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AbstractÐServerless computing is envisioned as the de-facto
standard for next-generation cloud computing. However, the cold
start dilemma has impeded its adoption by delay-sensitive and
burst applications. In this paper, we propose to tame serverless
cold start in a cloud inference system with edge computing.
Specifically, the proposed solution smooths the serverless cloud
workload with user-owned edge computing, reducing the number
of cold starts. Leveraging the configurability of requests and
serverless functions, the proposed solution further reduces the
transmission latency and serverless cost by adapting request con-
figuration (e.g., image resolution) and function configuration (e.g.,
memory). To alleviate the potential inference accuracy degrada-
tion incurred by configuration adaption, we aim to strike a nice
balance between inference latency, cost, and accuracy. However,
achieving this goal is non-trivial since the underlying optimization
is non-convex and involves future uncertain information. To
simultaneously address dual challenges, the presented cold-start-
aware online algorithms apply the regularization technique to
decompose the problem into separate convex subproblems. Then,
it applies lazy switching to smooth the number of provisioned
functions and thus reduces the cold start. Through rigorous theo-
retical analysis, realistic prototype evaluations on AWS Lambda,
and trace-driven simulations, we comprehensively validate the
theoretical and empirical performance of our proposed solution.

Index TermsÐserverless computing, cold start, model infer-
ence, edge computing, online optimization

I. INTRODUCTION

SERVERLESS computing, also known as function com-

puting or Function-as-a-Service (FaaS), is emerging as

the de-facto standard for next-generation cloud computing [1].

Serverless computing enables developers to build applications

faster by writing and deploying individual program codes,

without the hassle of managing dedicated virtual machines or

servers. With serverless computing, an application is decom-

posed into a suite of small pieces of concise functions that are

loosely coupled, allowing the developers to develop, manage

and scale the applications in an agile and flexible manner.

Due to its unique merits in application development and

cost efficiency, serverless has witnessed successful adoption

in a wide variety of applications such as video processing [2],
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Fig. 1. An illustration of cloud-edge collaborative inference system based on
serverless computing, where the edge device deploys a tiny model with fewer
parameters for local inference, and the cloud deploys a vanilla model with
huge parameters. Inference requests can be offloaded with different resolution
configurations to the function with different memory size in a serverless cloud.

machining learning [3], and Internet-of-Things (IoT) [4]. For

emerging IoT applications that typically invoke computational-

intensive machine learning inference tasks, completely relying

on the resource-limited edge node would deteriorate the ap-

plication performance. This dilemma poses an urgent need to

seamlessly integrate the edge and the cloud. Nowadays, many

valuable applications based on cloud-edge collaboration such

as video analytics [5] and industrial IoT [6]. To meet this need,

representative IoT cloud platforms Ð as exemplified by AWS

IoT Greengrass, Azure IoT Edge, and Google Cloud IoT Edge

Ð all adopt serverless computing to develop and deploy IoT

applications across the edge and cloud.

While recognizing the benefits of serverless computing, its

downsides must not be overlooked. Among these, the most

fundamental one is the cold start problem that may severely

deteriorate the application performance [7], [8]. In particular,

function cold start can be defined as the set-up time required

to provision the function’s runtime environment when it is

invoked for the first time within a predefined survival period

(e.g., 5-7 minutes for AWS Lambda [9]). As revealed by the

empirical measurements, the cold start latency on mainstream

commercial serverless platforms including AWS Lambda,

Google Cloud Functions, and Azure Functions typically varies

from a few hundred milliseconds to a few seconds [10]. In

sharp contrast, for many applications such as web serving,

machine learning inference, and IoT data processing, the

function execution latency is typically less than one second

[11], [12]. The cold start of the functions makes the total

runtime significantly more than the actual time required for

function executions [13], which should be carefully addressed

to achieve predictable performance.

In taming the serverless cold start, existing wisdom can be

classified into two categories. The first one is to reduce the
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cold start time by means such as lightweight function virtual-

ization [14]. The second one is to reduce the number of cold

starts via function instance pre-warming [12] or re-using [15].

While these efforts effectively mitigate the cold start, the

concerns such as increased security risk and uncontrollable

factors incurred by serverless operator-managed solutions may

prevent application providers from realistic adoption. Along

a different route, for emerging serverless-based cloud-edge

collaborative inference as shown in Fig. 1, we advocate a

solution managed by application providers to harness the

serverless cold start via edge computing. Inference requests

generated by edge devices can be processed by the local tiny

model, or offloaded to the remote cloud by a vanilla model

with larger parameters. The basic idea is to curb the burstiness

by adaptively shaping the inference workload offloaded to the

cloud with edge computing, governing the number of newly

triggered functions by requests to reduce the number of cold

starts. Since the edge computing capability is assumed to be

owned by users, the above solution does not require the inter-

vention of the serverless operator. Beyond alleviating the cold

start latency, our solution further exploits the configurability

of inference requests and serverless functions to reduce the

network transmission latency and function execution latency.

Specifically, for requests such as image recognition, their

resolution (360p, 720p, etc.) can be adapted to reduce the

data size. While for the function, the allocated resource (i.e.,

memory size such as 2048MB, 4096MB) can also be adapted

to balance the execution latency and cost.

By applying edge computing, request and function con-

figuration adaption, our proposed solution simultaneously re-

duces data transmission latency, function cold start latency

and inference latency, promising predictable performance.

However, this improvement comes at the cost of deteriorated

inference accuracy, due to the limited edge resource capacity

and potentially degraded inference configuration. To address

this issue, when jointly optimizing those control knobs, we aim

to strike a nice balance among the service latency, resource

cost and inference accuracy. However, achieving this goal is

highly non-trivial, due to the following two reasons. First,

the function cold start latency temporally couples the function

provision decisions over time, making the long-term optimiza-

tion problem involving future uncertain information such as

request arrivals that typically fluctuate over time. Thus, it is

highly desirable to minimize the long-term latency in an online

manner, without future information as a priori. Second, even

with an offline setting where all the future information is given,

the cold start latency couples the function provision decisions

in an intractable non-convex manner. This rules out the direct

applications of existing online optimization techniques such

as regularization-based optimization and optimal policy based

on Markov decision processing.

To address the above dual challenges, we first design a fast

algorithm based on the one-step regularization method, which

substitutes the intractable non-convex time-coupling term with

a convex relative entropy function. By decoupling the long-

term optimization problem into a series of single-slot convex

programs, our fast algorithm solves the regularization problem

in polynomial time based on the previous time slot’s historical

solution. We further extend the one-step regularization method

by constructing a multi-step regularization problem to utilize

historical information during the survival window of functions.

Through the independence of the cold-start time and functions

with different memory, we combine the idea of lazy-switching

to design an extended algorithm, which judiciously decides

whether to accept the cold-start solution obtained from the

multi-step regularization problem. Our extended algorithm

fully leverages the warm functions to effectively reduces the

occurrence of cold starts in the survival period.

Our main contributions are highlighted as follows.

• We advocate harnessing the serverless cold start via

edge computing in the cloud-edge collaborative inference

paradigm. We formulate the joint optimization problem

of total latency and monetary cost based on a practical

function cold-start model, which precisely captures the

cold-start latency in a fine-grained manner.

• We propose a fast algorithm as well as an extended

algorithm to address the challenges of future uncertain

information and non-convex optimization. We rigorously

prove that our fast algorithm leads to a parameterized-

constant competitive ratio against the offline optimum

which assumes all the inputs are given as a prior.

• By implementing a system prototype on AWS Lambda,

we evaluate the performance of the proposed algorithms

on real-world serverless cloud testbed. Evaluation results

show that our fast and extended algorithms significantly

improve the utilization of function containers, reducing

function cold starts by 27.6% and 51.1% respectively

compared with the baseline.

• We further conduct extensive simulation experiments

based on real-world traces to verify the effectiveness of

our proposed algorithms. Our fast algorithm and extended

algorithm reduce the long-term total latency and cost by

up to 32.6% and 39.0% compared with the benchmarks,

respectively.

The rest parts of the paper are organized as follows. Sec-

tion II reviews the literature on serverless edge computing,

summarizes the related work on mitigating serverless cold-

start, and highlights the motivation of our research. Section III

introduces the system model and problem formulation for

cloud-edge collaborative inference system based on serverless

computing. Section IV proposes a fast online algorithm and

an extended algorithm for the window switching problem, and

we analyze the performance of the proposed algorithm through

a parameterized competitive ratio in Section V. Section VI

evaluates our proposed algorithms on the real-world testbed

based on a system prototype implemented on AWS Lambda.

Section VII conducts extensive trace-driven simulations to

empirically assess the performance of the proposed online

algorithms. Finally, Section VIII discusses the future work and

Section IX concludes this paper.

