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Abstract—Ultra-High-Definition (UHD) videos have been getting increasing attention. However, existing video streaming solutions fail
to deliver them due to the extremely high bandwidth requirement. The emerging cloud native 5G networks have opened up the
possibility of enhancing UHD video quality by leveraging in-network video streaming. Unfortunately, the restricted storage and
bandwidth of in-network servers could become the main bottleneck. To this end, we present EMS, a novel UHD video streaming
framework, by integrating Erasure-coded storage with Multi-source Streaming. We respectively introduce a deadline-aware and a
latency-sensitive metric to indicate the service quality of video servers and advocate a federated learning paradigm for the adaptive
service quality update, including a reinforcement learning based multi-server selection (i.e., user local training) and a global service
quality aggregation. To facilitate user local training without sacrificing streaming Quality-of-Experience (QoE), we cast the multi-server
selection associated with the restriction on the average number of selected servers per video chunk into two kinds of Multi-Armed
Bandit (MAB) models in terms of the proposed service quality metrics. We design lightweight Upper Confidence Bound (UCB) based
algorithms with a theoretical performance guarantee. We implement a prototype of EMS, and extensive experiments confirm the

superiority of the proposed algorithms.

Index Terms—Erasure-coded Storage, Multi-source Streaming, Cloud Native 5G Networks and Online Learning.

1 INTRODUCTION

Ultra-High-Definition (UHD) videos such as 8K/12K 2D videos,
panoramic videos and volumetric videos have recently emerged
and attracted great attention. In general, UHD videos have a
large file size, since they are of high frame rate, high dynamic
range and deep depth of field. Therefore, an extremely high
downstream bandwidth is required to facilitate UHD video
streaming [1], [2]. Although mobile network operators (MNOs)
and Over-The-Top (OTT) content providers have made great
efforts to extend the downstream bandwidth for video clients,
such as building more base stations and utilizing multiple Content
Delivery Networks (CDN) [3], [4], the achievable bandwidth
(i.e., end-to-end throughput) is still inadequate, in terms of the
data-driven and testbed-driven measurements in §2.1 (i.e., Fig.
3). The seemingly insatiable bandwidth demand of UHD videos
motivates innovative video streaming solutions.

Cloud native 5G networks that embody containerization and
micro-services have been receiving increasing attention from
many MNOs such as Rakuten Mobile [5] and F5 Networks [6].
The reference architecture is shown in Fig. 1(a), where different
scales of data centers (DCs) are hierarchically deployed to not
only accomplish cellular tasks (e.g., UPF and 5G core) but also
support various kinds of edge applications [7]. In this context, OTT
content providers can cooperate with MNOs to deploy a number of
video servers in the regional and/or central DCs, so as to achieve
efficient UHD video streaming (e.g., low latency).
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Although such an in-network video streaming solution can
bring significant benefits such as making full use of advanced
5G cellular technologies [8] and getting rid of the bandwidth
limitation of backbone network [9], it highly relies on the storage
and bandwidth capacity of video servers due to the large file
size of UHD videos, which however could not be guaranteed by
those in-network DCs. This is because they are generally of small
scales (e.g., the number of servers per regional DC is less than
30 as indicated by Huawei [10]), and accordingly have limited
resources. What is worse, these limited resources will be primarily
utilized for cellular tasks and the residual ones will be carved
up by various edge applications. Therefore, the restricted storage
and bandwidth capacity of video servers (i.e., taking the form of
containers) could be the main bottleneck of UHD video streaming.

In order to alleviate the adverse effect of the restricted server
bandwidth capacity, one popular idea is to reduce the transmission
size while keeping the video quality. The representative solutions
include viewpoint based streaming [1], [2] and super-resolution
based streaming [11], [12], which however are still at an early
research stage. For example, there are no perfect methods for
accurate user viewpoint prediction, and super-resolution will
produce uncertain and even intolerable processing delays. Another
popular idea is to exploit multiple video servers to jointly transmit
UHD videos (i.e., multi-source streaming [13], [14]). Existing
solutions generally assume each video file is replicated to all the
servers, and the bandwidth between client and server is accurately
predicted. However, the former is unsuitable for the UHD video
streaming within cloud native 5G networks due to the large video
file size and the restricted server storage capacity, and the latter is
very difficult to achieve in practice (e.g., Fig. 4).

