
1

EMS: Erasure-coded Multi-source Streaming for
UHD Videos within Cloud Native 5G Networks

Lingjun Pu, Jianxin Shi, Xinjing Yuan, Xu Chen, Lei Jiao, Tian Zhang and Jingdong Xu.

Abstract—Ultra-High-Definition (UHD) videos have been getting increasing attention. However, existing video streaming solutions fail

to deliver them due to the extremely high bandwidth requirement. The emerging cloud native 5G networks have opened up the

possibility of enhancing UHD video quality by leveraging in-network video streaming. Unfortunately, the restricted storage and

bandwidth of in-network servers could become the main bottleneck. To this end, we present EMS, a novel UHD video streaming

framework, by integrating Erasure-coded storage with Multi-source Streaming. We respectively introduce a deadline-aware and a

latency-sensitive metric to indicate the service quality of video servers and advocate a federated learning paradigm for the adaptive

service quality update, including a reinforcement learning based multi-server selection (i.e., user local training) and a global service

quality aggregation. To facilitate user local training without sacrificing streaming Quality-of-Experience (QoE), we cast the multi-server

selection associated with the restriction on the average number of selected servers per video chunk into two kinds of Multi-Armed

Bandit (MAB) models in terms of the proposed service quality metrics. We design lightweight Upper Confidence Bound (UCB) based

algorithms with a theoretical performance guarantee. We implement a prototype of EMS, and extensive experiments confirm the

superiority of the proposed algorithms.

Index Terms—Erasure-coded Storage, Multi-source Streaming, Cloud Native 5G Networks and Online Learning.

!

1 INTRODUCTION

Ultra-High-Definition (UHD) videos such as 8K/12K 2D videos,

panoramic videos and volumetric videos have recently emerged

and attracted great attention. In general, UHD videos have a

large file size, since they are of high frame rate, high dynamic

range and deep depth of field. Therefore, an extremely high

downstream bandwidth is required to facilitate UHD video

streaming [1], [2]. Although mobile network operators (MNOs)

and Over-The-Top (OTT) content providers have made great

efforts to extend the downstream bandwidth for video clients,

such as building more base stations and utilizing multiple Content

Delivery Networks (CDN) [3], [4], the achievable bandwidth

(i.e., end-to-end throughput) is still inadequate, in terms of the

data-driven and testbed-driven measurements in §2.1 (i.e., Fig.

3). The seemingly insatiable bandwidth demand of UHD videos

motivates innovative video streaming solutions.

Cloud native 5G networks that embody containerization and

micro-services have been receiving increasing attention from

many MNOs such as Rakuten Mobile [5] and F5 Networks [6].

The reference architecture is shown in Fig. 1(a), where different

scales of data centers (DCs) are hierarchically deployed to not

only accomplish cellular tasks (e.g., UPF and 5G core) but also

support various kinds of edge applications [7]. In this context, OTT

content providers can cooperate with MNOs to deploy a number of

video servers in the regional and/or central DCs, so as to achieve

efficient UHD video streaming (e.g., low latency).

Lingjun Pu, Jianxin Shi, Xinjing Yuan, Tian Zhang and Jingdong Xu are with
the College of Computer Science, Nankai University, Tianjin 300071, China.
(e-mail: {pulj, shijx, yuanxj, zhangt, xujd}@nankai.edu.cn).
Xu Chen is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510006, China. (e-mail: chenxu35@mail.sysu.edu.cn).
Lei Jiao is with the Department of Computer and Information Science,
University of Oregon, Eugene 97403, USA. (e-mail: jiao@cs.uoregon.edu).

Although such an in-network video streaming solution can

bring significant benefits such as making full use of advanced

5G cellular technologies [8] and getting rid of the bandwidth

limitation of backbone network [9], it highly relies on the storage

and bandwidth capacity of video servers due to the large file

size of UHD videos, which however could not be guaranteed by

those in-network DCs. This is because they are generally of small

scales (e.g., the number of servers per regional DC is less than

30 as indicated by Huawei [10]), and accordingly have limited

resources. What is worse, these limited resources will be primarily

utilized for cellular tasks and the residual ones will be carved

up by various edge applications. Therefore, the restricted storage

and bandwidth capacity of video servers (i.e., taking the form of

containers) could be the main bottleneck of UHD video streaming.

In order to alleviate the adverse effect of the restricted server

bandwidth capacity, one popular idea is to reduce the transmission

size while keeping the video quality. The representative solutions

include viewpoint based streaming [1], [2] and super-resolution

based streaming [11], [12], which however are still at an early

research stage. For example, there are no perfect methods for

accurate user viewpoint prediction, and super-resolution will

produce uncertain and even intolerable processing delays. Another

popular idea is to exploit multiple video servers to jointly transmit

UHD videos (i.e., multi-source streaming [13], [14]). Existing

solutions generally assume each video file is replicated to all the

servers, and the bandwidth between client and server is accurately

predicted. However, the former is unsuitable for the UHD video

streaming within cloud native 5G networks due to the large video

file size and the restricted server storage capacity, and the latter is

very difficult to achieve in practice (e.g., Fig. 4).

As erasure-coded storage compared with replication based

storage can provide space-optimal data redundancy [15]–[17],

we advocate EMS, an Erasure-coded Multi-source Streaming

framework for UHD videos within cloud native 5G networks. The

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

2

Far Edge DCs
(Sites:100~1000)

Edge or Regional DCs
(Sites:10~50)

5G Transport
Network

Central DCs
(Sites: 1~5)

5G Core

vDU vCUvDU vCU

Portal Server

 User Areas Multi-CDNs

 Cloud Native
 5G Networks

 Access + Fronthaul Backhaul Backbone

Video Server

UPF Edge Apps

Video Server

UPF Edge Apps

Video Server

UPF Edge Apps

Video Server

UPF Edge Apps

Edge Apps

vDU vCUvDU vCU

Resident

Office

University

UPF

(a) Network scenario (each user has a cellular connection).

User Area
Video Container

Backup Container

Data Block

Parity Block

Erasure-coded
Video Streaming

V1V1 V2V2 V3V3 V4V4

Video
Server 1

Video
Server 2

Video
Server 3

Video
Server 4

Portal Server

Video Profiler

Far Edge
DC 1 Far Edge

DC 2

Far Edge
DC 3

5G Transport
Network

V1 V2 V3 V4

RL-based Multi-
Server Selection

Server Profiler

Quality Update

(b) Schematic diagram (a video server is located in a regional or central DC).

Fig. 1: The overview of EMS (UHD video V is coded into D = 2 data blocks and P = 2 parity blocks).

portal server, as shown in Fig. 1, will encode each video into D
data blocks and P parity blocks (i.e., D + P video blocks) and

assign them to D + P video servers. In other words, each video

server will store only one video block. In practice, regional DCs

will set up a video container to store the assigned video block

and reserve several backup containers for elastic scaling and load

balancing as a video server. The portal server will maintain the

metadata of each video and its associated video servers. When

a user requests a UHD video, it will query the portal server to

obtain the metadata of the corresponding video servers (e.g., IP

addresses), then select at least D servers from them and download

their stored video blocks to recover the playable video.

Intuitively, integrating erasure-coded storage with multi-source

streaming, EMS is highly appropriate for the video servers with

the restricted storage and bandwidth capacity (i.e., storing and

transmitting video blocks rather than the whole video). Besides,

EMS is compatible with advanced streaming technologies

such as adaptive streaming, viewpoint based streaming and

super-resolution based streaming as discussed in §3.1. Despite its

profound benefits, we require to address a critical problem: how

to optimally select a set of video servers for each user, in order to

achieve efficient UHD video streaming? The desirable multi-server

selection algorithm should satisfy the following two requirements:

(1) High user QoE. The downstream bandwidth is a widely

used metric to indicate the service quality of video servers for

users. However, accurate bandwidth measurement at present is

still a grand challenge [18], [19], and existing solutions such as

bandwidth prediction or probing are inefficient or costly [20], [21].

Therefore, a novel metric associated with an efficient measurement

method that can effectively represent the service quality of video

servers for users is required. Otherwise, multi-source streaming

could easily give rise to the cask effect [14].

(2) Low system cost. Selecting a large number of video

servers can intuitively alleviate the cask effect of multi-source

streaming. However, EMS in practice should restrict the number

of selected servers to avoid excessive redundant data transmission

that aggravates the traffic burden of cloud native 5G networks.

In this paper, we respectively introduce a deadline-aware

metric and a latency-sensitive metric in terms of the historical

user downloading time of video chunks to indicate the service

quality of video servers, and advocate a Federated Learning (FL)

paradigm to measure it (i.e., requirement (1)), which consists of

a Reinforcement Learning (RL) based multi-server selection (i.e.,

user local training) and a global service quality update. Briefly,

we adopt the concept of “user area” [22], [23], and consider the

service quality of video servers for a user area can approximately

represent that for the users belonging to it. In this context, the

UHD video streaming of the users belonging to the same user area

can be viewed as an asynchronous federated learning campaign.

That is, when a user requests a UHD video, it will obtain the

current service quality of video servers for its associated user area,

locally train it during the video playback by invoking the RL based

multi-server selection, and uploads the final trained result to the

portal server for global update (i.e., global aggregation) at the

end of video streaming. Note that, as this process continues over

time, the service quality of video servers for any user area will

adaptively capture its particular traffic pattern or distribution.

To capture the restriction on the number of selected servers per

requested video, we introduce a long-term constraint to ensure the

average number of selected servers per video chunk cannot exceed

a predefined threshold (i.e., requirement (2)). Since mobile devices

in general have limited computing capacity, we cast the RL based

multi-server selection associated with the long-term constraint into

two kinds of Multi-Armed Bandit (MAB) models in terms of the

proposed two service quality metrics and respectively design two

efficient Upper Confidence Bound (UCB) based algorithms with

a theoretical performance guarantee and low complexity. In the

end, we implement a prototype of EMS and conduct extensive

testbed driven experiments for performance evaluation. The main

contributions are summarized as follows:

• We present EMS, a novel erasure-coded multi-source

streaming framework for UHD videos within cloud native

5G networks. We provide the specific design of its key

components, propose new metrics to indicate the service

quality of video servers, and advocate a FL paradigm

including an RL based multi-server selection and a global

aggregation for the adaptive service quality update (§3).

