOERA in the Darmstadt Kraken scenario. We plot the
results that are obtained with the trajectory data collected
from 1 PM through 8 PM (7 hours) on Feb 7, 2015. The total
number of users is 72 in the selected dataset. As we can see
that MOERA achieves an empirical competitive ratio
smaller than 1.2, while it is around 1.6 for online-greedy.
The reason that the improvement of MOERA is less signifi-
cant than that in the Rome Taxi scenario is that we have

significantly less users. To examine the correlation between
the empirical competitive ratio and the mobility pattern, we
plot the mobility level measured by the ratio between the
number of users that have moved and the total number of
users in Fig. 8. It is easy to observe that the performance of
online-greedy shows a strong correlation with the
mobility pattern, while the performance of MOERA remains
relatively stable regardless of the level of mobility.

Synthetic Mobility Patterns. Fig. 9 illustrates the experi-
mental results with synthetic mobility data under various
numbers of users in the Rome Taxi scenario, which is used
to validate the generality of our algorithm. The synthesis
mobility data is generated following a random walk pro-
cess: We assume each user starts from an arbitrary metro
station equipped with an edge cloud and is traveling with
the metro. In each time slot, each user determiners their
location for the next time slot by choosing randomly from
the neighbor stations with an edge cloud equipped or just
staying at the same metro station. Assume in a certain time
slot the user is at a location with three neighbors so the
probably of moving to any of the three neighbors, as well as
of staying at the same location, in the next time slot, would
be 25 percent. Following the above process we generate
the movement traces of the users. We vary the number of
users from 40 to 1,000 and we compare our algorithm
with the offline-opt and online-greedy algorithms.

Fig. 6. The performance of MOERA compared with the optimal offline
and the greedy solutions under uniformly and normally distributed user
workloads in the Rome Taxi scenario.

Fig. 8. Mobility level during the selected period of time in the Darmstadt
Kraken scenario.

Fig. 9. Performance comaprison with user mobility generated following a
random-walk process.

Fig. 5. Performance comparison among the two groups of algorithms
with user workloads generated following a power-law distribution in the
Rome Taxi scenario.

Fig. 7. Performance comparison with user workloads generated follow-
ing a power-law distribution in the Darmstadt Kraken scenario.
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We observe that our algorithm performs in a similar way as
in the real-world mobility scenario, i.e., the empirical com-
petitive ratio is around 1.1, which is very close to the opti-
mal, while the online-greedy has empirical competitive
ratios up to 1.8. In addition, our algorithm performs stably
regardless of the number of users.

6.3 Impact of Parameters

Algorithm Parameters. Fig. 10 shows the impact of the param-
eters "1 and "2 on the performance of our algorithm in the
Rome Taxi scenario. We set "1 ¼ "2 ¼ " > 0 and we vary "
from 10�3 to 103 in a logarithmic scale in all the above test
cases. It is interesting to notice that with the increase of ",
the empirical competitive ratio of our algorithm declines
slightly at the beginning and then increases to a stable level.
We report also in Fig. 10 the impact of the ratio between the
weight of the dynamic cost and the weight of the static cost
(denoted as m) in the objective by varying its value from
10�3 to 103 in a logarithmic scale. We observe that when m is
small, i.e., the dynamic cost is negligible, our algorithm can
roughly achieve optimal results. When the dynamic cost
dominates, our algorithm can still achieve a stable yet rea-
sonably good competitive ratio.

Proportion of Edge Clouds. Fig. 11 depicts the performance
comparison when we restrict the access of each user to dif-
ferent numbers of edge clouds in the Darmstadt Kraken
scneario. The x-axis represents the number of edge clouds
we allow for each user to access, varying from 20 through
50 with a step of 10. The subsets of the edge clouds are
selected uniformly at random. In general, we can observe
that the performance of MOERA is relatively stable, with an
empirical competitive ratio of around 1.18, confirming that
MOERA scales well to large problem instances.

6.4 Comparison with Prediction-Based Approaches

One of the main advantages of MOERA is that the algorithm
does not require any a priori information for decisionmaking.
To validate the effectiveness, we also compare MOERA

against a prediction-based approach, described as follows:
In every time slot, we assume that the prices as well as the
user location for the timewindowwithw future time slots are
available and we compute the optimal resource allocation
decision for the wþ 1 time slots. Note that the prediction
method is out of the scope of this paper and thus, we simply
assume that perfect knowledge of the future can be obtained.
The resource allocation decision for the current time slot is
kept in the final solution, while the decision for other time
slots are directly abandoned. We then repeat this process for
all the considered time slots. We apply this approach on the
Rome Taxi dataset and use the same parameters to generate
the user workload using the power distribution. The results
with varying window sizes are depicted in Fig. 12. As we can
see that with the increase of the window size, the prediction-
based approach achieves better results due to the fact that
more knowledge of the future is available and thus, the deci-
sion is more accurate. MOERA performs slightly worse than
the prediction-based approach as expected, but the difference
is within 5 percent compared with the prediction-based
approach. This confirms that MOERA can achieve a quite
good performance evenwithout requiring a priori knowledge
of the system,making itmore practical.

6.5 Running Time

We compare the running time of MOERA to the optimal off-
line solution and to the online greedy solution using the
Rome Taxi dataset under different numbers of users. The
experimental results are show in Fig. 13. Note that the values
in the figure are the combined running time for 60 indepen-
dent time slots in one hour. It can be seen that MOERA
achieves a significant reduction (more than 2x) on running
time and keeps at a comparable level as the greedy approach.