As erasure-coded storage compared with replication based
storage can provide space-optimal data redundancy [15]-[17],
we advocate EMS, an Erasure-coded Multi-source Streaming
framework for UHD videos within cloud native 5G networks. The
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Fig. 1: The overview of EMS (UHD video V is coded into D = 2 data blocks and P = 2 parity blocks).

portal server, as shown in Fig. 1, will encode each video into D
data blocks and P parity blocks (i.e., D + P video blocks) and
assign them to D + P video servers. In other words, each video
server will store only one video block. In practice, regional DCs
will set up a video container to store the assigned video block
and reserve several backup containers for elastic scaling and load
balancing as a video server. The portal server will maintain the
metadata of each video and its associated video servers. When
a user requests a UHD video, it will query the portal server to
obtain the metadata of the corresponding video servers (e.g., IP
addresses), then select at least D servers from them and download
their stored video blocks to recover the playable video.

Intuitively, integrating erasure-coded storage with multi-source
streaming, EMS is highly appropriate for the video servers with
the restricted storage and bandwidth capacity (i.e., storing and
transmitting video blocks rather than the whole video). Besides,
EMS is compatible with advanced streaming technologies
such as adaptive streaming, viewpoint based streaming and
super-resolution based streaming as discussed in §3.1. Despite its
profound benefits, we require to address a critical problem: how
to optimally select a set of video servers for each user, in order to
achieve efficient UHD video streaming? The desirable multi-server
selection algorithm should satisfy the following two requirements:

(1) High user QoE. The downstream bandwidth is a widely
used metric to indicate the service quality of video servers for
users. However, accurate bandwidth measurement at present is
still a grand challenge [18], [19], and existing solutions such as
bandwidth prediction or probing are inefficient or costly [20], [21].
Therefore, a novel metric associated with an efficient measurement
method that can effectively represent the service quality of video
servers for users is required. Otherwise, multi-source streaming
could easily give rise to the cask effect [14].

(2) Low system cost. Selecting a large number of video
servers can intuitively alleviate the cask effect of multi-source
streaming. However, EMS in practice should restrict the number
of selected servers to avoid excessive redundant data transmission
that aggravates the traffic burden of cloud native 5G networks.

In this paper, we respectively introduce a deadline-aware
metric and a latency-sensitive metric in terms of the historical
user downloading time of video chunks to indicate the service
quality of video servers, and advocate a Federated Learning (FL)
paradigm to measure it (i.e., requirement (1)), which consists of
a Reinforcement Learning (RL) based multi-server selection (i.e.,
user local training) and a global service quality update. Briefly,
we adopt the concept of “user area” [22], [23], and consider the
service quality of video servers for a user area can approximately

represent that for the users belonging to it. In this context, the
UHD video streaming of the users belonging to the same user area
can be viewed as an asynchronous federated learning campaign.
That is, when a user requests a UHD video, it will obtain the
current service quality of video servers for its associated user area,
locally train it during the video playback by invoking the RL based
multi-server selection, and uploads the final trained result to the
portal server for global update (i.e., global aggregation) at the
end of video streaming. Note that, as this process continues over
time, the service quality of video servers for any user area will
adaptively capture its particular traffic pattern or distribution.

To capture the restriction on the number of selected servers per
requested video, we introduce a long-term constraint to ensure the
average number of selected servers per video chunk cannot exceed
a predefined threshold (i.e., requirement (2)). Since mobile devices
in general have limited computing capacity, we cast the RL based
multi-server selection associated with the long-term constraint into
two kinds of Multi-Armed Bandit (MAB) models in terms of the
proposed two service quality metrics and respectively design two
efficient Upper Confidence Bound (UCB) based algorithms with
a theoretical performance guarantee and low complexity. In the
end, we implement a prototype of EMS and conduct extensive
testbed driven experiments for performance evaluation. The main
contributions are summarized as follows:

e We present EMS, a novel erasure-coded multi-source
streaming framework for UHD videos within cloud native
5G networks. We provide the specific design of its key
components, propose new metrics to indicate the service
quality of video servers, and advocate a FL paradigm
including an RL based multi-server selection and a global
aggregation for the adaptive service quality update (§3).

e We cast the RL based multi-server selection associated
with the restriction on the average number of selected
servers (i.e., a long-term constraint) into two kinds of
MAB models in terms of the proposed two service quality
metrics and correspondingly design two lightweight UCB
based algorithms with sub-linear regret bounds (§4).

o Extensive testbed driven experiments confirm that (i)
the practical performance of the proposed algorithms
coincides with the theoretical analysis; (ii) the proposed
algorithms achieve superior performance compared with
the state-of-the-art multi-source streaming algorithms and
UCB based algorithms in various system settings; (iii)
EMS is a lightweight framework in terms of multi-server
selection and erasure-coded chunk decoding (§5).



2 MOTIVATION AND RELATED WORK

In this section, we provide the motivation of EMS in terms of
dataset-driven and testbed-driven measurements and then outline
the related work to highlight the novelty of EMS.