• We cast the RL based multi-server selection associated

with the restriction on the average number of selected

servers (i.e., a long-term constraint) into two kinds of

MAB models in terms of the proposed two service quality

metrics and correspondingly design two lightweight UCB

based algorithms with sub-linear regret bounds (§4).

• Extensive testbed driven experiments confirm that (i)

the practical performance of the proposed algorithms

coincides with the theoretical analysis; (ii) the proposed

algorithms achieve superior performance compared with

the state-of-the-art multi-source streaming algorithms and

UCB based algorithms in various system settings; (iii)

EMS is a lightweight framework in terms of multi-server

selection and erasure-coded chunk decoding (§5).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

3

2 MOTIVATION AND RELATED WORK

In this section, we provide the motivation of EMS in terms of

dataset-driven and testbed-driven measurements and then outline

the related work to highlight the novelty of EMS.

2.1 Downstream Bandwidth Measurements

Background. In general, UHD videos such as 8K/12K 2D,

panoramic and volumetric videos have a large file size due to the

high frame rate, high dynamic range and deep depth of field, and

accordingly an extremely high downstream bandwidth is required

to facilitate UHD video streaming. For example, according to

Netflix, the recommended bandwidth for 4K (3840×2160) 2D

videos is at least 25 Mbps [24], and therefore it would be 100

Mbps for 8K (7680×4320) 2D videos by simple multiplication.

Besides, the required bandwidth for 12K panoramic videos should

be over 400 Mbps [1]. Recently, MNOs and OTT content providers

have made great efforts to extend the downstream bandwidth,

such as building more base stations, upgrading optical transport

networks and utilizing multi-CDN [3], [4]. Therefore, it is natural

to ask whether the current downstream bandwidth (i.e., end-to-end

throughput) can well support UHD video streaming?

Dataset. In order to answer the above question, we consider

the following two video streaming datasets:

(i) Puffer [25], a video streaming dataset (i.e., 2022.01 –

2022.04) released by Stanford University. This dataset collects

a set of time-series states from both the client and server side

during the video streaming, and it contains a “delivery rate” field

to indicate the downstream bandwidth per video chunk.

(ii) E2E-5G [26], a 5G trace dataset collected from a major

Irish mobile operator, which is generated from two mobility

patterns (static and car) and two application patterns (video

streaming and file download). This dataset contains a “DL bitrate”

field to indicate the downstream bandwidth per second. We only

consider the data from the static pattern.

Testbed. Furthermore, we build a simple testbed to measure

the downstream bandwidth on Tencent Video, a mainstream OTT

platform in China. As shown in Fig. 2, we consider a laptop and

a Huawei 5G CPE Pro2 with a plugged-in China Mobile 5G SIM

card and connect them by a gigabit network cable to roughly

represent a 5G device1. We select a list of video URLs, including

TV dramas, movies, shows and animations, and conduct the

bandwidth measurement by exploiting Selenium ChromeDriver

[27] to automatically request and play them in the Chrome browser

(i.e., we create a Python script that controls the ChromeDriver

to load the selected video URL to the browser and click the

video player button). Each video is downloaded as a series of

HTTPS request/response interactions, and the Chrome browser

(i.e., the built-in DevTools) will decrypt all the captured HTTPS

request/response headers and archive relevant header fields. We

exploit the content type header field (i.e., “video/MP2T” and

“video/mp4”) to filter out the records of video chunks (i.e.,

streaming logs). In order to obtain diverse and sufficient streaming

logs, we consider four resident locations and two university sites

in two megacities of China and run the testbed for a month (three

times a day: Morning (9:00), Noon (13:00) and Night (20:00)).

1. Note that we do not directly exploit 5G smartphones in our measurement,
since there is no perfect client-side monitoring tool for video streaming and
moreover the client-side monitoring tool may negatively impact video player
activities such as rendering (i.e., resource competition).

OTT
Platforms

Chrome
Driver

Streaming
Logs

“5G Device”

Fig. 2: Testbed overview. Fig. 3: CDF of bandwidth.

Measurement Result. We depict the CDF of the derived

bandwidth samples as shown in Fig. 3. For clarity, we mark the

point on the line whose x-axis value is 100. As indicated by them,

we can derive that only 7%, 25% and 46% of total bandwidth

samples of Puffer, E2E-5G and Tencent Video can satisfy the

bandwidth requirement for 8K 2D videos (i.e., over 100 Mbps).

Not to mention those UHD panoramic and volumetric videos. In

other words, the current achievable downstream bandwidth is still

inadequate for UHD video streaming, which motivates innovative

video streaming solutions.

2.2 Related Work

Advanced streaming technology. Adaptive streaming such as

DASH [28] is capable of coping with dynamic bandwidth

fluctuations by adapting video quality in realtime. In adaptive

streaming, each video is divided into a sequence of chunks with

the same duration (e.g., several seconds), and each chunk is

encoded with multiple discrete bitrates to accommodate various

network conditions. The video client will sequentially request

each chunk at an appropriate bitrate, in terms of a specific bitrate

adaptation algorithm such as bandwidth based, buffer based and

learning based algorithms [29]. However, adaptive streaming has

little effect on the bandwidth increase.

Viewpoint or tile based streaming is a promising solution to

save downstream bandwidth while keeping video quality, which is

particularly tailored for panoramic and volumetric videos [1], [2].

Its basic idea is to transmit the tiles within the user viewpoint

with a high bitrate and the other tiles with the lowest bitrate.

However, this solution suffers from a fundamental limitation that

user viewpoint is hard to predict accurately. Super-resolution

based streaming is another promising solution [11], [12], whose

basic idea is to recover high-resolution video frames from the

transmitted lower resolution versions by using neural networks

at the client side. However, it could produce uncertain and

even intolerable processing delays, especially on mobile devices.

Although EMS adopts a different design philosophy, it can be

easily compatible with these promising yet immature solutions, as

discussed in the fifth paragraph of §3.1.

Multi-source streaming. Multi-source streaming stems from

the peer-to-peer (P2P) systems [30], and the P2P based solutions

mainly follow the “one source per chunk” paradigm. For example,

interplanetary file system (IPFS), the latest P2P system adopts

a bandwidth probing solution (i.e., Bitswap [31]) to select the

best peer for each requested content. However, EMS advocates

a “multi-source per erasure-coded chunk” paradigm. In recent

years, some researchers have considered bandwidth prediction

based multi-source streaming [13], [32], in which they assume

each video file is replicated to all the servers and the video

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

4

(a) Harmonic mean. (b) LSTM.

Fig. 4: Performance evaluation of bandwidth prediction algorithms.

client proportionally downloads each video chunk from all the

servers in terms of the predicted bandwidth between the client and

each server. Although they follow the “multi-source per chunk”

paradigm, they are completely different from EMS in terms of the

different storage and streaming mode. In addition, they will suffer

from a fundamental limitation that the downstream bandwidth is

hard to predict accurately [20], [21]. To support this argument,

we evaluate the performance of the widely-used harmonic mean

based [28] and LSTM based bandwidth prediction algorithm [21],

in terms of the time-series bandwidth samples in the datasets and

streaming logs given in §2.1. We adopt the prediction error as

the metric which is calculated as (the predicted value− the actual

value)/the actual value. The evaluation result is shown in Fig.

4, and we can find that as to each algorithm the percentage of

“good” prediction whose error is within ±10% is roughly 18%

(i.e., Puffer: 19%, 21.5%; E2E-5G: 21.5%, 7%; Tencent Video:

14.3%, 25.2% in Fig. 4).

Consider a simple scenario: two sources cooperatively transmit

a 100Mb video chunk to client and the bandwidth between

the client and each source is predicted to be 100Mbps. In

this case, the expected transmission latency should be 0.5s

under any bandwidth prediction based multi-source streaming

algorithms (i.e., each source transmits 50Mb, 1/2 of video

chunk). However, if the predicted downstream bandwidth of one

source is underestimated (e.g., 120Mbps in fact), then the actual

transmission latency is max{50/120, 50/100}=0.5s while the

optimal one should be 5/11=0.45s (i.e., the source with 120Mbps

transmits 120/(120+100)=6/11 of video chunk and the source

with 100Mbps transmits 100/(120+100)=5/11 of video chunk).

On the other hand, if the predicted downstream bandwidth of

one source is overestimated (e.g., 80Mbps in fact), then the actual

transmission latency is 50/80=0.625s while the optimal one should

be 5/9=0.56s (i.e., the source with 100Mbps transmits 5/9 of video

chunk and the source with 80Mbps transmits 4/9 of video chunk).

In both cases, the cask effect caused by the inaccurate bandwidth

prediction results in 10% performance degradation. In addition,

a large-scale and real-world measurement indicates that 23% of

the downloads have worse performance after being upgraded to

multi-source content delivery due to the cask effect [14]. As such,

the multi-source streaming with inaccurate bandwidth prediction

is suboptimal and its latency is determined by the slowest source.

Erasure-coded storage system. Erasure-coded storage has

been extensively discussed in distributed storage systems as it can

provide space-optimal data redundancy. Briefly, erasure coding

works by splitting a file into multiple fragments (data blocks)

and then creating additional fragments (parity blocks) that can

be used for file recovery. The data and parity fragments are stored

across multiple disks to protect against data loss in case a disk

fails. If such an event occurs, the file can be rebuilt by using

the available data and parity fragments. For example, a storage

system could exploit a 5+2 encoding configuration, in which each

file is splitted into five data fragments and then adds two parity

fragments. The configuration can tolerate up to two disk failures,

no matter whether the disks contain data or parity fragments. In

other words, the file can be rebuilt by five data or parity fragments.

In recent years, some researchers focus on how to accurately

quantify the access latency for erasure-coded storage systems,

and they mainly exploit the queuing theory to derive and

analyze the latency bounds [16], [17], [33]. For example, the

authors in [16] consider video streaming over an erasure-coded

cloud system and analyze the mean stall duration and the stall

duration tail probability with complicated probabilistic models.

Other researchers attempt to design efficient caching schemes to

achieve a low access latency in erasure-coded storage systems.

For example, the authors in [15] design an online erasure

coding scheme on the cached data to achieve load balancing

and latency reduction. There are also some edge caching studies

taking erasure-coded storage into account and mainly discuss the

content placement problem [34]–[37]. Nevertheless, none of the

existing work like EMS pays attention to the multi-server selection

problem in the context of integrating erasure-coded storage with

multi-source streaming.