II. RELATED WORK AND MOTIVATION

Serverless Edge Computing: With the emerging of edge

computing, serverless computing is envisioned as a promising

approach to seamlessly integrate the locality benefit of edge
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computing and the capability advantage of cloud computing

[1]. As a pilot effort, a video analytic system named LAVEA

[16] collaborates with nearby client, edge and remote cloud

nodes via serverless computing, with the goal of achieving

low latency. For serverless computing across the edge and

cloud, Elgamal et al. optimize both performance and cost via

joint function fusion and placement [17]. For the emerging

paradigm of edge intelligence (i.e., hosting AI applications

with edge computing), Rausch et al. present a scheduling

framework [18] to place serverless AI functions across the

edge and cloud, by jointly considering device capabilities,

network latency and data locality. Xu et al. study the stateful

serverless application placement problem with the dependency

of functions in edge computing platform, they develop an

effective heuristic algorithm and an online learning-driven

algorithm with a bounded regret [19]. While these efforts

target performance optimization, they do not explicitly address

the cold-start issue of serverless computing.

Mitigating Serverless Cold-start: To address the cold-

start issue of serverless computing, Chiang et al. model the

problem of container warming control as a Markov decision

process (MDP) [20]. Leveraging the partial submodularity,

they derive a hysteretic optimal control policy to reduce

the cold-start latency. Vahidinia et al. proposed a two-layer

adaptive appraoch that utilizes reinforcement learning and

Long Short-Term Memory (LSTM) to determine the best

time to keep containers warm and the required pre-warmed

containers, respectively [21]. To mitigate the cold-start issue in

a distributed serverless edge computing environment, Tang et

al. present a multi-agent deep reinforcement learning method

to jointly optimize the task scheduling and computing resource

allocation [22]. Also targeting the cold-start of serverless

edge computing, Pan et al. propose a container caching and

cross-edge request dispatching approach [23]. To address the

time-coupling challenge of the optimization problem, they

present an efficient online algorithm by mapping the prob-

lem to the classical ski-rental problem. Among the above

researches, methods based on reinforcement learning or LSTM

prediction [21], [22] rely on learning from a large amount

of available historical data and lack theoretical guarantees.

The works [20], [23] model the cold-start latency as a simple

convex function across two consecutive time slots, which is a

compromise of provable performance in an imprecise model.

Motivation: Given the significance of related works above,

our study differs in the following aspects. First, we advocate a

solution managed by application providers to tame serverless

function cold start for cloud model inference, which facilitates

the reduction of security risks and uncontrollable factors

incurred by serverless operator-managed solutions. Secondly,

according to the cold-start characteristics of existing FaaS

products (e.g., AWS Lambda and Google Cloud Functions) in

practice [12], [21], we precisely model the cold start latency

of serverless functions to a multi-time-slot switching problem

based on the survival window. Finally, different from directly

applying tools from AI/ML in a black-box manner, we aim

to provide online algorithms with formal guarantees to reduce

the occurrence of serverless function cold-start. It is non-trivial

due to the non-convexity for calculating cold start latency.

TABLE I
MAIN NOTATIONS

Notation Description

M,N ,K, T
set of devices, function configurations, request
configurations, and time slots

i, f, k, t
index of devices, function configurations, request
configurations, and time slots

Ai(t), Bi(t) workload and bandwidth of edge device

aik, bik inference accuracy and transmission data amount

Ci local processing capacity of edge device

Ef concurrency capacity of serverless function

T e
i inference time per request for edge devices

T s
f inference time per request for serverless functions

T c cold start time of serverless function

I survival period of serverless function

Qi average accuracy requirement of edge device

Pf running price per unit time for functions

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model of a cloud-

edge collaborative inference system, consisting of edge devices

and a public cloud with serverless computing capability. By

defining two types of control decisions, we further characterize

the latency, accuracy, and cost models in the collaborative

inference system. We formulate the long-term optimization

problem that is defined as the Window Switching problem, and

finally summarize the challenges compared with the traditional

Switching problem. The main notations used in this paper are

summarized in Table I.

A. Overview of Cloud-edge Collaborative Inference System

As shown in Fig. 1, we consider an application provider

running an IoT service (e.g., video analytics for a smart

factory) in the cloud-edge collaborative inference system

based on serverless computing. This IoT service continuously

senses data (e.g., pictures or video frames) from a set of

edge devices [24], which generate inference requests to be

processed by deep neural network (DNN) models (e.g., VGG

and ResNet [25] for object recognition) deployed locally or

in the remote public cloud. For the edge devices, we assume

that they are owned by the application provider, and they can

be readily managed by a unified central controller such as

AWS Management Console [26]. Due to the resource scarcity

of the devices, compressed tiny DNN models (e.g., ResNet-

18 in the ResNet family [25]) are deployed locally to reduce

the resource footprint. While for the remote public cloud, it

can be accessed by the devices via the wide-area-network

(WAN) whose bandwidth is scarce, volatile, and expensive.

To maintain inference accuracy, vanilla DNN models (e.g.,

ResNet-152 in the ResNet family [25]) with high accuracy

are deployed in the cloud. Moreover, we also assume that the

cloud serves the inference requests in the mode of serverless

computing. This coincides with the recent trend that leading

IoT cloud platforms such as AWS IoT Greengrass.

In this paper, we use M = {1, 2, . . . ,M} to denote the set

of edge devices managed by the application provider. For each

device i ∈ M, the computing capacity (i.e., the maximum
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number of inference requests that can be locally processed

by the compressed tiny model) is denoted by Ci. To capture

the system dynamics such as time-varying request arrivals and

bandwidths between devices and the cloud, we assume that

the system makes decisions in a time-slotted fashion within a

large time span of T . Each time slot t ∈ T = {1, 2, . . . , T}
represents a decision interval that matches the change of the

system dynamics. At time slot t, we use Ai(t) and Bi(t) to

denote the number of inference requests generated by device i
and the bandwidth between each device i and the cloud, which

typically fluctuate over time.

In a serverless cloud, a function represents a unit of resource

instance to process a request in an event-trigger manner, and

the only configuration option for users is the memory size

allocated to each function (e.g., 128MB to 10,240MB in AWS

Lambda [27]). Notably, the memory configuration directly

navigates the trade-off between function execution latency and

monetary cost [28]. In this paper, we use N = {0, 1, . . . , N}
to denote the set of valid memory configurations for each

function to run the vanilla model. When offloading the requests

from devices to the serverless cloud, the configurability of

inference requests can also be leveraged to balance the trans-

mission latency and the cloud inference accuracy. Specifically,

for computer vision tasks such as video analytics, the config-

uration (e.g., resolution and frame rate) can be degraded to

reduce the transmission data size and thus latency [29], at the

cost of reduced inference accuracy. We use K = {1, 2, . . . ,K}
to denote the set of configurations that can be chosen when

offloading requests from devices to the cloud.

B. Decision Variables

To jointly optimize the performance, cost and accuracy of

the serverless-based cloud-edge collaborative inference sys-

tem, we concentrate on two types of control decisions in this

paper. Note that the edge devices and serverless functions are

managed by the application provider through a central console,

which perceives dynamic information in the system (e.g., the

request arrivals and bandwidth of each device). Therefore,

the application provider (i.e., decision maker) specifically

makes the following request dispatching decision and function

provisioning decision: (i) xikf (t), for each edge device i,
the number of inference requests offloaded to the cloud with

configuration k and served by function with configuration f at

each time slot t, and (ii) yf (t), the total number of inference

requests served by function with configuration f at each time

slot t. The physical meaning of the above two variables is the

number of inference requests, so the value is a positive integer.

Considering that the scale of commercial model inference

serving systems has continued to grow exponentially [30],

[31], a definite trend is that the infrastructure for AI appli-

cations is rapidly shifting from the cloud to the edge [32],

[33]. Given the potentially huge amount of inference request

arrival Ai(t), it is reasonable to relax the integer variables

xikf (t) and yf (t) into continuous variables by applying the

linear programming relaxation, and thus to reduce the problem

complexity with negligible optimality loss. Note that the total

number of invoked function with configuration f is no smaller

than the actual amount of real requests offloaded to the cloud

(i.e., yf (t) ≥
∑

i∈M

∑
k∈K xikf (t), ∀t ∈ T , f ∈ N ), because

the central console (controlled by the application provider)

may generate ªfake requestsº for the serverless cloud to warm

up functions [34] or extend the survival period for function

re-using [23]. Similar to some function warm-up tools such as

Dashbird.io [35] and Lambda Warmer [36], the ªfake requestsº

generated by the central console can invoke functions and keep

them warm and thus to avoid the cold start of functions when

the request arrival surges in the future.

C. Latency, Accuracy, and Cost Model

Based on the above decision variables, we characterize the

latency, inference accuracy, and cost models in the system.

The overall latency includes inference latency on both the

edge and serverless cloud, transmission latency of requests

offloaded to the cloud and cold start latency of serverless

functions. Note that our latency model does not consider the

queuing latency of requests between adjacent slots because the

length of the decision slot is much larger than the millisecond

latency requirement of the inference request [11]. Therefore,

we reasonably assume that all inference requests are processed

in the current time slot, which is verified in our real-world

evaluation of Section VI.