2.1 Downstream Bandwidth Measurements

Background. In general, UHD videos such as 8K/12K 2D,
panoramic and volumetric videos have a large file size due to the
high frame rate, high dynamic range and deep depth of field, and
accordingly an extremely high downstream bandwidth is required
to facilitate UHD video streaming. For example, according to
Netflix, the recommended bandwidth for 4K (3840x2160) 2D
videos is at least 25 Mbps [24], and therefore it would be 100
Mbps for 8K (7680x4320) 2D videos by simple multiplication.
Besides, the required bandwidth for 12K panoramic videos should
be over 400 Mbps [1]. Recently, MNOs and OTT content providers
have made great efforts to extend the downstream bandwidth,
such as building more base stations, upgrading optical transport
networks and utilizing multi-CDN [3], [4]. Therefore, it is natural
to ask whether the current downstream bandwidth (i.e., end-to-end
throughput) can well support UHD video streaming?

Dataset. In order to answer the above question, we consider
the following two video streaming datasets:

(i) Puffer [25], a video streaming dataset (i.e., 2022.01 —
2022.04) released by Stanford University. This dataset collects
a set of time-series states from both the client and server side
during the video streaming, and it contains a “delivery_rate” field
to indicate the downstream bandwidth per video chunk.

(ii) E2E-5G [26], a 5G trace dataset collected from a major
Irish mobile operator, which is generated from two mobility
patterns (static and car) and two application patterns (video
streaming and file download). This dataset contains a “DL_bitrate”
field to indicate the downstream bandwidth per second. We only
consider the data from the static pattern.

Testbed. Furthermore, we build a simple testbed to measure
the downstream bandwidth on Tencent Video, a mainstream OTT
platform in China. As shown in Fig. 2, we consider a laptop and
a Huawei 5G CPE Pro2 with a plugged-in China Mobile 5G SIM
card and connect them by a gigabit network cable to roughly
represent a 5G device'. We select a list of video URLs, including
TV dramas, movies, shows and animations, and conduct the
bandwidth measurement by exploiting Selenium ChromeDriver
[27] to automatically request and play them in the Chrome browser
(i.e., we create a Python script that controls the ChromeDriver
to load the selected video URL to the browser and click the
video player button). Each video is downloaded as a series of
HTTPS request/response interactions, and the Chrome browser
(i.e., the built-in DevTools) will decrypt all the captured HTTPS
request/response headers and archive relevant header fields. We
exploit the content type header field (i.e., “video/MP2T” and
“video/mp4”) to filter out the records of video chunks (i.e.,
streaming logs). In order to obtain diverse and sufficient streaming
logs, we consider four resident locations and two university sites
in two megacities of China and run the testbed for a month (three
times a day: Morning (9:00), Noon (13:00) and Night (20:00)).

1. Note that we do not directly exploit 5G smartphones in our measurement,
since there is no perfect client-side monitoring tool for video streaming and
moreover the client-side monitoring tool may negatively impact video player
activities such as rendering (i.e., resource competition).
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Fig. 2: Testbed overview. Fig. 3: CDF of bandwidth.

Measurement Result. We depict the CDF of the derived
bandwidth samples as shown in Fig. 3. For clarity, we mark the
point on the line whose x-axis value is 100. As indicated by them,
we can derive that only 7%, 25% and 46% of total bandwidth
samples of Puffer, E2E-5G and Tencent Video can satisfy the
bandwidth requirement for 8K 2D videos (i.e., over 100 Mbps).
Not to mention those UHD panoramic and volumetric videos. In
other words, the current achievable downstream bandwidth is still
inadequate for UHD video streaming, which motivates innovative
video streaming solutions.

2.2 Related Work

Advanced streaming technology. Adaptive streaming such as
DASH [28] is capable of coping with dynamic bandwidth
fluctuations by adapting video quality in realtime. In adaptive
streaming, each video is divided into a sequence of chunks with
the same duration (e.g., several seconds), and each chunk is
encoded with multiple discrete bitrates to accommodate various
network conditions. The video client will sequentially request
each chunk at an appropriate bitrate, in terms of a specific bitrate
adaptation algorithm such as bandwidth based, buffer based and
learning based algorithms [29]. However, adaptive streaming has
little effect on the bandwidth increase.

Viewpoint or tile based streaming is a promising solution to
save downstream bandwidth while keeping video quality, which is
particularly tailored for panoramic and volumetric videos [1], [2].
Its basic idea is to transmit the tiles within the user viewpoint
with a high bitrate and the other tiles with the lowest bitrate.
However, this solution suffers from a fundamental limitation that
user viewpoint is hard to predict accurately. Super-resolution
based streaming is another promising solution [11], [12], whose
basic idea is to recover high-resolution video frames from the
transmitted lower resolution versions by using neural networks
at the client side. However, it could produce uncertain and
even intolerable processing delays, especially on mobile devices.
Although EMS adopts a different design philosophy, it can be
easily compatible with these promising yet immature solutions, as
discussed in the fifth paragraph of §3.1.