Multi-Armed Bandit (MAB) for video streaming. There

are some recent studies that exploit multi-armed bandit to model

bitrate selection [20], [38] or server selection [39], [40] for video

streaming. However, they only require to select one arm, which

is different from EMS. The most related work is [14], which

attempts to select a fixed number of workers by proposing a

variant of ω-greedy algorithm. However, the considered service

quality metric is different from EMS (i.e., different objective

functions). In addition, it does not involve a long-term constraint

on the average number of selected servers. Moreover, its proposed

algorithm does not provide a theoretical performance guarantee.

TABLE 1: Summary of related works on multi-source streaming.

Existing
Works

Storage
Mode

Server Selection
Constraint

Algorithmic
Bound

[30], [31] P2P based No No
[13], [32] Replication No No

[16] Erasure-coding No Yes
[14] P2P based Fixed number No

Ours Erasure-coding Long-term Yes

Summary. We highlight the characteristics of the highly

related multi-source streaming works in Table 1. To the best

of our knowledge, EMS is the first work that integrates

erasure-coded storage with multi-source streaming, concentrates

on the multi-server selection problem with novel service quality

metrics and a long-term constraint, and proposes efficient

algorithms with performance guarantee and low complexity.

3 SYSTEM DESIGN

In this section, we provide the specific design of EMS including

the basic components and interactions, then formulate the critical

multi-server selection problem with a constrained reinforcement

learning model.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

5

C2 C3 Cm CM
... ...

Encoded with EC(N=D+P, D)

C1

Regular Video (M video chunks)

B12 B13 B1m B1M... ...B11

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

D Data
Blocks

P Parity
Blocks

BD2 BD3 BDm BDM... ...BD1

Erasure-coded Video (N block groups)

BN2 BN3 BNm BNM... ...BN1

(a) Illustration of erasure-coded video.

Portal Server

 Server Profiler Server Profiler Server Profiler

Video Profiler

Portal Server

 Server Profiler Server Profiler

Video Profiler

Video Server

Erasure-coded Video

Video Server

Erasure-coded Video
(a)

Video Info

Bitrate
Adaptation

Server InfoServer InfoServer Info

Multi-Server
Selection

Download&
Decode

Download&
Decode

Download&
Decode

(b) (c)(d)

u

v x
y Video Client

Streaming Controller

z z w

(b) Basic components and interactions.

Far Edge
DC 1

Far Edge
DC 1

Far Edge
DC 2

Portal Server

Server Profiler

Trained Model
Upload

Current Model
Download

Local
Training

Playing Finished Start to Play

Global
Aggregation

User Area1 User Area2

(c) Federated learning based service quality.

Fig. 5: System design of EMS.

TABLE 2: Main notations.

Parameters Descriptions

m the index of video chunk that also indicates the round
of multi-server selection during a video streaming

D the number of data blocks per video chunk that also
indicates the required number of video blocks to
decode and recover each video chunk

P the number of parity blocks per video chunk

t the round of global aggregation at the portal server

θu
k
(m) the local deadline-aware indicator

Θu
k
(t) the global deadline-aware indicator

ωu
k
(m) the local latency-sensitive indicator

Ωu
k
(t) the global latency-sensitive indicator

K(t) the associated servers of the requested video at round t

that also indicates the video servers that can be selected

H the predefined threshold to limit the average number of
selected servers per video chunk

Variables Descriptions

S(m) ⊆ K(t) the set of selected video servers for video chunk Cm

3.1 Basic Components and Interactions

As shown in Fig. 1(a), EMS consists of a portal server located

in a central DC and a set K = {1, 2, . . . ,K} of video servers

located in the regional DCs. Due to the resource limitation, we

consider EMS only serves popular UHD videos which can be

easily identified by OTT content providers in practice. In the

following, we will introduce the basic system components and

detail their functionalities along with the interactions occurring

in the erasure-coded video deployment and streaming. The main

notations in EMS are given in Table 2.

Erasure-coded video deployment. When the portal server

receives a popular UHD video from OTT content providers,

it will encode it to be an erasure-coded video, and then

deploy it to several video servers. Specifically, as shown in

Fig. 5(a), each video is generally divided into multiple chunks

with the same duration (e.g., several seconds) denoted by

C = {C1, C2, . . . , CM}, and each chunk Cm is erasure-coded

into D data blocks and P parity blocks (i.e., D + P video

blocks) denoted by {B1m, B2m, . . . , BNm} where N =D+P .

In this context, we define a “block group” as a set of M
video blocks satisfying no video blocks comes from the same

video chunk. For example, we can exploit the set Gn =
{Bn1, Bn2, . . . , BnM}, ∀n ∈ {1, 2, . . . , N} to indicate a block

group. Naturally, the erasure-coded video is made of N block

groups which are of the same file size.

In order to fully reap the benefit of multi-source streaming, we

consider that the portal server will assign N block groups of an

erasure-coded video to N different video servers. For example, it

can randomly select N servers from the total K video servers2. In

other words, each video server will store only one block group for

each video, which does not consume too much storage resource

and accordingly is highly suitable for the resource-restricted video

servers within cloud native 5G networks. In practice, the regional

DCs will set up a video container to store the assigned block group

and reserve several backup containers for elastic scaling and load

balancing (i.e., erasure-coded video component and Step (a) in

Fig. 5(b)). That is, each video server in EMS is made of several

containers. Besides, the portal server will create a video profiler

component to keep the metadata of each UHD video (e.g., media

presentation description (MPD) file) along with the identification

of its associated video servers (e.g., IP addresses).

As to the storage redundancy of erasure-coded video compared

with the original video, if we exploit |Cm| to denote the file

size of chunk Cm, then the size of its data block and that of

its parity block are both |Cm|/D due to the principle of erasure

coding. In this context, the size of each block group Gn is∑M
m=1 |Cm|/D (i.e., 1/D of the original video), and the storage

redundancy of each erasure-coded chunk is P/D. As such, the

storage redundancy of erasure-coded video is also P/D, in terms

of the following expression:

∑M
m=1(1+P/D)|Cm|−

∑M
m=1 |Cm|

∑M
m=1 |Cm|

= P/D,

where (1+P/D)|Cm| represents the file size of erasure-coded

chunk for each chunk Cm. If we exploit a 5+2 encoding

configuration, then the storage redundancy is 0.4. Note that since

we only consider popular UHD videos in EMS (i.e., the number

of deployed videos is limited), we believe this erasure-coded video

deployment is acceptable in practice.

Note that we can easily extend the scope of the block group

to adapt to the UHD video with multiple discrete bitrates (e.g.,

R bitrate versions) so as to be compatible with the adaptive

streaming. Briefly, we will introduce a “super block group” as

a set of R block groups satisfying no block groups from the

same bitrate version and assign N super block groups to N video

servers. Similarly, we can also extend the scope of the block group

to facilitate viewpoint based streaming (i.e., erasure-coding each

tile rather than each chunk). Besides, the erasure-coded video has

2. How to select the optimal servers for the erasure-coded video deployment
(i.e., content placement problem) is not the main focus of this paper.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

6

no impact on the super-resolution based streaming. In other words,

EMS is compatible with it with no modifications.

Erasure-coded video streaming. When a client starts a UHD

video streaming, the portal server will receive the client request

and check if the video profiler component has the metadata of the

requested video. If not, the UHD video streaming will be provided

by the general multi-CDN. If yes, the portal server will forward the

corresponding video metadata (e.g., MPD file), the identification

of the associated video servers (e.g., IP addresses), and the service

quality of the associated video servers for that user maintained by

the server profiler component to the client (i.e., Step (b)). When

the client receives the information of the requested video and that

of its associated video servers, it will respectively store them in the

video info and server info component and then start the following

erasure-coded video streaming.

In terms of the received MPD file, the client will invoke

any bitrate adaptation algorithm (e.g., [21], [28]) to select an

appropriate bitrate for the next video chunk (i.e., Step " and

bitrate adaptation component). Then, the chunk index and the

selected bitrate will be forwarded to the download and decode

component (i.e., Step #). In the meanwhile, The multi-server

selection component is invoked to obtain the received service

quality of video servers stored in the server info component to

make multi-server selection (i.e., Step $), and then passes the

selected servers to the download and decode component (i.e., Step

%). Next, the download and decode component will download the

stored video blocks from those selected servers (i.e., Step (c)).

The streaming controller component in each selected server will

allocate the corresponding video container or one of its backup

container to that client in terms of some predefined rules (e.g.,

round-robin or load balancing). When the download and decode

component has successfully downloaded D video blocks, it will

decode them to recover the playable video chunk, approximately

calculate the achievable downstream bandwidth as the file size

of the recovered video chunk divided by the download time of

the D-th downloaded video block, and then send it to the bitrate

adaptation component to facilitate subsequent bitrate adaptation

(i.e., Step &). Note that the Step " – Step & will operate

recurrently until the video streaming finishes.

3.2 Problem Formulation

In terms of the above discussions, we can easily find that the

multi-server selection component (the core of EMS) requires

to address a critical problem: how to optimally select a set of

video servers so as to achieve efficient UHD video streaming?

The desirable multi-server selection algorithm should satisfy the

following two requirements:

(1) High user QoE. It is not easy to accurately indicate

the service quality of video servers. Although the downstream

bandwidth is a widely used metric, accurate measurement is

still challenging [18], [19], which is also validated by our

measurements in Fig. 4. Multi-server selection with inaccurate

bandwidth prediction could easily give rise to the cask effect [14].

(2) Low system cost. Selecting a large number of video servers

can effectively alleviate the cask effect of multi-source streaming.

However, EMS in practice should restrict the number of selected

servers to avoid excessive redundant data transmission.

Our idea. As to requirement (1), we will respectively

introduce a deadline-aware metric and a latency-sensitive metric

to indicate the service quality of video servers for users, since

many studies have pointed out that users may quickly abandon

a requested video if the number of rebuffering is large or the

duration of rebuffering is long [20], [21], [28]. In order to

efficiently measure the proposed metrics, we exploit the concept

“user area”3 which refers to a geographical location whose mobile

traffic exhibits a particular pattern or distribution [22], [23], and

further consider the service quality of video servers for a user

area can approximately represent that for the users belonging to it.