Edge Inference Latency. We use T e
i to represent the

inference time for device i to process a request with the

compressed DNN model locally. Given a total amount Ai(t)−∑
k∈K

∑
f∈N xikf (t) of inference requests locally processed

at each edge device i, the total edge inference latency can be

computed by:

LEI(t) =
∑

i∈M

[
Ai(t)−

∑
k∈K

∑
f∈N xikf (t)

]
T e
i .

Transmission Latency. When choosing configuration k to

offload the inference request from device i to the cloud, we

use bik to denote the amount of data to be transferred for a

single request. Considering the time-varying bandwidth Bi(t)
between device i and the cloud, the total transmission latency

in time slot t can be computed by:

LTR(t) =
∑

i∈M

∑
k∈K

∑
f∈N xikf (t)

bik
Bi(t)

.

Serverless Inference Latency. We use T s
f to represent

the inference time of serving a request by function with

memory configuration f in the serverless cloud. Note that in

practice, the execution time of functions is typically agnostic

to the request (input) configuration k. Then, the total serverless

inference latency at time slot t can be computed by:

LSI(t) =
∑

f∈N

∑
i∈M

∑
k∈K xikf (t)T

s
f .

Serverless Cold Start Latency. As a unique feature of

serverless cloud computing, cold start refers to the set-up

time required to get a serverless application’s environment

up when it is invoked for the first time within a defined

period [37]. Specifically, after being invoked, the function con-

tainers usually expire after a few minutes of unuse [38]. This

survival time is typically platform-dependent but function-

agnostic [12], and it is assumed to be I time slots in this paper,

where I is an integer. The number of cold start functions in
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each time slot is related to the number of function provided

by serverless in the past I time slots, because the functions

invoked in these time slots are still in their survival periods.

When the same type of function is invoked again during the

survival period, reusing the function instance can avoid the

cold start of the function that launches the new container [12].

For each serverless function with configuration f , the number

of cold starts in the current time slot is the number newly

added based on the maximum number of calls in the past I
time slots. We use T c to represent the cold start time of each

serverless function, therefore, the serverless cold start latency

in time slot t can be computed by:

LCS(t) =
∑

f∈N T c
[
yf (t)−maxIτ=1 yf (t− τ)

]+
,

where [a − b]+ = max{a − b, 0}. For ease of presenta-

tion, we define LnCS
(
x(t)

)
= LEI(t) + LTR(t) + LSI(t).

Then, the total latency in time slot t can be expressed as :

L
(
x(t),y(t)

)
= LnCS

(
x(t)

)
+ LCS(t).

Inference Accuracy. As we mentioned in Sec. III-A, in-

ference request with different configurations results in varying

inference accuracy. Therefore, we use ai0 and aik to denote the

inference accuracy of a request from device i processed locally

by device i and by the serverless function with configuration

k, respectively. To deliver predictable inference accuracy, we

enforce that the average inference accuracy perceived by the

requests generated by each device i is no lower than a pre-

defined threshold Qi:
(
Ai(t)−

∑
k

∑
f xikf (t)

)
ai0 +

∑
k

∑
f xikf (t)aik

Ai(t)
≥ Qi.

By defining constants dik = aik − ai0 and qi = Qi − ai0,

we can simplify the above expression with a concise form of∑
k∈K

∑
f∈N xikf (t)dik ≥ Ai(t)qi.

Serverless Cost. For application providers, the monetary

cost is incurred by the usage of the serverless cloud resource,

which depends on the number of functions invoked [39], [40],

the configuration and the execution time (i.e., inference time

T s
f ) of the invoked functions. Note that the number of invoked

functions includes real inference requests sent from devices as

well as fake requests generated by the central console. Because

once a function is triggered, regardless of whether it executes

the real inference request from the device, the corresponding

resource occupancy is generated and billed by the function.

A large number of fake requests can improve the chance of

reducing function cold start, and at the same time occupy more

cloud resources, which reflects the trade-off between cold start

time and resource consumption [41]. By denoting Pf as the

price of invoking a function with configuration f per unit

time period, the total serverlss cost at each time slot t can

be formulated as:

Cost
(
y(t)

)
=

∑
f∈N yf (t)PfT

s
f .

D. Problem Formulation

Based on the latency, accuracy, and cost models above, we

minimize the weighted sum of (i) the long-term total inference

(the past  time slots)
Survival Window

(the previous time slot)

Window 
Switching

Switching

Fig. 2. Comparison of the window switching problem with traditional
switching problem. The cold-start model in problem PWS precisely captures
the cold-start latency in a fine-grained manner, which is different from
switching between adjacent time slots.

latency and (ii) the long-term monetary cost incurred by the

serverless cloud usage over time, and meanwhile maintain the

inference accuracy as follows:

min PWS =
∑T

t=1

{
L
(
x(t),y(t)

)
+ ω · Cost

(
y(t)

)}

s.t.
∑

k∈K

∑

f∈N

xikf (t) ≤ Ai(t), ∀t, ∀i, (1a)

Ai(t)−
∑

k∈K

∑

f∈N

xikf (t) ≤ Ci, ∀t, ∀i, (1b)

∑

k∈K

∑

f∈N

xikf (t)dik ≥ Ai(t)qi, ∀t, ∀i, (1c)

∑

i∈M

∑

k∈K

xikf (t) ≤ yf (t), ∀t, ∀f, (1d)

xikf (t) ≥ 0, yf (t) ∈
[
0, Ef

]
, ∀t, ∀i, ∀k, ∀f. (1e)

The parameter ω > 0 represents a tunable weight coefficient

of the serverless cost according to the measurements which

suggests that there is some translational relationship between

service latency and cost [42]. Constraint (1a) ensures that the

number of requests processed by serverless function does not

exceed the total number of requests received by device i in

each time slot. Constraint (1b) maintains the resource capacity

of each edge device. Constraint (1c) maintains the inference

accuracy target Qi for each edge device i. Constraint (1d)

indicates that there may be fake requests to keep the function

warm as mentioned in Section III-B. Constraint (1e) is the

non-negative constraint for the decision variables, here Ef

denotes the maximum number of functions can be invoked

concurrently (e.g., the default concurrency limit of AWS

Lambda is 1,000).

Based on the survival window of serverless functions across

multiple time slots, we define the above optimization problem

as a Window Switching problem by P
WS. Solving the problem

P
WS is however non-trivial due to the following challenges.

Firstly, as we can observe from that the cold start latency

temporally couples the control decisions over time, making the

long-term optimization problem time-coupling and involves

future system information. However, in practice, parameters

such as request arrivals and bandwidth typically fluctuate over

time and thus cannot be readily predicted. Then, it is challenge

to minimize the long-term latency in an online manner, without

requiring the future information as a priori. Secondly, the
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number of cold start functions is related to the historical

solutions in the past I time slots (i.e., the maximum number

maxIτ=1 yf (t − τ) as we mentioned in Section III-C), which

is highly different from the traditional Switching problem in

previous research [23] as shown in Fig. 2. While existing

literature such as [22], [23] address serverless cold-start issue

by online approaches, they model the cold-start latency based

on only two consecutive time slots, rather than the multiple I
time slots considered in our problem P

WS. Note that our cold-

start latency model within I time slots is more practical, as

it precisely captures the cold-start latency in a fine-grained

manner. However, unlike the 2-time-slot cold-start model

which is convex, our cold-start model within I time slot is

non-convex even in the offline case.

IV. COLD-START-AWARE ONLINE ALGORITHMS

Due to the non-convex function in the cold-start model,

existing methods for convex cold-start models such as [20],

[23] cannot solve the proposed Window Switching problem.

On the one hand, the coupling relationship of decisions in the

past I time slots break the theoretical analysis of the algorithm

that can effectively handles the decoupling of two consecu-

tive slots. On the other hand, the survival characteristics of

serverless function makes the online approaches for traditional

Switching problem, which does not make full use of historical

information, is not satisfactory on measurable performance.

Therefore, it motivates us to design new online algorithms for

the Window Switching problem.

As shown in Fig. 3, we propose a fast one-step algo-

rithm in Section IV-A based on the algorithmic technique

of regularization, which utilizes a smooth convex function to

replace the intractable non-convex terms. Moreover, in order

to fully utilize historical information in the survival window of

activated functions, we further propose an extended multi-step

algorithm in Section IV-B. Both algorithms can independently

solve the Window Switching problem and obtain online output

of problem P
WS. For clear expression, we list the relevant

solution notations and inclusion of variables in Table II.

one-step
regularization

multi-step
regularization

lazy-switching

decompose solve

solve

Algorithm 1

Algorithm 2

online output

Fig. 3. The flow diagram of our proposed online algorithms, where Algorithm
1 is based on a one-step regularization method, and Algorithm 2 is extended to
multi-step regularization and further incorporates the idea of lazy-switching.
Both of them output online solutions to the window switching problem.