7 DISCUSSION

We now discuss some practical issues in implementing the
proposed algorithm in real systems. One important issue
is on scalability. As a limitation, the proposed algorithm is

Fig. 10. The impact of the parameter " and m on the empirical competi-
tive ratio.

Fig. 11. Performance of MOERA when restricting the access of each
user to different numbers of edge clouds.

Fig. 12. Comparison betweenMOERA and a prediction-based approach.

Fig. 13. Running time comparison.
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centralized at this moment. This is due to the fact that future
edge computing systems are expected to be managed in a
logically centralized manner with a global system view so
that the desired flexibility and efficiency that we already
have in cloud computing can be preserved [28]. Nevertheless,
we notice that several distributed approaches such as decom-
position techniques [29] can be applied to solve the required
convex programming in MOERA in a more distributed man-
ner and thus, the scalability issue of MOERA can be miti-
gated. Another important issue is how to obtain the user
workload information for decision making. As we do not
assume any knowledge of the future in terms of user work-
load and other system parameters, the algorithm only
requires the user workload information for each time slot at
the beginning of the time slot. This workload information can
be generated through a daemon module running with the
mobile application that carries out analyses for the computa-
tional requests of the mobile application and be submitted to
the edge computing platform through some well-defined
interfaces. The last issue is on the workload distribution
among the edge nodes. It is envisioned that modern mobile
applications that are compatible with edge computingwill be
refactored based on the microservice architecture paradigm
[30]. With this microservice-based architecture, application
requests can be partitioned and served by multiple instances
of microservices on different edge nodes. Each instance of a
microservice can be scaled separately by assigning an appro-
priate amount of resources to it.

8 RELATED WORK

The concept of edge computing was initially inspired by the
idea of deploying computing servers at the network edge to
enhance the performance of mobile devices [5], [31]. While
numerous novel architectures for edge computing [6], [32],
[33], [34], [35], [36] have been proposed, the resource alloca-
tion problem in such systems remains as a critical challenge.

Single-Cloudlet Task Offloading. Much of the existing
research in this area is on allocating edge cloud resources
to computational tasks offloaded from mobile devices.
COSMOS [37] is a system that efficiently manages cloud
resources for offloading requests to both improve the
mobile performance and reduce the provider’s monetary
cost. Deng et al. [38] study online scheduling policies to
maximize data offloading under unpredictable user
mobility patterns. Chen et al. [39] focus on game-theoreti-
cal mechanisms for offloading decision making in the
presence of multiple users, taking into account the energy
consumption and the delay. Hou et al. [20] study the
reconfiguration in edge clouds and propose an efficient
online algorithm for configuration updating. However, all
of them are focused on resource allocation in a single
edge cloud environment.

Multi-Cloudlet Resource Management. On the other hand,
attentions have been paid very recently on resource manage-
ment in an edge cloud computing system with multiple edge
clouds. Jia et al. study the optimal placement of cloudlets in
wireless Metropolitan Area Networks and design an algo-
rithm for user to cloudlet allocation [40]. In a follow-up work,
they further propose an efficient algorithm for load balancing
among multiple edge clouds [41]. Mukherjee et al. proposed
an optimal cloudlet selection strategy to reduce power and
latency inmulti-cloudlet environments [42].Wang et al. study
the problemof joint task assignment and scheduling inmobile

edge clouds by considering both the data movement and
processing [43]. Recently, Jiao et al. explore the online control
of both the cloudlets and the servers inside the cloudlets to
operate the distributed cloudlet system towards the optimal
cost [44]. Wang et al. study the service placement problem for
supporting social virtual reality applications in edge comput-
ing [45]. Themost relevant works to ours are fromWang et al.
[17] and Urgaonkar et al. [13], where they propose stochastic
frameworks for dynamic workload migration based on Mar-
kov Decision Processes (MDPs) and the Lyapunov optimiza-
tion technique. However, all of the work does not include the
reconfiguration of edge clouds in the cost model and either
requires statistic information on the user mobility pattern or
assumes a Markov chain model for user movement, which is
not necessary in ourmodel.

Resource Management in Geo-Distributed Clouds. There is
also research on workload distribution and resource alloca-
tion in geo-distributed data centers [10], [11], [15]. While
sharing some common objectives with our problem, they
are intrinsically different from edge computing environ-
ments as neither delay sensitivity nor user mobility is
considered in their models.

Summary. In contrast to existing work, our study addre-
sses the challenge of allocation and continuous adaptation
of resources in edge clouds, accommodating arbitrary res-
ource price and user mobility dynamics. Our model cap-
tures multiple types of important costs, including static and
dynamic ones; our online algorithm, without any knowl-
edge on the future, makes resource allocation decisions on
the fly while guaranteeing a parameterized competitive
ratio for the worst-case inputs.

9 CONCLUSION

In this paper, we studied the online resource allocation
problem in edge cloud systems. We identified the major
challenges and further captured all of them by a compre-
hensive model, where we incorporated as the optimization
objective the costs associated with edge cloud operation,
delay, server reconfiguration, as well as service migration.
We proposed MOERA, a mobility-agnostic online algorithm
that can guarantee a parameterized competitive ratio. The
effectiveness of the algorithm was also validated by exten-
sive experiments using both real-world and synthetic data.
A research gap left in our paper is to incorporate dynamics
on user arrival and departure. However, due to the non-
deterministic number of variables to be decided for resource
allocation, the problem becomes very hard and it is still not
clear if it is possible to obtain an online algorithm with strict
theoretical guarantee. We leave this for future exploration.
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