In this context, we advocate a Federated Learning (FL) paradigm

for the adaptively update of service quality of video servers for

each user area, which consists of a Reinforcement Learning (RL)

based multi-server selection (i.e., local training at the client side)

and a global service quality aggregation at the portal server side

as shown in Fig. 5(c). As to requirement (2), we will introduce

a long-term constraint to ensure the average number of selected

servers per video chunk cannot exceed a predefined threshold,

which is embedded into the RL based multi-server selection. Note

that such a soft constraint can extend the flexibility of multi-server

selection in the context of dynamic network conditions. The

specific design is given as follows.
Deadline-aware metric. We consider this metric to capture

the scenario that users dislike a large number of rebuffering during

the video streaming. Motivated by many OTT platforms such

as Youtube and Netflix have given the recommended bandwidth

for different types of videos, we introduce the “unit download

deadline” of each video type v (e.g., 8K/12K and 2D/3D) as

τmax(v) = 1/Wv , where Wv refers to the lowest required

bandwidth (in Mbps). For simplicity, we only consider one video

type and omit the index v in the following. Then, we can derive

the download deadline of any a video block of chunk Cm as

Tmax(m) = Fmτmax, where Fm refers to the file size of the

video block4 of chunk m. To proceed, we introduce sk(m) to

indicate whether the latency5 lk(m) of downloading a video

block of chunk Cm from server k is smaller than the deadline.

Intuitively, sk(m) = 1 if lk(m) ≤ Tmax(m) and 0 otherwise. In

this context, we define the deadline-aware metric as the probability

of successfully transmitting a video block before its corresponding

deadline, and exploit {θuk (m),Θu
k(t)} to indicate the local and

global service quality of server k for user area u. Here, m refers

to the index of video chunk that also indicates the round of

multi-server selection during a video streaming, and t refers to

the round of global aggregation kept by the portal server. The

specific θuk (m) is given in the expression (4).
Latency-sensitive metric. We consider this metric to

capture the scenario that users also dislike a long duration

of rebuffering during the video streaming. Then, we introduce

the “normalized truncated latency” of downloading any a

video block Bnm from video chunk Cm as l′k(m) =
min{lk(m), Tmax(m)}/Tmax(m), where lk(m) and Tmax(m)
share the same meanings as those mentioned above. To maintain

consistency with the deadline-aware metric, we define the

latency-sensitive metric as the average gap between the chunk

download latency and the its corresponding deadline, and exploit

3. Note that “user area” has been widely considered in the research of edge
computing and edge caching, where multiple edge servers jointly satisfy the
computation tasks and content requests from any user area. In practice, user
area can be indicated by a set of base stations that are in proximity to each
other [22], [23].

4. The data blocks and parity blocks are of the same file size in the context
of erasure-coding. The file size of video block of each video chunk can be
viewed as one kind of video metadata stored by the video profiler component.

5. This value can be derived from the download and decode component.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

7

{ωu
k (m),Ωu

k(t)} to indicate the local and global service quality

of server k for user area u. In practice, ωu
k (m) is updated by

1− l′(m). Intuitively, the local service quality θuk (m) and ωu
k (m)

are both within [0, 1] and a larger value indicates a higher service

quality of server k for user area u.

FL based adaptive update of service quality. We regard

the UHD video streaming of the users belonging to the same

user area as an asynchronous FL task. Taking the deadline-aware

metric as an example, when a user i ∈ u requests an UHD video,

it will obtain the current global service quality indicator Θu
k(t)

from the server profiler component, train the local service quality

indicator θuk (m), ∀m ∈ {1, 2, . . . ,M} with θuk (0) = Θu
k(t)

during the video playback (i.e., Step ' in Fig. 5(b)), and upload

the trained indicator θuk (M) to the server profiler component

for global aggregation (i.e., Step (d) in Fig. 5(b)). Note that

the specific aggregation method is not the main focus of this

paper. In practice, we can simply update the global indicator by

Θu
k(t + 1) =

[
Θu

k(t) ∗ t + θuk (M)
]
/(t + 1) or adopt advanced

methods from asynchronous FL studies (e.g., [41]).

We believe this asynchronous procedure is ease to implement

and does not affect user video streaming in practice. We can

also conduct the global aggregation per video chunk from

multiple video clients in a synchronous manner and then distribute

the updated parameters back to those clients. However, it

could introduce additional synchronization time and transmission

overhead for training, which inevitably damages the performance

of user video streaming.

RL based multi-server selection. To facilitate user local

training without sacrificing the QoE of UHD video streaming,

we consider multi-server selection is invoked per video chunk and

model it with reinforcement learning. To proceed, we will omit

the user area index u for clarity and exploit the server set K(t) to

indicate the video servers that can be selected (i.e., the associated

servers of the requested video) at round t. Then, we can define the

state, action and reward as follows.

• State: the local service quality indicator θk(m) or

ωk(m), ∀m ∈ {1, 2, . . . ,M} of each server k ∈ K(t).
• Action: a subset S(m) ⊆ K(t) of video servers

that satisfies the following long-term constraint for the

restriction on the number of selected servers:

1

M

∑M

m=1
|S(m)| ≤ H, (1)

where H refers to a predefined server selection threshold.

• Reward: we adopt r
(
S(m)

)
to uniformly indicate the

reward when selecting the server subset S(m). As to the

deadline-aware metric, it should be

r
(
S(m)

)
=

∑|S(m)|

x=D
P
(
|X(m)| = x

)
, (2)

P
(
|X(m)| = x

)
!

∑

X(m)⊆S(m),|X(m)|=x

P
(
X(m)

)
,

P
(
X(m)

)
!

∏

k∈X(m)

θk(m)
∏

k∈S(m)\X(m)

(1−θk(m)).

Here, X(m) refers to the “successful” subset of S(m)
and |X(m)| = x refers to the event that the size of the

“successful” subset is x. In this context, r
(
S(m)

)
can be

interpreted as the probability of successfully downloading

at least D video blocks (i.e., the required number of video

blocks to decode and recover the video chunk) from S(m)
within the deadline.

As to the latency-sensitive metric, it should be

r
(
S(m)

)
= mink∈S′(m) ωk(m), (3)

S ′(m) !
{
S ′(m) : |S ′(m)| = D

}
⊆ S(m).

Here, |x| refers to the size of set x and r
(
S(m)

)
can

be interpreted as the time consumption of successfully

downloading D video blocks from S(m), which is

obviously determined by the D-th fastest server (i.e., the

D-th largest average gap between latency and deadline).

• Update: take the local service quality indicator θk(m) as

an example6 and it will be updated at runtime as follows:

θk(m) =

{
θk(m−1)nk(m−1)+sk(m)

nk(m−1)+1 if k∈S(m),

θk(m−1) else,
(4)

where nk(m−1) refers to the times the server k is selected

at the end of round m− 1, which is updated as follows:

nk(m) =

{
nk(m−1) + 1 if k ∈ S(m),

nk(m−1) else.
(5)

To sum up, we can uniformly formulate a constrained RL

based multi-server selection problem as follows:

max
{S(m),m≥1}

∑M

m=1
r
(
S(m)

)
, subject to (1).

Note that it is non-trivial to solve this problem, mainly due to

the following issues:

(i) The general RL models do not involve a long-term

constraint (i.e., constraint (1)), and accordingly we need to provide

a specific technique to cope with it. In addition, the unique feature

of the above two reward expressions (e.g., nonlinearity) further

complicates the efficient algorithm design;

(ii) The proposed multi-server selection algorithm should be

lightweight (e.g., at the timescale of milliseconds). Otherwise, it

will offset the benefit of multi-source streaming.

4 MULTI-SERVER SELECTION ALGORITHM

In this section, we cast the above RL problem into two

different Multi-Armed Bandit (MAB) models in terms of the

proposed two service quality metrics, and respectively design two

lightweight Upper Confidence Bound (UCB) based algorithms

with a theoretical performance guarantee. We first tackle the more

straightforward latency-sensitive multi-server selection and then

delve into the deadline-aware multi-server selection.

4.1 Latency-sensitive multi-server selection

Problem reformulation. In the MAB model, we regard each

server k ∈ K as an arm, and the selected subset S(m) is

referred to as a super arm. To begin with, we adopt the widely

used regret metric to reformulate our problem. Briefly, we denote

by ω∗
k = E[ωk(m)] the expectation of local service quality of

arm k. In this case, the expected optimal super arm is S∗ =
argmax

S⊆K(t),|S|=D

{
min
k∈S

ω∗
k

}
. Then, we can define the cumulative

regret of any given algorithm as

∆ALG = Mr(S∗)− E

[∑M
m=1 r

(
S(m)

)]
, (6)

6. Note that for the local service quality indicator ωk(m) the only difference
in the expression (4) is to substitute sk(m) with 1− l′

k
(m).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

8

Algorithm 1: L-EMS

Input: Ωk(t), K(t), D
Output: S∗(m), m ∈ {1, 2, . . . ,M}
ω Initial model download from the portal server
ωk(0) = Ωk(t), nk(0) = 1, k ∈ K(t);
ω RL based local training at the client side
For each video chunk m ∈ {1, 2, . . . ,M} do

Calculate ω̃k(m) by the expression (8);
Sort {ω̃k(m), k ∈ K(t)} in the descending order;
Select the top D arms from the sorted order as S∗(m);
Update ωk(m) by the expression (4) (i.e., substituting
θk(m) and sk(m) with ωk(m) and 1− l′k(m));

ω Asynchronous global aggregation at the portal server side
Update Ωk(t+ 1) by ωk(M) such as

Ωk(t+ 1) =
[
Ωk(t) ∗ t+ ωk(M)

]
/(t+ 1).

where r(S∗) = mink∈S∗ ω∗
k refers to the expected reward

achieved by the super arm S∗. According to the expression (3), we

can observe that there is no benefit to play more than D arms in

S(m). This observation motivates us to reformulate the constraint

(1) as |S(m)| = D, ∀m ∈ {1, 2, . . . ,M}. In this context, we can

derive the reformulated problem for latency-sensitive multi-server

selection as follows:

min
{S(m),m≥1}

∆ALG, subject to |S(m)| = D. (7)

Algorithm design. According to the above formulation and

the expression (3), we can observe the feedback for each arm

k independently rather than for each super arm S as a whole.