A. Regularization-based Online Algorithm

To address the dual challenges of time-coupling and non-

convexity incurred by the cold-start term, an intuitive idea is

to approximate the non-convex term with a credible convex

function. In order to simultaneously prevent the potential cold

start of the function caused by the drastic shifts between

time slot t and t − 1, we exploit the algorithmic technique

TABLE II
SOLUTION NOTATIONS WITH VARIABLES

Notation Description

x(t),y(t) output of online algorithms for solving P
WS

x̃(t), ỹ(t)
optimal solution of one-step regularization prob-
lem P

S
r (t) in Algorithm 1 (line 4)

x(t),y(t)
optimal solution of multi-step regularization
problem P

WS
r (t) in Algorithm 2 (line 4)

ẋ(t),y(t̂)
optimal solution of minLnCS(t) with y(t̂) in
Algorithm 2 (line 6-7)

of regularization from the online learning literature [43].

The basic idea is to substitute the intractable time-coupling

and non-convex term with a well-designed function. In this

paper, we employ the widely adopted convex relative entropy

function [44], [45] to substitute [yf (t)−maxIτ=1 yf (t− τ)]+

as follow:

∆
(
yf (t)||yf (t−1)

)
= yf (t) ln

yf (t)

yf (t− 1)
+yf (t−1)−yf (t).

This smooth convex function is the sum of the relative entropy

term yf (t) ln
yf (t)

yf (t−1) and a linear term denoting the movement

cost yf (t−1)− yf (t). To ensure that the fraction is still valid

when no inference request processed by function f in time

slot t−1 (i.e., yf (t−1) = 0), we add a positive constant term

ϵ to both yf (t) and yf (t − 1) in the above convex function.

Moreover, we define an approximation weight factor ηf =

ln(1+
Ef

ϵ
) and multiply the improved relative entropy function

with 1
ηf

to normalize the cold start latency by regularization.

Let P
S
r represents the regularized switching problem by

using the above enhanced regularizer ∆(yf (t)||yf (t − 1))
to approximate the time-coupling term in the cold start la-

tency LCS(t). The problem P
S
r is still time-coupling, thus

the optimal solution to the decoupled problem P
S
r (t) is not

equivalent to the original problem. Nonetheless, the optimality

conditions of the regularized problem yield a lower bound on

the performance of the online algorithm solving a series of

single-shot problems. So we temporally decompose P
S
r into

a series of single-shot convex programs P
S
r (t), which can

be solved in each individual time slot t based the solution

obtained from the previous time slot t − 1. Specifically, the

decomposed subproblem P
S
r (t) for each time slot t ∈ T can

be denoted as follow:

min PS
r (t) = LnCS

(
x(t)

)
+ ω · Cost

(
y(t)

)

+
∑

f∈N

T c

ηf

((
yf (t) + ϵ

)
ln

yf (t) + ϵ

yf (t− 1) + ϵ
− yf (t)

)
,

s.t. Constraint (1a) to (1e).

Based on the one-step regularization method, we propose

a Once Forward Regularization (OFR) algorithm as shown

in Algorithm 1. At each time slot t, OFR first observes

A(t),B(t) and looks forward to get historical information

ỹ(t− 1), which has been obtained when solving P
S
r (t− 1) at

time slot t−1. Then, OFR generates the optimal regularization

solution
(
x̃(t), ỹ(t)

)
by solving the single-slot regularized
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switching problem P
S
r (t). Since the problem P

S
r (t) is a stan-

dard convex optimization with linear constraints, it can be

optimally solved in polynomial time by taking existing convex

optimization techniques such as interior-point method [46].

Algorithm 1: Once Forward Regularization Ð OFR

Input: M,N ,K,C,E,P ,T e,T s, T c, b,d, q,η, ϵ, ω.

1 Initialize ỹ(0) = 0;

2 for time slot t ∈ T do

3 Observe A(t),B(t), ỹ(t− 1);
4 Solve P

S
r (t) to obtain the solution x̃(t), ỹ(t);

5 x(t),y(t) = x̃(t), ỹ(t);

Output: x(t),y(t).

In practice, the application provider can access the managed

devices to observe information through a central console such

as AWS Management Console [26]. Based on the recorded

historical decisions (i.e., ỹ(t − 1)), the central console can

quickly solve the convex problem via invoking commercial

solvers such as Gurobi [47] to generate control decisions for

each time slot t. Although the window switching problem is

non-convex and lacks theoretical tools to analyze performance

in mathematics, we still use a series of transformations to

construct a convex problem and derive a competition ratio

based on the primal-dual framework in Section V.

B. Lazy-switching-based Online Algorithm

maintain warm functions

(the past  time slots)
Survival Window

maximum 
solution

last cold start

regularization solution

lazy-switching 
function provisioning

solve

cold-start
function

warm 
function

legend

Fig. 4. The extended algorithm based on the idea of lazy-switching judiciously
arbitrates whether to adopt the regularization solution, which may generate
more cold starts in the current time slot, or to maintain warm functions
according to the last cold start.

Algorithm 1 is fast and efficient, while the one-step regu-

larization method uses the solution of the time slot t − 1 to

approximate the maximum solution of the past I time slots

in the time-coupling term. This approximation only utilizes

the one-step historical information of the time slot t − 1.

Moreover, in realistic serverless systems, keeping a pool of

warm containers is an effective method to alleviate cold

starts [48], [49]. Therefore, to further mitigate the cold start

of functions, we next design an extended algorithm based on

the following two ideas: 1) Fully consider all the historical

information of the past I time slots to correct the inaccuracy

of the approximation in the one-step regularization method. 2)

Use warm functions as much as possible to reduce potential

function cold starts during their survival periods.
We first construct a multi-step regularization problem by

determining the maximum solution of the previous I time slots

in each time slot. Let PWS
r represents the multi-step regularized

Window Switching problem, and the decomposed subproblem

P
WS
r (t) for each time slot t ∈ T can be denoted as follow:

min PWS
r (t) = LnCS

(
x(t)

)
+ ω · Cost

(
y(t)

)

+
∑

f∈N

T c

ηf

((
yf (t) + ϵ

)
ln

yf (t) + ϵ
I

max
τ=1

y(t− τ) + ϵ
− yf (t)

)
,

s.t. Constraint (1a) to (1e).

In addition, the cold start time between the functions with

different memory is similar [9], but their execution time and

running cost are quite different, referring to our measurements

in Section VII. Therefore, making the most of warm functions

(the function within I time slots after execution) can effec-

tively reduce the occurrence of new cold starts, although it may

cause a increase in serverless cost or inference latency due

to the selection of non-optimal configurations. Furthermore,

keeping the function warm can alleviate the massive cold

start latency caused by a surge of request arrivals in the

near future. The above two insights show that maintaining

a number of functions in the survival period (the next I time

slots) is beneficial to mitigate the cold start latency. Inspired

by the lazy-switching method [50], we apply the relationship

between cold-start latency and the sum of other objective terms

to judiciously decide to accept the solution from regularied

window switching problem P
WS
r (t) or keep a fixed function

provisioning decision (i.e. maintain the pool of currently warm

functions).

Algorithm 2: Window Forward Lazy-switching Ð

WFL

Input: M,N ,K,C,E,P ,T e,T s, T c, b,d, q,η, ϵ, ω.

1 Initialize t = 1, t̂ = 1, and y(0) = 0;

2 while t ≤ T do

3 Observe A(t),B(t),maxIτ=1 y(t− τ);
4 Solve P

WS
r (t) to obtain the solution x(t),y(t);

5 if LCS

(
y(t)

)
≥

1
ρ

∑t−1
v=t̂

LnCS
(
x(t)

)
+ ω · Cost

(
y(t)

)
then

6 y(t) = y(t̂);
7 ẋ(t) = minLnCS(t) subject to (1a)-(1e);

8 x(t) = ẋ(t);

9 if x(t) is not derived then

10 x(t),y(t) = x(t),y(t);
11 if LCS

(
y(t)

)
> 0 then

12 t̂ = t;

Output: x(t),y(t).

Based on the above ideas as shown in Fig. 4, we further

design a Window Forward Lazy-switching (WFL) algorithm

as shown in Algorithm 2. Specifically, in each time slot,

WFL first looks forward for all historical information in the

past I time slots (i.e., the survival window) to obtain the
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maximum solution maxIτ=1 y(t− τ), and solves a single-slot

regularized window switching problem based on the request

arrivals A(t) and bandwidth B(t) of the current time slot

to obtain the solution
(
x(t),y(t)

)
. If the cold start latency

caused by solution y(t) in the current time slot exceeds 1
ρ

(a

predefined control parameter) times of the cumulative sum of

non-cold-start latency and serverless cost since the last cold

start occurred (i.e., t = t̂), we keep the maximum solution

within the time window I and solve the convex optimization

problem to obtain a solution ẋ(t) after applying y(t) = y(t̂).
If x(t) is not derived right now, the multi-step regularization

solution
(
x(t),y(t)

)
is adopted in the current time slot, and

check whether a new cold start occurs to update t̂. Note that

there are two possible cases if line 8 is executed: (i) the cold

start latency achieved by solution y(t) does not exceed the

threshold (i.e., the opposite of line 5) and (ii) minimizing

LnCS(t) subject to (1a)-(1e) by applying y(t) = y(t̂) (i.e.,

line 6-7) is infeasible. The second case is because constraint

(1b) and constraint (1d) may not constitute a feasible region

when the request arrival Ai(t) is large and y(t) = y(t̂) is

fixed. At this time, even if the cold start latency exceeds the

threshold, we still apply x(t),y(t) = x(t),y(t) (i.e., line 9).