In this context, we will design a UCB based algorithm for such

a classic MAB problem. Specifically, we denote by ω̃k(m) the

UCB estimate of the service quality of arm k at the beginning of

the local training round m which is given by

ω̃k(m) ! ωk(m−1) +
√
(D+1) lnm/nk(m−1), (8)

where ωk(m− 1) and
√
(D+1) lnm/nk(m−1) respectively

correspond to exploitation and exploration, and nk(m) is updated

by the expression (5). Then, our solution for the problem in (7) is

to select a super arm per round satisfying

S∗(m) = argmax
S⊆K(t),|S|=D

{
min
k∈S

ω̃k(m)
}
. (9)

Note that we can easily derive S∗(m) by sorting the arms in the

descending order of their UCB estimates and selecting the top D
arms. The detailed algorithm L-EMS are given in Alg. 1.

Performance analysis. According to Alg. 1, we can know

that the complexity of latency-sensitive multi-server selection

is lightweight (i.e., dominated by the sorting). In addition, the

expected cumulative regret can be upper bounded by

∆ALG ≤ δ
[
2Kt+

π2

3
DKt+

4D2(D + 1)Kt lnM

δ′2

]
,

where both δ and δ′ are constant values during user local training,

and Kt refers to the size of K(t). The detailed proof is provided

in our online technical report [42]. Clearly, the cumulative regret

grows as O(lnM), which is strictly in a logarithmical way in the

number of local training rounds (i.e., the number of video chunks).

In addition, according to the discussions in the third paragraph

of §3.1, Kt by definition equals to the number of video blocks

(i.e., D + P). Therefore, it seems that we should set a small

number of data blocks (i.e., D) complemented by a large number

of parity blocks (i.e., P) to balance data redundancy and algorithm

performance (i.e., theoretical bound). However, a small number of

data blocks (i.e., D) will enlarge the file size of each video block

(i.e., data block and parity block), which requires more server

bandwidth (i.e., impacting the service quality of video servers). In

this context, we will evaluate different combinations of D and P
on the overall performance of EMS in §5.

4.2 Deadline-aware multi-server selection

Problem reformulation. We also adopt the widely-used regret

metric to reformulate our problem. However, different from the

expression (3) we cannot easily derive the expected optimal

super arm S∗ due to the complicate reward expression (2).

To this end, we introduce a vector of probability distributions

p =
{
p(S), ∀S ⊆ K(t), |S| ≥ D

}
, where S refers to a

qualified super arm whose size is at least D, and p(S) refers

to the probability that the super arm S will be played. Intuitively,∑
S p(S) = 1. In this case, the constraint (1) can be rewritten

as
∑

S p(S)|S| ≤ H . In addition, given any super arm S and

the expectation of local service quality of arm k which is denoted

by θ∗k = E[θk(m)], we can derive the expected reward r∗(S) of

super arm S in terms of the expression (2). Then, we can easily

solve the following linear problem:

max
∑

S p(S)r∗(S)
s. t.

∑
S p(S)|S| ≤ H,∑
S p(S) = 1,

var p(S) ∈ [0, 1],

to derive the optimal probability p∗(S) for each super arm S .

After that, we can define the cumulative regret of any given

algorithm as follows:

∆ALG = M
∑

S p∗(S)r∗(S)− E

[∑M
m=1 r

(
S(m)

)]
. (10)

To cope with the long-term constraint (1), we first introduce a

virtual queue Q(m) with dynamics:

Q(m+1) = max
{
Q(m)−H, 0

}
+ |S(m)|, (11)

and further resort to the Lyapunov drift-plus-penalty technique

[43] to derive the reformulated problem for deadline-aware

multi-server selection as follows:

min
{S(m),m≥1}

V∆ALG +
∑M

m=1 Q(m)|S(m)|

⇔ max
{S(m),m≥1}

∑M
m=1

[
V r

(
S(m)

)
−Q(m)|S(m)|

]
, (12)

where V is a predefined system parameter, which is widely used

in the Lyapunov drift-plus-penalty technique.

Algorithm design. According to the above formulation and

the expression (2), we can only observe the feedback for each

super arm S as a whole. In this context, we will design a

UCB based algorithm for such a combinatorial MAB problem.

Specifically, we denote by θ̃k(m) the UCB estimate of the service

quality of arm k at the beginning of the local training round m
which is given by

θ̃k(m) ! min
{
θk(m−1) +

√
2 lnm/nk(m−1), 1

}
, (13)

where nk(m) is updated by the expression (5) and we utilize

such a truncated UCB estimate to ensure the positive reward in

terms of the reward expression (2). Next, we provide the criterion

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

9

Algorithm 2: D-EMS

Input: Θk(t), K(t), D, H
Output: S∗(m), m ∈ {1, 2, . . . ,M}
ω Initial model download from the portal server
θk(0) = Θk(t), nk(0) = 1, k ∈ K(t);
ω RL based local training at the client side
For each video chunk m ∈ {1, 2, . . . ,M} do

Calculate θ̃k(m) by the expression (13);

Sort {θ̃k(m), k ∈ K(t)} in the descending order;
Select the top D arms and repeatedly add the next arm from
the sorted order until the new added one cannot increase
the objective in (12) as S∗(m);
Update θk(m) by the expression (4);
Update the virtual queue Q(m) by the expression (11);

ω Asynchronous global aggregation at the portal server side
Update Θk(t+ 1) by θk(M) such as

Θk(t+ 1) =
[
Θk(t) ∗ t+ θk(M)

]
/(t+ 1).

of playing a super arm S(m) in each local training round m to

maximize the following objective:

S∗(m) = argmax
S̃(m)⊆K(t)

[
V r

(
S̃(m)

)
−Q(m)|S̃(m)|

]
. (14)

Here, r
(
S̃(m)

)
substitutes θk(m) in r

(
S(m)

)
with θ̃k(m).

Although the problem in (14) is a one-shot optimization, it is still

hard to handle due to the product of a sequence in r
(
S̃(m)

)
. To

this end, we introduce the following lemma.

Lemma 1. Without loss of generality, we assume θ̃1(m) ≥
θ̃2(m) ≥ · · · ≥ θ̃kt

(m) in round m. Consider all possible subsets

S̃(m) ⊆ K(t) with a given cardinality c (i.e., |S̃c(m)| = c), then

the optimal S̃∗
c (m) satisfying

S̃∗
c (m) = argmax

S̃c(m)⊆K(t)

[
V r

(
S̃c(m)

)
−Q(m)|S̃c(m)|

]

refers to the top c video servers in terms of the value of θ̃k(m). In

other words, S̃∗
c (m) = {θ̃1(m), θ̃2(m), . . . , θ̃c(m)}.

Proof. We prove this lemma by contradiction. Specifically,

we consider S̃1(m) is the optimal subset with cardinality c, and

assume there is a server v /∈ S̃1(m) satisfying θ̃v(m) ≥ θ̃c(m)
(i.e., the c-th largest value of θ̃k(m), ∀k ∈ K(t)). In this case,

there must exist a server v′ ∈ S̃1(m) satisfying θ̃v′(m) ≤ θ̃c(m).
Then, we can build a subset S̃2(m) = S̃1(m)\{v′}∪{v}. In other

words, S̃2(m) \ {v} ≡ S̃1(m) \ {v′}. According to the specific

expression in (2), we can verify that r
(
S̃2(m)

)
− r

(
S̃1(m)

)
≥ 0,

which produces a contradiction (i.e., S̃1(m) is not optimal).

In terms of the above lemma, we can derive S∗(m) by sorting

the arms in the descending order of their UCB estimates, selecting

the top D arms and adding the next arm from the sorted order

repeatedly until the new added one cannot increase the objective

in (12). The detailed algorithm D-EMS are given in Alg. 2.

Performance analysis. To begin with, we can prove that the

above deadline-aware multi-server selection is feasibility (i.e., the

long-term constraint (1) is satisfied). Then, its complexity is also

lightweight (i.e., dominated by the sorting). Besides, the expected

cumulative regret can be upper bounded by

∆ALG ≤
M(H+Kt)2

2V
+

π2

6
Kt ≤

(H+Kt)2

2

⇔
M +

π2

6
Kt,

where Kt refers to the size of K(t). The detailed proof is tedious,

and therefore we provide it in our online technical report [42].

Note that if we give V a reasonably large value (i.e., V ≥
⇔
M),

then the cumulative regret grows as O(
⇔
M) which is in a

sub-linear way in the number of local training rounds (i.e., the

number of video chunks). We will evaluate different values of V
on the overall performance of EMS in §5.

5 PERFORMANCE EVALUATION

In this section, we implement a prototype of EMS and conduct

extensive testbed driven experiments to evaluate the performance

of the proposed multi-server selection algorithms.

5G Core

Central DC

AMF SMF AUSF...

Portal
Server

K8S for
Central DC

Client Regional DCs

Switch

Central DC

 Regional DC

Client

UERANSIM

5G
UPF

K8S for
Regional DC

Video
Servers

5G
UPF

Video
Servers

K8S for
Cloud-native

5G

Dash.js
+

Proxy

Kubernetes
(K8S)

Fig. 6: The testbed of EMS.

5.1 Testbed implementation

As shown in Fig. 6, our testbed consists of 9 desktops connected

with a Huawei gigabit switch, and each desktop will exploit

Kuberenets (K8S) to orchestrate the containerized 5G components

as well as video clients and servers. Particularly, K8S for

Cloud-native 5G orchestrates all the containers in the regional DCs

and central DC dedicated for 5G components (i.e., 5G UPF and

5G core), and K8S for Central (Regional) DC orchestrates local

containers for edge services (e.g., edge computing and caching).

Cloud Native 5G network. We exploit two open-source

projects UERANSIM [44] and OPEN5GS [45] to emulate the

components and functionalities of 5G, in which UERANSIM

works as 5G UE and RAN (gNodeB) and OPEN5GS works as

5G UPF and 5G Core. In the testbed, we launch one K8S in the

central DC to manage the cloud native 5G network. That is, it will

create a UERANSIM container for each video client, a 5G UPF

container for each regional DC, and a 5G UPF and a 5G Core

container for the central DC. These 5G components cooperate

harmoniously with a specific configuration file, and they provide

the underlying connection for each video client and server.

Video Client. For ease of implementation, we create a

container to emulate each video client that consists of a video

player in the browser (i.e., dash.js [46]) and a proxy created

by Python that enables multi-server selection and erasure-coded

chunk decoding. Specifically, we exploit Zfec [47], an open-source

Python package for erasure coding, overwrite Zfec’s APIs to

achieve in-memory decoding (i.e., avoiding the data transmission

between memory and storage), and create a local socket program

to achieve the data transmission between Zfec and dash.js.