The extended algorithm can achieve better performance

compared to our fast algorithm, although it increases the time

complexity. Because it constructs a multi-step regularization

problem to calculate the cold start delay more accurately,

and fully leverages warm functions in the survival period

to reduce the occurrence of cold starts. However, we cannot

derive a competitive ratio for Algorithm 2, because when WFL

chooses a fixed function provisioning decision (i.e., line 6),

minimizing LnCS
(
x(t)

)
may be unsolvable due to the surge

of request arrivals. At this point the algorithm has to choose

the regularization solution
(
x(t),y(t)

)
even if the threshold

condition (i.e., line 5) is satisfied. If we consider a pool

that always maintain a large number of warm functions, we

can avoid the unsolvable situation of minimizing LnCS
(
x(t)

)

when applying y(t) = y(t̂) and thus obtain a parameterized

competition ratio. Unfortunately, in a realistic system, it is

not advisable to keep a large number of warm functions all

the time, because it causes much overhead. Although there is

no theoretical guarantee for Algorithm 2, our experiments in

Section VII demonstrate that our extended algorithm achieves

at least a 9.4% improvement with a small increase in execution

time compared to the fast algorithm.

V. PERFORMANCE ANALYSIS

A. Basic Idea

bound bridgedecoupleregularize

weak
duality

feasible
solution

construct
mapping 

Fig. 5. An illustration of the basic idea for performance analysis.

As illustrated in Fig. 5, to formally prove that the objec-

tive value of Window Switching problem P
WS achieved by

Algorithm 1 is upper-bounded by a parameterized constant

times the offline optimum, we apply the traditional Switching

problem P
S as an important bridge for competitive analysis:

min PS =
∑T

t=1

{
LnCS

(
x(t)

)
+ ω · Cost

(
y(t)

)

+
∑

f∈N

T c
[
yf (t)− yf (t− 1)

]+}
,

s.t. Constraint (1a) to (1e).

The time-coupling term for calculation of the cold start latency

in our problem P
WS is different from the traditional Switching

problem, which makes the Window Switching problem non-

convex and novel. To simplify the expression, we use the

definition symbol of each optimization problem to denote the

corresponding objective value achieved by different solutions

and P (opt) to denote the objective value of problem P

achieved by the offline optimal solution. We will establish the

following chain of inequalities:

PWS
(
x̃(t), ỹ(t)

)
(2a)

≤PS
(
x̃(t), ỹ(t)

)
(2b)

≤rDS
(
π(x̃(t), ỹ(t))

)
(2c)

≤rPS(opt) (2d)

≤rUPWS(opt), (2e)

where rU is the overall competitive ratio. We first derive (2a)

≤ (2b) because maxIτ=1 ỹf (t − τ) ≥ ỹf (t − 1), ∀t, f . Next

we obtain the part competitive ratio r by deriving (2b) ≤ (2d)

through the primal-dual framework summarized in Theorem 1

and the upper bound U by deriving (2d) ≤ (2e) in Theorem 2.

B. Competitive Ratio of Regularization

An Equivalent Problem Transformation. We introduce a
set of new auxiliary variables wf (t) which satisfy wf (t) ≥
yj(t) − yj(t − 1), ∀t, ∀f to replace the time-coupling term[
yf (t)− yf (t− 1)

]+
, and a set of knapsack cover (KC) con-

straints
∑

f ′∈N yf ′(t)−yf (t) ≥
∑

i

(
Ai(t)−Ci

)
−Ef , ∀t, ∀f

to replace the boxing constraints yf (t) ∈ [0, Ef ]. With
the above transformations, we rewrite problem PS in the
following equivalent form.

min PS =
∑

t

{
LnCS(x(t)) + ω · Cost(y(t)) +

∑
f T

cwf (t)
}

s.t. wf (t) ≥ yf (t)− yf (t− 1), ∀t, ∀f, (3a)∑
k

∑
f xikf (t) ≤ Ai(t), ∀t, ∀i, (3b)

Ai(t)−
∑

k

∑
f xikf (t) ≤ Ci, ∀t, ∀i, (3c)

∑
i

∑
k xikf (t) ≤ yf (t), ∀t, ∀f, (3d)∑

k

∑
f xikf (t)dik ≤ Ai(t)qi, ∀t, ∀i, (3e)

∑
f ′ yf ′(t)− yf (t) ≥

∑
i

(
Ai(t)− Ci

)
− Ef , ∀t, ∀f, (3f)

xikf (t), yf (t), wf (t) ≥ 0, ∀t, ∀i, ∀k, ∀f. (3g)

Formulating the Lagrange Dual Problem of P
S. We

derive the dual problem D
S as follows, where νf (t), αi(t),

βi(t), γf (t), θi(t), λj(t) denote the corresponding dual vari-
ables for the constraints (3a) to (3f).

max DS =
∑

t

∑
i

(
T e
i − αi(t) + θi(t)qi

)
Ai(t)

+
∑

t

∑
f λf (t)

[∑
i(Ai(t)− Ci)− Ef

]

+
∑

t

∑
i βi(t)

(
Ai(t)− Ci

)
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s.t. T s
f − T e

i + bik
Bi(t)

+ αi(t)− βi(t) + γf (t)

− θi(t)dik ≥ 0, ∀t ∈ T , ∀i ∈ M, ∀k ∈ K, ∀f ∈ N , (4a)

T c − νf (t) ≥ 0, ∀t ∈ T , ∀f ∈ N , (4b)

PfT
s
f + νf (t)− νf (t+ 1)− γf (t) + λf (t)

−
∑

f ′ λf ′(t) ≥ 0, ∀t ∈ T , ∀f ∈ N , (4c)

All the dual variables ≥ 0.

Characterizing the Optimality of the Regularized Prob-
lem. Algorithm 1 produces the optimal solution

(
x̃(t), ỹ(t))

)

of the convex problems P
S
r (t), which satisfies the Karush-

Kuhn-Tucker (KKT) conditions. To simplify the presentation,
we write KKT conditions in the disjunctive form as follows:

α̃i(t)⊥
(
Ai(t)−

∑
k

∑
f x̃ikf (t)

)
, ∀t, i, (5a)

β̃i(t)⊥
(∑

k

∑
f x̃ikf (t)−

(
Ai(t)− Ci

))
, ∀t, i, (5b)

γ̃f (t)⊥
(
ỹf (t)−

∑
i

∑
k x̃ikf (t)

)
, ∀t, f, (5c)

θ̃i(t)⊥
(∑

k

∑
f x̃ikf (t)dik −Ai(t)qi

)
, ∀t, i, (5d)

λ̃f (t)⊥
(∑

f ′ ỹf ′(t) + Ef −
∑

i

(
Ai(t)− Ci

)
− ỹf (t)

)
, ∀t, f,

(5e)

T s
f − T e

i + bik
Bi(t)

+ α̃i(t)− β̃i(t) + γ̃f (t)− θ̃i(t)dik = 0, (5f)

PfT
s
f + Tc

ηf
ln

ỹf (t)+ϵ

ỹf (t−1)+ϵ
− γ̃f (t) + λ̃f (t)−

∑
f ′

λ̃f ′(t) = 0, (5g)

where a⊥b is equivalent to a, b ≥ 0 and ab = 0.

Constructing the Mapping. We construct a mapping to

jointly map P
S
r ’s optimal primal and dual solutions to a feasible

solution of the dual problem D
S as follows:

π
{
x̃(t), ỹ(t)

}
=

(
νf (t), αi(t), βi(t), γf (t), θi(t), λf (t)

)
,

in which we let

νf (t) =
T c

ηf
ln

Ef + ϵ

ỹf (t− 1) + ϵ
, αi(t) = α̃i(t),

βi(t) = β̃i(t), γf (t) = γ̃f (t), θi(t) = θ̃i(t), λf (t) = λ̃f (t).

Based on the above analysis, we bound non-cold-start latency,

serverless cost and cold start latency respectively, also estab-

lish the chain of inequalities DS
(
π(x̃(t), ỹ(t))

)
≤ DS(opt) ≤

PS(opt) according to the Weak Duality [51]. Summarizing all

derivations, we have the following Theorem 1.