Video Server. We create a container to emulate each video

server that is built by Apache Tomcat [48]. As to erasure-coded

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

10

(a) Algorithm performance. (b) Streaming performance. (c) D-EMS regret with different V . (d) Number of selected servers
with different V under D-EMS.

Fig. 7: Performance of the proposed multi-server selection algorithms (i.e., L-EMS and D-EMS).

video, we download an 8K video (10-minute length) from Youtube

and encode it with the bitrate 100Mbps by FFmpeg [49]. Then, we

divide the encoded video into multiple video chunks with a typical

4-second duration (i.e., 150 video chunks in total) and package all

the derived chunks in the DASH format by MP4Box [50]. We

erasure-code each video chunk into D data blocks and P parity

blocks by Zfec [47] (D=P =6 by default), and deploy one video

block on one video server7.
Bandwidth setting. We synthesize a series of downstream

bandwidth samples between client and server in terms of the

real data distribution in Fig. 3. Specifically, we exploit the curve

fitting tool in Matlab to derive three approximate distributions

for each CDF curve (i.e., Gamma, Burr and Johnson) and then

randomly generate 10000 bandwidth samples denoted by x for

each distribution (AVG refers to the average value of those

samples). Next, we consider three classes of bandwidth settings

(i.e., Low: 12 – 15Mbps, Mid: 18 – 21Mbps and High: 24

– 27Mbps), indicating the mean value denoted by MEAN of

synthetic bandwidth used in the following evaluation. Note that

these values are intentionally selected in terms of the given video

bitrate and erasure-coding pattern mentioned above, and different

value settings have little impact on the performance evaluation

(e.g., the comparison among different algorithms). In this context,

we can derive the final bandwidth sample x′ from any a generated

sample x ∈ x by a simple transformation (Other transformations

are also applicable):

x′ = x× (MEAN − MIN)/AVG + MIN,

where MIN refers to the specified minimum bandwidth, which

is set to 5Mbps for simplicity. In the evaluation, we exploit the

Linux built-in Traffic Control (TC) tool in each server to control

its bandwidth capacity every 2 seconds8, in terms of the derived

final bandwidth samples (i.e., x′).

5.2 Testbed driven evaluation

Metric. We exploit the cumulative regret denoted by Regret to

indicate algorithm performance (i.e., the cumulative gap between

the expected optimal reward and the actual reward derived by

a given algorithm), and exploit the total rebuffer time denoted by

Rebuffer to indicate streaming performance since our experiments

do not involve any ABR algorithms (i.e., video bitrate is fixed).

7. Note that different 8K videos have little impact on the performance
evaluation by using the above erasure-coded video making. In addition, we do
not consider multiple bitrate versions so as to eliminate the impact of adaptive
bitrate algorithms (i.e., we do not involve any ABR algorithms).

8. This setting is used to generate various and dynamic network conditions,
and different settings have little impact on the algorithm comparison.

Note that the expected optimal reward can be easily calculated in

terms of the given system setting as mentioned in §4, the actual

reward can be obtained when D video blocks of each chunk are

downloaded, and the total rebuffer time can be obtained at the end

of each time of streaming. We conduct the performance evaluation

by answering the following questions.

Q1: Does the practical performance of the proposed

algorithms coincide with the theoretical analysis?

Setting. The experiment consists of 1 client and 12 servers

that store 6 data blocks and 6 parity blocks (i.e., erasure-coding

pattern is 6/6). The client streams the test video 10 times (i.e.,

150 × 10 = 1500 algorithm execution rounds). One third of

servers respectively select Low, Mid and High class associated

with a randomly selected bandwidth distribution from Gamma,

Burr and Johnson to generate 3000 bandwidth samples (i.e., one

algorithm execution round corresponds to a 4s video chunk, and

the bandwidth is changed every 2s). As to D-EMS, we set the

predefined system parameter V = 100 and the threshold of the

average number of selected servers H = 9. Besides, we consider

D-EMS(6) in which the parameter V = 100 and the threshold

H = 6, so as to facilitate the performance comparison between

D-EMS and L-EMS. Without specific statements, the following

experiments will adopt the same setting.

Result. The evaluation results are shown in Fig. 7. To begin

with, we can find from Fig. 7(a) that the achievable regret of

each algorithm is consistency with the theoretical analysis. That

is, it is in a sub-linear way in the number of algorithm execution

rounds. In addition, Fig. 7(b) reveals that the total rebuffer time

of one time of streaming achieved by each algorithm decreases

with algorithm execution rounds increasing. For example, the total

rebuffer time of the 9-th streaming under L-EMS and D-EMS
respectively achieves 74% and 82% reduction compared with that

of the 1-th streaming. These results indicate that our proposed

algorithms can effectively filter out good servers and accordingly

achieve better performance over time. In addition, we can find that

the performance of L-EMS is better than that of D-EMS(6) (i.e.,

smaller total rebuffer time and smaller fluctuation). For example,

the total rebuffer time of the former one is 15% smaller than

the latter one’s at the 1-th streaming round. This gap is shorten

with the streaming round increasing. In other words, L-EMS
has a faster convergence rate compared with D-EMS when both

of them select the minimum number of servers (i.e., 6 in the

current setting) for chunk recovery. The reason is that L-EMS
by definition aims to filter out the “best” video servers while

D-EMS will only filter out the “qualified” ones. We also evaluate

the performance of D-EMS with different V as shown in Fig.

7(c) and Fig. 7(d), which are in accordance with the behavior of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

11

(a) Multi-source streaming. (b) UCB based algorithms. (c) Multi-source streaming. (d) UCB based algorithms.

Fig. 8: Performance comparison under different algorithms.

Lyapunov-based algorithms. That is, a larger V can facilitate the

objective while loosing the long-term constraint.

Q2: How is the performance of the proposed algorithms

compared with alternative ones?

Setting. The experiment considers both multi-source

streaming algorithms and UCB based algorithms for performance

evaluation. The first one includes

• ALLS: adopt the same setting with EMS in which the client

will download the video blocks from all the servers;

• PreBW [13], [32]: adopt the replication storage mode

(i.e., only two servers store the whole video as our

erasure-coding pattern is 6/6) in which the client will

proportionally download the video chunk in terms of the

bandwidth prediction (i.e., Harmonic mean method);

• ProBW: also adopt the replication storage mode in which

the client will proportionally download the video chunk in

terms of the bandwidth probing [31].

The second one includes

• LinUCB [51]: a contextual-aware bandit algorithm which

picks one arm per round. Here, the context is the predicted

bandwidth and we run it D times to get sufficient servers;

• ω-greedy [14]: attempt to select D servers by using a

variant of ω-greedy algorithm;

• PR: regard the UCB estimate as the probability to conduct

the multi-server selection. It will repeatedly operate until

D servers are selected.

We consider two kinds of experiments: (1) only varying

transmission bandwidth; (2) given the transmission bandwidth

while vary propagation delay. For the first one, we consider all

the 12 servers will select the same class from Low, Mid or

High associated with the Gamma distribution and do not take the

round-trip time (RTT) into account. For the second, we consider

all the 12 servers will select the same class from Mid associated

with the Gamma distribution and respectively control RTT values

for 4, 8 and 12 servers. Specifically, we consider the latest

broadband measurement dataset (2022.01 – 2022.06) released by

federal communications commission (FCC) [52], which contains

a “Latency Under Load” field to indicate the round-trip time

between clients and servers. We derive the CDF of RTT values

from the dataset and exploit it to adjust the transmission delay for

servers. Note that since the round-trip time is impacted by many

factors (e.g., packet queueing and loss in the routers) in practice,

we instead adjust the transmission delay at the server side to

simulate the round-trip time. That is, we exploit the Linux built-in

traffic control tool in each server to control its transmission delay

every 2 seconds, in terms of the derived CDF of RTT values from

the FCC dataset. We repeatedly run each experiment 20 times.
Results. Here, we consider the streaming performance under

different algorithms. Fig. 8 presents the total rebuffer time of the

10-th streaming. In the first experiment (i.e., Fig. 8(a) and Fig.

8(b)), L-EMS and D-EMS can achieve better performance. For

example, when the bandwidth setting is the Mid class for servers,

the total rebuffer time under L-EMS is on average 61% and 73%

reduction compared with the multi-source streaming algorithms

(except for ALLS) and the UCB based algorithms, respectively.

The reasons are two-fold. First, it is difficult to accurately

predict or probe bandwidth, resulting in suboptimal multi-source

streaming. Second, the comparable UCB based algorithms lack

theoretical performance, which could not always select reasonably

good servers per round and result in suboptimal performance over

time. In addition, the performance of D-EMS is much better (i.e.,

63% on average) than that of L-EMS. The main reason is that

D-EMS associated with the long-term constraint can exploit and

explore more servers per round, which contributes to filtering out

qualified servers. Indeed, as shown in Fig. 8(a) the performance of

D-EMS is only on average 13% worse than that of ALLS (Low:

20%, Mid: 17% and High: 3%) In the second experiment (i.e.,

Fig. 8(c) and Fig. 8(d)), we can find that the algorithm comparison

shares the same trend when taking RTT into account. The reason

is that the operation of all the algorithms (except ALLS) depends

on the end-to-end bandwidth, which is mainly influenced by the

allocated server bandwidth and the propagation delay (i.e., RTT)

in practice, and the impact of RTT on the end-to-end bandwidth

could be viewed as a “penalty” for the allocated server bandwidth.

Indeed, when the number of servers with RTT increase, the

performance of all the algorithms will slightly decrease.
As to the algorithm running time, we should emphasize that

all the algorithms are lightweight compared with the duration of

video chunk (i.e., 4s). For example, the running time of LinUCB

and ω-greedy are less than 1ms, and that of PreBW is less than

20ms. Although our proposed D-EMS has a longer running time,

it is still acceptable in practice as discussed in Q5.
Q3: How is the impact of erasure-coding pattern (i.e.,

different combinations of D and P) on the performance of

the proposed algorithms?
Setting. We consider two kinds of experiments. The first one

fixes the number of video blocks (i.e., D+P =12) while changing

the proportion of D and P . The second one considers a different

number of video blocks while keeping the proportion of D and

P (i.e., 1:1). As to the bandwidth setting, we consider that all

the servers will select the Mid class associated with the Gamma

distribution. Both experiments are run 20 times.
Results. Here, we consider the streaming performance with

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

12

(a) Different proportions. (b) Different EC patterns.