Theorem 1. The objective value of problem P
S achieved by

Algorithm 1 is no larger than r times of the offline optimum

PS(opt), where r is given by:

r = ln
(
1 +

Emax

ϵ

)
+

Emax

δ
+ 1,

and Emax = maxf Ef , δ = mint,f ỹ
+
f (t), where ỹ+f (t) ∈{

ỹf (t) | ỹf (t) > 0, ∀t ∈ T , f ∈ N
}

.

Proof. See Appendix A.

C. Upper Bound of Offline Optimum

Finally, we prove (2d) ≤ (2e) and derive the upper bound

U of offline optimum between the Switching problem P
S and

our Window Switching problem P
WS in Theorem 2. We define

µ = T+/T , where T+ = |T +| and T + =
{
t |

∑
i[Ai(t) −

Ci] > 0
}

, to denote the proportion of the number of time slots

in which the total inference requests received by edge devices

exceeds their capacity limitation in the total number of time

slots over the entire time horizon.

Theorem 2. The offline optimum of problem P
S is no larger

than U times of the offline optimum of problem P
WS, where

U =
1

µ
×

(∑
i CiT

e
i + κ2

∑
f Ef

)

κ1 min
t∈T +

∑
i

(
Ai(t)− Ci

) ,

κ1 = min
i,k,t

bik
Bi(t)

+ min
f

T s
f +min

f
T s
fPf ,

κ2 = max
i,k,t

bik
Bi(t)

+ max
f

T s
f +max

f
T s
fPf + T c.

Proof. See Appendix B.

Remark. According to the definition of the set T +, ∀t ∈
T + we have

∑
i

(
Ai(t) − Ci

)
> 0, which ensures that the

parameterized upper bound U is always positive. In addition,

the parameter µ contained in the upper bound U may vary

with the length of the time horizon, but its value is always

equal or close to 1. Because in a realistic inference system,

the number of inference requests generated by edge devices

can be sufficiently large, exceeding the capacity of devices

with limited resources [52]. Therefore, the parameter U does

not actually increase with the number of time slots T . This

is also verified by measurements based on real-world request

traces in the experiment section.

The competitive ratio r decreases with the increase of the

parameter ϵ. By increasing ϵ sufficiently, we can obtain the

coefficient r that is arbitrarily close to Emax

δ
+ 1, while also

increasing the time complexity of Algorithm 1. The coefficient

U essentially reflects the distinction between the traditional

Switching problem and the Window Switching problem. When

the cold start time T c of the serverless function increases, the

gap between the two offline optimum enlarges, resulting in a

reduction in the theoretical performance of Algorithm 1. The

overall competitive ratio rU is independent of the function

survival time I , because Algorithm 1 factually utilizes the

historical information of the previous time slot t− 1, the best

performance is achieved when I = 1 as a result. The perfor-

mance of Algorithm 1 is inferior to that of Algorithm 2 as I
increases, because WFL combines the idea of regularization

and ªlazy switchingº [50] to minimize the cold start latency in

the current time slot and the future window I , thus achieving

better performance than OFR. We will verify the effect of the

two algorithms in Section VI and Section VII.

VI. REAL-WORLD EVALUATION

A. System Prototype

We first evaluate the performance of the proposed algorithm

through realistic prototype experiments on the serverless cloud

platform of AWS Lambda. The system architecture of the

prototype implementation is shown in Fig. 6.

Central Console. We run the central console on a host

equipped with AMD EPYC 7532 32-Core Processor, which

receives request and bandwidth information from edge devices
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Algorithm 1

Algorithm 2

Algorithm Module

Serverless Cloud

Time-slot Manager

Function Trigger

Control Module

invoke fake 
matrix

historical
information

Function Trigger

Inference Module

Tiny Model

request

Edge Devices

scheduling 
matrix

request and bandwidth information

Vanilla Model

...

request

fake
requests

Function Pool

        2048MB

        4096MB

resultsinference
requests

Central Console

data flow/ / control flow

Fig. 6. The architecture diagram of the system prototype consists of a central
console running on the host, three edge devices mimicked by containers,
and a serverless cloud of AWS. The solid arrows represent the flow between
components, and the dotted arrows represent the flow within the components.

and connects to the serverless cloud. The algorithm module

can set different scheduling algorithms (including Algorithm

1, Algorithm 2 and other baselines), and the time-slot manager

first invoke the algorithm after receiving the device infor-

mation in each time slot. Next, the output of scheduling

matrix is sent to the corresponding edge device, and the fake

matrix is sent to the control module. Finally, according to the

fake matrix, the function trigger sends fake requests to the

serverless cloud for maintaining the function container.

Edge Devices. We mimic edge devices by using three

Docker-based containers, which are with the operating sys-

tem of Debian GNU/Linux 11. The resource allocation of

containers reflects the heterogeneity of computing resources

of different edge devices. In addition to the CPU, device 3 is

also equipped with a GeForce RTX 4090 GPU to achieve local

inference acceleration. According to the computing resources

of different devices, we deploy different versions of the DNN

model YOLOv5 [53] in these containers respectively, and

the inference framework is ONNXRuntime [54]. The specific

configuration of the containers is in Table III.

TABLE III
CONTAINER PARAMETERS

Device CPU Cores Memory GPU Model

#1 6 8GB - YOLOv5n

#2 8 16GB - YOLOv5s

#3 6 8GB 24GB YOLOv5m

Serverless Cloud. We choose the mainstream AWS Lambda

as the serverless computing platform in our system prototype.

We deploy the large version of the DNN model YOLOv5 [53]

on the cloud, and choose five functions with memory con-

figurations of 2048MB, 3072MB, 4096MB, 6144MB, and

8192MB. The model is stored in AWS’s S3 storage service,

and the inference framework is also ONNXRuntime [54].

Note that request configuration (i.e., resolution) is ignored

in our system prototype because the bandwidth from the

container to the AWS cloud is difficult to measure in real time.

Therefore, inference requests offloaded from the device to the

serverless cloud are raw data under the default configuration.

We supplement the bandwidth and request configuration in the

simulation experiment of Section VII.

B. Other Settings

Traces. We use the request traces of three different regions

(Back Bay, Beacon Hill and Boston University) on Novem-

ber 27 in Uber and Lyft Dataset Boston [55]. Specifically,

we count the number of rideshare requests to generate the

normalized request arrivals, and then multiply this value by

1,000 as the inference workload Ai(t) of different devices.

Algorithms. We evaluate three scheduling algorithms in our

system prototype as follows:

(i) OFR, is Algorithm 1 we proposed in Section IV-A, but

ignores the transmission latency and accuracy constraint (1c)

in the optimization problem P
WS.

(ii) WFL, is Algorithm 2 we proposed in Section IV-B, but

ignores the transmission latency and accuracy constraint (1c)

in the optimization problem P
WS.

(iii) Only, a serverless-only scheduling algorithm that does

not consider edge inference to optimize function cold start. By

setting the local capacity Ci = 0 and ignoring the transmission

latency, cold start latency, and the accuracy constraint (1c) in

the optimization problem P
WS, the algorithm then solves the

single-slot subproblem in each time slot.

Metrics. In order to evaluate the performance of the system

prototype under different scheduling algorithms, we record the

following five indicators in edge devices and AWS Cloud-

Watch logs:

(i) local duration, the duration from the start of local

inference with the first request to the completion of processing

all requests, is used as the total latency of the edge inference.

(ii) serverless duration, the duration from the start of

sending the first request to the receipt of the response of the

last request, is used as the end-to-end latency of the serverless

inference.

(iii) request duration, the duration from sending the request

to receiving the response, is used as the end-to-end latency of

the offloaded request. We use request id to index the requests

sent to the serverless cloud and track the inference results of

the requests.

(iv) billed duration, recorded in AWS CloudWatch logs as

the execution time of the function.

(v) init duration, recorded in AWS CloudWatch logs as the

cold start time of the function.

Note that the bandwidth from the edge device to the

serverless cloud is not considered in the experiment of the

system prototype, but we can still calculate the transmission

time of the request through the end-to-end latency of the

request and the execution time of the function.

C. Evaluation Results

Based on the above real-world traces, we apply 3 minutes

as the length of a time slot. We run the system prototype with

three different scheduling algorithms for 24 hours (T = 480),

and record the above metrics.

Function Containers, Cost and End-to-end Latency.

Through the number of logs captured by AWS CloudWatch
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and the recorded request id, we count the number of con-

tainers used by Lambda over the entire time horizon under

different algorithms and the number of requests offloaded

to the cloud. Thus, we can calculate the average number

of inference requests per function container under different

algorithms, as an indicator of function container utilization.