Fig. 9: The impact of erasure-coding (EC) pattern on the performance.

different erasure-coding patterns. Fig. 9 presents the total rebuffer

time of the 10-th streaming. As shown in Fig. 9(a), the total

rebuffer time experiences a quick decrease in the beginning and

a slight increase in the end with the number of data blocks (i.e.,

D) increasing. This observation verifies our argument in §4.1.

That is, a small number of data blocks will enlarge the file

size of each video block and accordingly require more server

bandwidth. In contrast, a large number of data blocks will enlarge

the upper bound of regret, both of which could damage the

practical performance. Therefore, we consider that EMS should

exploit a relatively balanced combination of D and P . As shown

in Fig. 9(b), the total rebuffer time decreases from the pattern

4/4 to 6/6, while keeping it relatively stable from 6/6 to 8/8.

The reasons are two-fold. First, The larger number of video

blocks refers to a larger number of video servers, which indicates

the more bandwidth at the server side and accordingly benefits

the streaming performance. Second, the streaming performance

cannot continuously increase with the number of video blocks

increasing, since decoding more video blocks require more time

as shown in Fig. 11.

Q4: Does the federated learning paradigm benefit EMS?

Setting. From the previous evaluations, we can find the

superior performance of the RL-based multi-server selection.

Here, we wonder if the global aggregation can further enhance

the performance. To this end, this experiment considers multiple

clients to conduct video streaming simultaneously, consisting of

6 clients and 12 servers. Note that the setting where only one

client conducts video streaming represents the no FL scenario

(i.e., single user scenario). The erasure-coding pattern is still 6/6.

As to the bandwidth setting, we consider that all the 12 servers

will select the same class from Low or High associated with

the Gamma distribution. Note that as our bandwidth samples

are synthesized from real data distributions, we do not consider

the server bandwidth competition from multiple clients9. In other

words, we exploit the TC tool to control the server bandwidth

capacity for each pair of client and server. We repeatedly run the

experiment 20 times.

Results. Here, we consider the streaming performance with

a different number of clients. Fig. 10 presents the total rebuffer

time of the 10-th streaming. Intuitively, the performance of both

proposed algorithms gets better as the number of concurrent

clients increases. For example, the performance of D-EMS when

the number of clients is 6 is respectively 94% and 42% better

than that when the number of clients is 1 (i.e., no FL scenario)

9. In practice, video servers can exploit some isolation techniques to allocate
bandwidth for users so as to avoid resource competition. For example, as to
each video, they can set many backup containers with the same amount of
resources and serve each client with one container exclusively.

(a) Low bandwidth setting. (b) Mid bandwidth setting.

Fig. 10: Performance comparison with different number of clients.

in the Mid and Low bandwidth setting. This is because given

a set of clients, increasing the number of concurrent clients is

approximately equivalent to increasing the times of streaming.

Therefore, we can hold that the federated learning paradigm,

including RL-based multi-server selection and global aggregation,

can achieve a good performance.
Q5: How is the overhead of EMS?
Setting. At last, we evaluate the extra overhead of EMS.

Compared with the general video streaming, EMS as discussed

in §3 introduces multi-server selection, video chunk decoding and

transmission of local trained service quality of servers. To this

end, we run the experiment in Q1 multiple times to collect the

algorithm running time and chunk decoding time. Besides, we

further evaluate the chunk decoding time with different system

settings such as erasure-coding patterns and chunk sizes. Note

that we do not need to consider the transmission of local trained

service quality of servers, since it is of small size and only occurs

when the video streaming finishes.

(a) CDF of algorithm running time
and chunk decoding time.

(b) Chunk decoding time with
different system settings.

Fig. 11: System overhead.

Results. The evaluation results are shown in Fig. 11. From

Fig. 11(a), we can observe that EMS is a lightweight framework.

For example, the running time of both L-EMS and D-EMS is

less than 70 ms, and the erasure-coding based chunk decoding

time is 100 ms on average, which is negligible compared with

the 4s chunk duration. From Fig. 11(b), we can find that the

erasure-coding pattern greatly impacts the decoding time. For

example, the decoding time when the erasure-coding pattern

is 8/8 is on average 54% longer than that when it is 4/4,

and it will exceed 1s when the chunk size is 300MB (i.e.,

bitrate is 300×8/4=600Mbps). However, we should emphasize

that a fine-granularity erasure-coding pattern also means many

cooperative video servers, which can greatly reduce the data

transmission time. In this context, we believe multi-source

streaming and erasure-coding storage could complement each

other in practice, which indicates the feasibility of EMS.
We also exploit the NVIDIA Jetson TX2 [53] (Quad-Core

ARM Cortex-A57 CPU and 8G RAN) to emulate a mid-end

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

13

mobile device and repeat the above experiment. The derived

algorithm running time and chunk decoding time are slightly

longer than the test desktop’s (Dual-Core INTEL i7-8700 CPU

and 8G RAN). For example, the running time of both L-EMS and

D-EMS is less than 120 ms, and the erasure-coding based chunk

decoding time is 210 ms on average (i.e., roughly 0.3s overhead

in total). Therefore, we consider that EMS is lightweight and can

be applied to many off-the-shelf mobile devices in practice.

6 DISCUSSION AND LIMITATION

EMS is a practical and promising framework built on top

of cloud native 5G networks. As containers and microservices

can offer many benefits such as agility, flexibility, resilience and

cost efficiency, cloud native 5G networks have been receiving

increasing attention from many MNOs and will be commercially

available in the near future [5], [6]. As shown in Fig. 1, EMS
can be viewed as a specific “microservice” tailored to UHD video

streaming, in which each video server consists of a video container

and several backup containers. Besides, as EMS operates at the

application layer, it does not need to care about but benefits from

various promising underlying network technologies such as 5G

new radio specifications, flexible ethernet and segment routing.

EMS can also be extended to support provider-driven

multi-server selection. According to the algorithm design in

§4, the client-driven multi-server selection is conducted by

the individual user with the granularity of video chunk (i.e.,

local control), aiming to maximize user QoE while respecting

system cost constraints. With a different design philosophy, the

provider-driven multi-server selection will be conducted by the

portal server with the granularity of time slot (i.e., global control),

aiming to minimize system cost while respecting user QoE

constraints. We consider the proposed federated learning based

service quality of video servers can also benefit the provider-driven

multi-server selection, such as facilitating the modeling of average

user QoE per user area, and we can design a deep reinforcement

learning based algorithm for the multi-server selection, due to the

sufficient processing capacity of the portal server.

Realistic evaluation issue. We should emphasize that our

testbed tries the best to emulate the realistic video streaming

for EMS, since (1) it controls the transmission bandwidth of

each video server for each client; (2) it exploits the end-to-end

bandwidth fluctuation from real datasets and measurements; (3) it

takes UERANSIM and OPEN5GS, two open-source 5G projects

into account so as to emulate the behavior of cloud native

5G network. Therefore, we believe our evaluation results are

meaningful. Nevertheless, due to budget and hardware limit

our testbed driven evaluation is an emulational and small-scale

laboratory experiment (e.g., no packet loss or queueing at the

routers), and we will consider a more realistic and large-scale

evaluation involving 5G network and edge servers through the

cooperation with some mobile network operators in the future.

User mobility issue. In this paper, we simply assume user

movement during video streaming should be relatively small.

In other words, the event that a user moves from one area to

another during video streaming occurs infrequently. Therefore,

if EMS detects the event occurrence (e.g., with the help of

the functionalities of 5G Core), it will simply exclude that user

from the global aggregation of service quality. More sophisticated

processing for user area handover in EMS will be considered in

the future work.

7 CONCLUSION

We present EMS, a novel UHD video streaming framework

within cloud native 5G networks by integrating erasure-coded

storage with multi-source streaming. We respectively introduce

a deadline-aware and a latency-sensitive metric to indicate the

service quality of video servers and advocate a federated learning

paradigm for the adaptive service quality update, including

a reinforcement learning based multi-server selection and a

global service quality update. We cast the multi-server selection

associated with the restriction on the average number of selected

servers per video chunk into two kinds of MAB models in terms of

the proposed service quality metrics and correspondingly design

lightweight UCB based algorithms with a theoretical performance

guarantee. Extensive testbed driven experiments confirm the

superiority of the proposed multi-server selection algorithms.

REFERENCES

[1] S. Aggarwal, S. Paul, P. Dash, et al., “How to evaluate mobile 360-degree
video streaming systems?,” in ACM HotMobile, 2020.

[2] B. Han, Y. Liu, and F. Qian, “Vivo: Visibility-aware mobile volumetric
video streaming,” in ACM MOBICOM, 2020.

[3] “MIIT: China has 260M 5G subs; telecom business revenue significantly
increased.” Available in: https://techblog.comsoc.org/tag/china-telecom/.

[4] B. Zolfaghari, G. Srivastava, S. Roy, et al., “Content delivery networks:
state of the art, trends, and future roadmap,” ACM Computing Surveys
(CSUR), 2020.

[5] “Reimagining the end-to-end mobile network in the 5G era.”
Available in: https://www.cisco.com/c/en/us/solutions/service-provider/
mobile-internet/reimagining-mobile-network.html.

[6] “5G cloud-native infrastructure.” Available in: https://www.f5.com/pdf/
solution-guides/deploying-cloud-native-infra-and-5g-core-overview.
pdf.

[7] J. Kwak, L. B. Le, G. Iosifidis, K. Lee, and D. I. Kim, “Collaboration of
network operators and cloud providers in software-controlled networks,”
IEEE Network, 2020.

[8] A. Narayanan, E. Ramadan, R. Mehta, et al., “Lumos5g: Mapping
and predicting commercial mmwave 5g throughput,” in ACM Internet
Measurement Conference (IMC), 2020.

[9] L. Pu, L. Jiao, X. Chen, et al., “Online resource allocation, content
placement and request routing for cost-efficient edge caching in
cloud radio access networks,” IEEE Journal on Selected Areas in
Communications (JSAC), 2018.