In the Cost Explorer of the AWS Management Console [26],

we can obtain the cost incurred over the entire time horizon

under each algorithm. The end-to-end latency of serverless

inference in each time slot depends on the one with the largest

serverless duration among all devices. We record all the end-

to-end latency in T = 480 and calculate the average value

per time slot. The results of the above multiple dimensions

are summarized in Table IV. According to the observations

in the table, our proposed ORF and WFL algorithms signifi-

cantly improve function container utilization (i.e., the actual

number of requests processed in the function survival period)

compared to the baseline, where ORF and WFL each reduces

26% and 49% of function containers compared to Only. The

higher container utilization is due to the fake request extending

the survival period of the function container, so WFL pays an

additional 6% cost compared to OFR with a 33% improvement

in utilization. Compared with the cloud-only solution (Only),

the solutions based on the cloud-edge collaboration (OFR and

WFL) reduce up to 11.6% of serverless cost, because inference

by local models does not require additional overhead from

the cloud service provider. In addition, the average end-to-end

latency of serverless inference under the three algorithms are

significantly less than the length of a time slot (180 seconds),

which is consistent with our model assumption: all inference

requests could be processed in the current time slot.

TABLE IV
MULTIDIMENSIONAL RESULTS UNDER DIFFERENT ALGORITHMS

Alg. # of Containers Utilization Cost End-to-end Lat.

Only 37544 12.1 63.17$ 13.4s

OFR 27740 15.5 55.82$ 11.6s

WFL 18451 20.6 59.72$ 12.8s
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Fig. 7. The number of cold starts in each time slot under different algorithms,
and the results from t = 100 to t = 120 are highlighted.

Cold start. Through the recorded init duration, we count

the number of functions with cold start in each time slot

under different algorithms, as shown in Fig. 7. To simplify

the presentation, we only plot the results for the first 120 time

slots and highlight the results from t = 100 to t = 120. We

can observe that WFL has fewer cold starts compared to OFR

and Only, and the number of cold starts does not exceed 100

in most time slots. In the entire time horizon T = 480, the

total number of cold starts by Only, OFR and WFL algorithms

are 36946, 26739 and 18064 respectively. Compared with the

baseline Only, OFR and WFL achieves 27.6% and 51.1%

reduction in the number of cold starts respectively.
Latency Composition. Fig. 8 shows the average objective

values of various latency under different algorithms, referring

to LEI(t), LTR(t), LSI(t) and LCS(t) in PWS(t). Due to the

optimization of request configuration is ignored in our system

prototype, the transmission latency LTR(t) mainly depends

on the number of requests offloaded to the serverless cloud.

Therefore, the baseline Only that does not consider edge in-

ference has a large transmission latency. The inference latency

includes the sum of edge inference LEI(t) and serverless in-

ference LSI(t), and there is no obvious distinction between the

three algorithms. Nonetheless, our proposed OFR and WFL are

slightly smaller than the baseline because the local tiny model

with less parameters reduce the inference time compared to

serverless computing. As for the cold start latency LCS(t), our

proposed algorithms has a significant improvement compared

to the baseline, and WFL further reduces the cold start latency

by 32.2% compared to OFR.
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Fig. 8. Various total latency per time slot under different algorithms,
i.e. LEI(t), LTR(t), LSI(t) and LCS(t) in objective value of problem
PWS. Compared with the baseline, our proposed OFR and WFL algorithms
significantly reduce cold start latency.

Note that the latency in Fig. 8 is the accumulation of the

time spent by all requests in each time slot. Since the number

of requests with cold start is only a part of the total number,

so the value of LCS(t) is much smaller than LTR(t) and

LEI(t) +LSI(t). In fact, edge inference, serverless inference

and serverless function are all processed in parallel in our

system prototype. Therefore, the time duration for processing

all requests in each time slot depends on the time when the

last inference result is returned, referring to the end-tot-end

latency in Table IV.
Average Time on Each Device. In order to show the

details of different devices, we select the records in WFL

algorithm and calculate the various average time per request

on each device, as shown in Fig. 9. The function processing

(i.e., serverless inference) time and cold start time have no

obvious distinction on different devices, because they mainly

depend on the configuration of functions and the inference

model, which is common with YOLOv5l. Since the local

tiny models (YOLOv5n, YOLOv5s, and YOLOv5m) have less

parameters, the local processing time (green bars) on the three

devices is much smaller than the function processing time

(orange bars) on the cloud. Furthermore, benefiting from GPU

acceleration, device 3, which deploys the YOLOv5m model
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with a relatively large number of parameters, has the lowest

local processing time. Therefore, edge devices equipped with

GPUs can significantly reduce the latency of local inference,

so that more complex DNN models can be deployed within

limited SLO (Service Level Objective) to improve the accuracy

of edge inference in practice.

device 1 device 2 device 3 (with GPU)
Different Devices

0.0

0.5

1.0

1.5

2.0

2.5

Ot
he

r T
im

e 
pe

r R
eq

ue
st

 (m
s)

1e3

serverless inference
function cold start

0

50

100

150

200

250

Ed
ge

 In
fe

re
nc

e 
Ti

m
e 

pe
r R

eq
ue

st
 (m

s)

146

234

40

edge inference

Fig. 9. Various time per request under WFL algorithm on each device, where
the local processing time is much smaller than the function inference time
and cold start time, refer to the green coordinate scale on the right. Device 3
equipped with GPU has significant acceleration of edge inference.

VII. SIMULATION EXPERIMENT

A. Experimental Setup

We simulate a cloud-edge collaborative inference system

consisting of three types of devices, which connect to a

remote cloud with serverless computing service. Based on

different types of devices and deployed models, we set the

number of devices (i.e., M ) with different scales to 3, 9,

and 15 in our experiment. Taking the object detection task

as an example, the inference request contains images with

different configuration resolutions of 240p, 360p, 480p, and

720p (K = 4). For serverless computing service, serverless

functions with different memory sizes of 2048MB, 3072MB,

4096MB, 6144MB, and 8192MB (N = 5) are used to provide

inference services.

Request Traces and Bandwidth. Similar to real-world

evaluation, we also use the request traces of three different

regions in Uber and Lyft Dataset Boston [55]. The statistical

interval of requests is 3 minutes, which is the length of a

single time slot in our experiment. We set the total time

horizon T = 480, which corresponds to the complete request

traces within 24 hours. Given the real-world request traces,

the parameter µ in Theorem 2 is always equal to 1 in our

experiments, indicating that the parameterized upper bound

U is independent of the time span T . We apply the uplink

rates of the static device at three different times in the 4G

LTE Dataset [56] as the dynamic bandwidth Bi(t) of edge

devices. We calculate the data amount of inference requests

generated by different edge devices according to the resolution

of images with different configurations, and multiply different

compression rates (100%, 80%, and 60%) according to the

different accuracy requirements and heterogeneous bandwidth

as the transmission data size bik under different configurations

of different devices.

Edge Inference. We assume that three mainstream object

detection models YOLOv2 [57], SSD [58], and R-FCN [59]

are deployed on different edge devices to process inference

requests locally. Therefore, the edge inference time T e
i and

TABLE V
ACCURACY PARAMETERS

Deployed Model
Inference Accuracy aik

Qi
240p 360p 480p 720p edge

YOLOv2 0.671 0.717 0.758 0.765 0.60 0.75

SSD 0.761 0.799 0.815 0.818 0.62 0.74

R-FCN 0.728 0.771 0.811 0.817 0.65 0.73

TABLE VI
SERVERLESS FUNCTION PARAMETERS

Parameter
Memory Size

2048MB 3072MB 4096MB 6144MB 8196MB

T s
f

2261ms 1641ms 1278ms 1050ms 914ms

Ef 1000 800 500 250 150

capacity Ci are directly related to the deployed inference mod-

els. Specifically, we set the Ci according to the size of three

models after training, and estimate T e
i = [250, 500, 170] based

on the FPS (frames per second) of each model then scale it

with constrained edge resources. Taking the inference request

of car detection as an example, we calculate the inference

accuracy of inference requests with different configurations

from different devices through the curve fitting method [60],

and set the edge inference accuracy ai0 and the service quality

Qi of different devices according to the deployed models. The

specific accuracy parameters are shown in Table V.

Serverless Function. Considering the sufficient resources,

we assume that a more accurate model (YOLOv5 model [53])

is allocated to functions on the serverless cloud. We deploy

the YOLOv5l model on AWS Lambda with different memory

configurations, and measure the inference time and cold start

time of each function by recording Init Duration and Billed

Duration in the CloudWatch logs, as shown in Fig. 10. We

repeatedly invoke each function 20 times after cold start

(i.e., the first call), calculate the average running time as

the processing time T s
f . According to AWS Lambda’s default

value of 1,000 for function concurrency, we set the values

of parameter Ef for different functions according to their

memory size as shown in Table VI. Regarding the cold start

time, we repeat the test 10 times for functions with different

memory, and the time interval between each call is larger

than 10 minutes to ensure that the survival window of the

function is exceeded. The experimental results show that the

cold start time of functions with different memory has no

visible difference, because it is closely related to the deployed

package size [9]. In our experiment, the default cold start time

T c is set to 2s, and the function running price refers to [27].

2048 3072 4096 6144 8192
Memory Size (MB)

0.0

0.5

1.0

1.5

2.0

Du
ra

tio
n 

(m
s)

1e3

inference
cold-start

Fig. 10. Function inference time and cold-start time of YOLOv5l model
inference with different memory size on AWS Lambda, the average result of
each function repeated 20 times.
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Benchmarks and Metrics. We compare our algorithms

to OLSA [61], which is a state-of-the-art online algorithm

applied to tackle problems with the switching term [62], [63].

To demonstrate the efficiency in reducing the cold start of

serverless functions, we also compare them with the scheme

Non-CS, which directly solves the convex problem without

considering the cold start latency. As for metrics, we use

the following intuitive quantitative indicators to measure the

performance of different algorithms: 1) Objective Value (i.e.,

the total latency and serverless cost achieved by the algorithm

for the original optimization problem P
WS), we use the average

objective value and normalized objective value. 2) Total Num-

ber of Cold Starts (i.e., the total number of functions which

have a cold start when they are triggered), we also apply the

cold starts of the request arrivals over the entire time horizon

to calculate the retention ratio of cold starts by different

algorithms. 3) Approximate Competitive Ratio (i.e.,the total

objective value achieved by different algorithms divided by the

approximate offline optimum), we use the offline optimal value

of the problem PNS = LnCS + Cost without considering

the cold start latency as an approximation, since the original

optimization problem P
WS with non-convex terms cannot be

directly solved even given priors. Note that the approximate

competitive ratio is an upper bound of the true competitive

ratio, because the approximate offline optimum must be no

larger than the offline optimum of the original problem.

B. Simulation Results

If there is no special instruction, our experimental results

are based on the default parameters: T = 480,M = 3, I =
3, T c = 2s, ω = 10× 10−6.

Objective Value. We first plot the average objective value

of different algorithms under varying total time slots T in

Fig. 11. Our proposed OFR and WFL significantly outperform

benchmarks, and WFL always achieves the lowest average

total latency and serverless cost. In all 480 time slots, OFR

achieves a maximum improvement of 32.6% and 12.6% com-

pared to Non-CS and OLSA respectively, and WFL achieves

a maximum improvement of 39.0% and 20.8% compared

to Non-CS and OLSA respectively. Fig. 12 visualizes the

normalized objective value of our proposed OFR and WFL as

well as the benchmark OLSA per time slot over the entire

time horizon. WFL has a more stable performance against

uncertain future information (i.e., fluctuating workload and

bandwidth), and achieves 9.4% improvement compared to

OFR. Note that the average objective value decreases as T

increases in Fig. 11, since the system is initialized without

pre-warmed serverless functions. All invoked functions in the

first time slot experience a cold start, resulting in a large

amount of cold-start latency in total objective value. This

value is then averaged by the increasing T , thus causing above

phenomenon.

Total Number of Cold Starts. In order to demonstrate the

efficiency of the proposed algorithm on cold-start reduction,

we plot the total number of cold starts with different algo-

rithms on the entire time horizon in Fig. 13, and calculate

the cold-start retention ratio of each algorithm on the dataset.

Compared with Non-CS and OLSA, OFR achieves 69.3% and

39.8% reduction in the number of cold starts respectively,

and WFL achieves 84.3% and 69.3% reduction respectively.

The proposed WFL achieves the smallest total number of

cold starts and only 14.1% retention of cold starts on the

dataset. Compared with the real-world evaluation result in

Fig. 7, the algorithms in the simulation experiment have better

performance in mitigating the function cold start. This may be

because on the real-world testbed, the survival period of the

function is within a small range, which is different from being

precise to a certain minute in our cold-start latency model. As

a result, the cold start reduction of the proposed algorithm in

the real-world evaluation is slightly inferior to the performance

in the simulation experiment. The function survival period

changes with the strategy adjustment of different serverless

computing platforms, which inspires us to adjust the hyper-

parameter I in practice.
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Approximate Competitive Ratio. In order to verify the

overall competitive ratio given in Section V, we measure

the approximate competitive ratio of several algorithms at

different scales (i.e., the number of devices M = 3, 9, 15)

as shown in Fig. 14. The results show that there is no

significant difference in the approximate competitive ratio of

the algorithms under different M . Our proposed OFR and
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WFL algorithm outperform the comparison methods, and WFL

always achieves the smallest approximate competitive ratio

(closest to the offline optimum). As we mentioned before that

the approximate competitive ratio is the upper bound of the

true competitive ratio, so the true competitive ratios achieved

by OFR and WFL at different scales do not exceed 1.37 and

1.26, respectively.

Impact of Survival Length. Fig. 15 shows the total number

of cold starts of different algorithms under different serverless

function survival lengths I . We can observe that as the I
increases, the total number of cold starts achieved by all

algorithms decreases significantly, and our proposed OFR and

WFL always have the smallest total number of cold starts.

When I = 1, the Window Switching problem degenerates into

the traditional Switching problem. At this time, OFR based on

the one-step historical information achieves a lower number

of cold starts and better performance than WFL, indicating

that when the survival period is very short, the regularization

method is more effective than the lazy switching method.

Impact of Cold Start Time. Fig. 16 shows the approximate

competitive ratio of different algorithms under different cold

start time T c. We omit the results of the Non-CS method

because the performance without considering the cold-start

latency deteriorates rapidly when T c increases leading to par-

ticularly large approximate competitive ratios. Compared with

OLSA, our proposed OFR and WFL consistently achieve lower

approximate competitive ratios (not exceeding 1.8). We notice

that when T c increases to 10s, the approximate competitive

ratios of different algorithms all increase substantially (OLSA’s

even exceeds 2.0). Because our cold-start model is time-

coupling with future uncertainty, the optimality gap of any

online algorithm would enlarge as the cold-start time increases,

which is also reflected in κ2 in our Theorem 2.

Impact of Serverless Cost. Fig. 17 shows the average

objective value of WFL over the entire time horizon under

different weight coefficients of serverless cost, as well as

the proportion of non-cold-start latency, cold-start latency and

serverless cost in the objective value. The average objective

value increases as the weight coefficient ω increases. When

ω ≤ 10, the main reason for the increase in objective

value is the increased serverless cost. When ω > 10, the

cold start latency starts to increase significantly, because the

expensive running cost makes it difficult to reduce the cold

start occurrence by retaining the warm functions. For the

convenience of presentation we only plot the result of WFL, a

similar phenomenon is also observed on OFR.

Execution Time. Fig. 18 depicts the cumulative distribution

of the execution time of our proposed algorithms. The average

execution time of OFR and WFL over all 480 time slots is about

294.9ms and 366.8ms, respectively, which are much less than

the commonly adopted length of 3 minutes of a single time

slot. Hence, our proposed algorithms are practically efficient.

VIII. DISCUSSION AND FUTURE WORK

The measurements and evaluations in this paper are mainly

based on AWS Lambda. However, our proposed algorithms

and system prototype can be generally extended to other major

serverless computing platforms. Nevertheless, some hyper-

parameters used in the algorithm are platform-dependent, such

as survival period I and function price Pf , need to be re-

tuned. Note that the parameter I is platform-dependent but

fixed in our cold-start latency model. However, our proposed

algorithms and theoretical analysis can be naturally extended

to the general case when the survival periods vary for different

functions. We are also willing to discuss possible future work

for this research as follows.

Dynamic survival period. We assume that the survival

period of all serverless functions is fixed as the time goes

in our cold-start latency model. This assumption may change

as strategies adjustment of commercial serverless computing

platforms, such as based on the workload of the function.

The dynamic survival period of the function will bring novel

challenges to solving the window switching problem.

Further exploration of competition ratio. Both in real-

world testbed and simulation experiments, our proposed ex-

tended algorithm achieve significant performance improve-

ments compared to the fast algorithm. However, there is

currently a lack of theoretical analysis for the lower bound of

algorithm performance. Intuitively, the competitive ratio that

proves this bound is likely to be related to the survival period

of the function.

Real-world system implementation. The system prototype

can be further combined with real edge devices to implement

a real-world cloud-edge collaborative inference system. This

may help inspire the application and deployment of inference

systems based on serverless computing in practice.

IX. CONCLUSION

In this paper, we tame the serverless cold start in the cloud

inference system with edge computing. We define a practical

cold-start model which is related to multiple time slots in

the past, so the long-term optimization problem is highly

non-trivial to solve because of the non-convex time-coupling
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term. Based on the regularization and lazy-switching method,

we propose a fast algorithm (Once Forward Regularization)

and an extended algorithm (Window Forward Lazy-switching).

We prove the competitive ratio and evaluate the algorithm

performance based on a system prototype with AWS Lambda.

We further verify the practical efficiency of the proposed

algorithms through extensive simulation experiments driven

by real-world data sets. Our proposed algorithms significantly

reduce the number of cold starts and achieve lower approxi-

mate competitive ratio.
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