[10] “Huawei’s practice in migration to cloud native based 5G telco
cloud.” Available in: https://www.openstack.org/videos/summits/virtual/
Huaweis-Practice-in-Migration-to-Cloud-Native-based-5G-Telco-Cloud.

[11] Y. Zhang, Y. Zhang, et al., “Improving quality of experience by adaptive
video streaming with super-resolution,” in IEEE INFOCOM, 2020.

[12] A. Zhang, C. Wang, X. Liu, et al., “Mobile volumetric video streaming
enhanced by super resolution,” in ACM MOBISYS, 2020.

[13] S. Da Silva, S. Ben Mokhtar, S. Contiu, et al., “Privatube:
Privacy-preserving edge-assisted video streaming,” in ACM/IFIP
Middleware, 2019.

[14] X. Chen, M. Zhao, X. Yang, Z. Li, et al., “The cask effect of multi-source
content delivery: Measurement and mitigation,” in IEEE ICDCS, 2019.

[15] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran,
“Ec-cache: Load-balanced, low-latency cluster caching with online
erasure coding,” in USENIX OSDI, 2016.

[16] A. O. Al-Abbasi and V. Aggarwal, “Video streaming in distributed
erasure-coded storage systems: Stall duration analysis,” IEEE/ACM
Transactions on Networking (ToN), 2018.

[17] M. Uluyol, A. Huang, A. Goel, M. Chowdhury, and H. V. Madhyastha,
“Near-optimal latency versus cost tradeoffs in geo-distributed storage,”
in USENIX NSDI, 2020.

[18] “ACM MMSys grand challenge on bandwidth estimation for
real-time communications.” Available in: https://2021.acmmmsys.org/
rtc challenge.php.

[19] “ACM MM grand challenge on meet deadline requirements.” Available
in: https://www.aitrans.online/MMGC2021/.

[20] H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edge-assisted qoe
optimization of http live streaming with reinforcement learning,” in IEEE
INFOCOM, 2020.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

14

[21] F. Y. Yan, H. Ayers, C. Zhu, et al., “Learning in situ: a randomized
experiment in video streaming,” in USENIX NSDI, 2020.

[22] H. Wang, F. Xu, Y. Li, et al., “Understanding mobile traffic patterns of
large scale cellular towers in urban environment,” in ACM IMC, 2015.

[23] E. A. Walelgne, A. S. Asrese, J. Manner, et al., “Clustering and predicting
the data usage patterns of geographically diverse mobile users,” Elsevier
Computer Networks, 2021.

[24] “Internet connection speed recommendations on netflix.” Available in:
https://help.netflix.com/en/node/306.

[25] “Puffer: a video streaming dataset from stanford university.” Available
in: https://puffer.stanford.edu/data-description/.

[26] “Beyond throughput, the next generation: a 5g dataset with channel and
context metrics.” Available in: https://github.com/uccmisl/5Gdataset.

[27] “Chromedriver: Webdriver for chrome.” Available in: https://
chromedriver.chromium.org/getting-started/getting-started---android.

[28] X. Yin, A. Jindal, et al., “A control-theoretic approach for dynamic
adaptive video streaming over HTTP,” in ACM SIGCOMM, 2015.

[29] A. Bentaleb, B. Taani, A. C. Begen, et al., “A survey on bitrate adaptation
schemes for streaming media over HTTP,” IEEE Communications
Surveys & Tutorials, 2018.

[30] D. Jurca, J. Chakareski, J.-P. Wagner, and P. Frossard, “Enabling adaptive
video streaming in P2P systems,” IEEE Communications Magazine,
2007.

[31] “Bitswap: the core module of ipfs for exchanging blocks of data.”
Available in: https://docs.ipfs.io/concepts/bitswap/.

[32] Y.-C. Chen, D. Towsley, and R. Khalili, “Msplayer: Multi-source
and multi-path video streaming,” IEEE Journal on Selected Areas in
Communications (JSAC), 2016.

[33] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Transactions on Information
Theory (TIT), 2019.

[34] K. Shanmugam, N. Golrezaei, A. G. Dimakis, et al., “Femtocaching:
Wireless content delivery through distributed caching helpers,” IEEE
Transactions on Information Theory (TIT), 2013.

[35] V. Bioglio, F. Gabry, and I. Land, “Optimizing mds codes for caching at
the edge,” in IEEE GLOBECOM, 2015.

[36] X. Xu and M. Tao, “Modeling, analysis, and optimization of coded
caching in small-cell networks,” IEEE Transactions on Communications
(TOC), 2017.

[37] X. Wu, Q. Li, V. C. Leung, and P.-C. Ching, “Joint fronthaul multicast
and cooperative beamforming for cache-enabled cloud-based small cell
networks: An mds codes-aided approach,” IEEE Transactions on Wireless
Communications (TWC), 2019.

[38] B. Alt, T. Ballard, et al., “CBA: Contextual quality adaptation for
adaptive bitrate video streaming,” in IEEE INFOCOM, 2019.

[39] S. Boldrini, L. De Nardis, et al., “muMAB: A multi-armed bandit model
for wireless network selection,” Algorithms, 2018.

[40] A. Hodroj, M. Ibrahim, et al., “Enhancing dynamic adaptive streaming
over http for multi-homed users using a multi-armed bandit algorithm,”
in IEEE IWCMC, 2019.

[41] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[42] “Online technical report.” Available in: https://www.dropbox.com/s/
dnz6oxj3n8dl8rq/TMC2022 technicalreport.pdf?dl=0.

[43] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, 2010.

[44] “Ueransim: Open source 5g ue and ran (gnodeb) implementation..”
Available in: https://github.com/aligungr/UERANSIM/wiki.

[45] “Open5gs: Open source implementation for 5g core and epc..” Available
in: https://open5gs.org/.

[46] “dash.js: A reference client implementation for the playback of MPEG
DASH via javascript and compliant browsers.” Available in: https:
//github.com/Dash-Industry-Forum/dash.js/wiki.

[47] “Zfec: this package implements an erasure code.” Available in: https:
//tahoe-lafs.org/trac/zfec.

[48] “Apache tomcat: an open source implementation of the java servlet and
websocket technologies.” Available in: http://tomcat.apache.org/.

[49] “FFmpeg, a complete, cross-platform solution to record, convert and
stream audio and video.” https://ffmpeg.org/.

[50] “MP4Box, a multi-purpose mp4 file manipulation.” https://gpac.wp.imt.
fr/tag/mp4box/.

[51] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in WWW, 2010.

[52] “Measuring broadband raw data releases.” Available in: https://www.fcc.
gov/oet/mba/raw-data-releases.

[53] “Technical specifications of jetson tx2 module.” https://developer.nvidia.
com/embedded/jetson-tx2.

Lingjun Pu is an Associate Professor with
Nankai University, Tianjin, China. He received
the Ph.D. degree from Nankai University in
2016, and was a joint Ph.D. student with
University of Göttingen, Germany, from 2013
to 2015. His current research interest includes
programmable networks, edge intelligence, UHD
video streaming and resource scheduling.

Jianxin Shi is currently pursuing the Ph.D
degree at the College of Computer Science,
Nankai University, Tianjin, China. His current
research interest includes neural-enhanced
video streaming, multimedia content processing
and edge intelligence.

Xinjing Yuan is currently pursuing the Ph.D
degree at the College of Computer Science,
Nankai University, Tianjin, China. She received
the Best Paper Award of 2021 IEEE Wireless
Communications and Networking Conference
(WCNC). Her current research interest includes
distributed learning, panoramic video streaming
and edge computing.

Xu Chen Xu Chen is a Full Professor with
Sun Yat-sen University, Guangzhou, China,
Director of Institute of Advanced Networking and
Computing Systems, and the Vice Director of
National Engineering Research Laboratory of
Digital Homes. He received the Ph.D. degree
in information engineering from the Chinese
University of Hong Kong in 2012, and worked as
a Postdoctoral Research Associate at Arizona
State University, Tempe, USA, from 2012 to
2014, and a Humboldt Scholar Fellow at the

Institute of Computer Science of the University of Goettingen, Germany
from 2014 to 2016. He received the prestigious Humboldt research
fellowship awarded by the Alexander von Humboldt Foundation
of Germany, 2014 Hong Kong Young Scientist Runner-up Award,
2017 IEEE Communication Society Asia-Pacific Outstanding Young
Researcher Award, 2017 IEEE ComSoc Young Professional Best
Paper Award, 2020 IEEE Computer Society Best Paper Awards
Runner-Up, Honorable Mention Award of 2010 IEEE international
conference on Intelligence and Security Informatics (ISI), Best
Paper Runner-up Award of 2014 IEEE International Conference
on Computer Communications (INFOCOM), and Best Paper Award
of 2017 IEEE International Conference on Communications (ICC).
He is currently an Area Editor of the IEEE OPEN JOURNAL
OF THE Communications Society, an Associate Editor of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE INTERNET
OF THINGS JOURNAL and IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS Series on Network Softwarization and Enablers.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

15

Lei Jiao received the Ph.D. degree in computer
science from the University of Göttingen,
Germany. He is currently an assistant professor
at the Department of Computer Science,
University of Oregon, USA. Previously he
worked as a member of technical staff at
Nokia Bell Labs in Dublin, Ireland and as
a researcher at IBM Research in Beijing,
China. He is interested in the mathematics of
optimization, control, learning, and economics
applied to computer and telecommunication

systems, networks, and services. He publishes papers in journals such
as JSAC, ToN, TPDS, TMC, and TDSC, and in conferences such
as INFOCOM, MOBIHOC, ICNP, ICDCS, SECON, and IPDPS. He is
an NSF CAREER awardee. He also received Best Paper Awards of
IEEE LANMAN 2013 and IEEE CNS 2019. He was on the program
committees of many conferences, including INFOCOM, MOBIHOC,
ICDCS, IWQoS, and WWW, and was also the program chair of multiple
workshops with INFOCOM and ICDCS.

Tian Zhang is currently pursuing the master’s
degree at the College of Computer Science,
Nankai University, Tianjin, China. His current
research interest includes video streaming,
resource scheduling and edge intelligence.

Jingdong Xu is a Full Professor with Nankai
University, Tianjin, China. She is the Head of the
Computer Networks and Information Security
Lab. Her research interest includes mobile
computing, network security, internet of things
and blockchain.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3238356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.��See https://www.ieee.org/publications/rights/index.html for more information.