Multi-source streaming. Multi-source streaming stems from
the peer-to-peer (P2P) systems [30], and the P2P based solutions
mainly follow the “one source per chunk” paradigm. For example,
interplanetary file system (IPFS), the latest P2P system adopts
a bandwidth probing solution (i.e., Bitswap [31]) to select the
best peer for each requested content. However, EMS advocates
a “multi-source per erasure-coded chunk” paradigm. In recent
years, some researchers have considered bandwidth prediction
based multi-source streaming [13], [32], in which they assume
each video file is replicated to all the servers and the video
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Fig. 4: Performance evaluation of bandwidth prediction algorithms.

client proportionally downloads each video chunk from all the
servers in terms of the predicted bandwidth between the client and
each server. Although they follow the “multi-source per chunk”
paradigm, they are completely different from EMS in terms of the
different storage and streaming mode. In addition, they will suffer
from a fundamental limitation that the downstream bandwidth is
hard to predict accurately [20], [21]. To support this argument,
we evaluate the performance of the widely-used harmonic mean
based [28] and LSTM based bandwidth prediction algorithm [21],
in terms of the time-series bandwidth samples in the datasets and
streaming logs given in §2.1. We adopt the prediction error as
the metric which is calculated as (the predicted value — the actual
value)/the actual value. The evaluation result is shown in Fig.
4, and we can find that as to each algorithm the percentage of
“good” prediction whose error is within £10% is roughly 18%
(i.e., Puffer: 19%, 21.5%; E2E-5G: 21.5%, 7%; Tencent Video:
14.3%, 25.2% in Fig. 4).

Consider a simple scenario: two sources cooperatively transmit
a 100Mb video chunk to client and the bandwidth between
the client and each source is predicted to be 100Mbps. In
this case, the expected transmission latency should be 0.5s
under any bandwidth prediction based multi-source streaming
algorithms (i.e., each source transmits 50Mb, 1/2 of video
chunk). However, if the predicted downstream bandwidth of one
source is underestimated (e.g., 120Mbps in fact), then the actual
transmission latency is max{50/120, 50/100}=0.5s while the
optimal one should be 5/11=0.45s (i.e., the source with 120Mbps
transmits 120/(120+100)=6/11 of video chunk and the source
with 100Mbps transmits 100/(120+100)=5/11 of video chunk).
On the other hand, if the predicted downstream bandwidth of
one source is overestimated (e.g., 80Mbps in fact), then the actual
transmission latency is 50/80=0.625s while the optimal one should
be 5/9=0.56s (i.e., the source with 100Mbps transmits 5/9 of video
chunk and the source with 80Mbps transmits 4/9 of video chunk).
In both cases, the cask effect caused by the inaccurate bandwidth
prediction results in 10% performance degradation. In addition,
a large-scale and real-world measurement indicates that 23% of
the downloads have worse performance after being upgraded to
multi-source content delivery due to the cask effect [14]. As such,
the multi-source streaming with inaccurate bandwidth prediction
is suboptimal and its latency is determined by the slowest source.

Erasure-coded storage system. Erasure-coded storage has
been extensively discussed in distributed storage systems as it can
provide space-optimal data redundancy. Briefly, erasure coding
works by splitting a file into multiple fragments (data blocks)
and then creating additional fragments (parity blocks) that can
be used for file recovery. The data and parity fragments are stored
across multiple disks to protect against data loss in case a disk

fails. If such an event occurs, the file can be rebuilt by using
the available data and parity fragments. For example, a storage
system could exploit a 5+2 encoding configuration, in which each
file is splitted into five data fragments and then adds two parity
fragments. The configuration can tolerate up to two disk failures,
no matter whether the disks contain data or parity fragments. In
other words, the file can be rebuilt by five data or parity fragments.

In recent years, some researchers focus on how to accurately
quantify the access latency for erasure-coded storage systems,
and they mainly exploit the queuing theory to derive and
analyze the latency bounds [16], [17], [33]. For example, the
authors in [16] consider video streaming over an erasure-coded
cloud system and analyze the mean stall duration and the stall
duration tail probability with complicated probabilistic models.
Other researchers attempt to design efficient caching schemes to
achieve a low access latency in erasure-coded storage systems.
For example, the authors in [15] design an online erasure
coding scheme on the cached data to achieve load balancing
and latency reduction. There are also some edge caching studies
taking erasure-coded storage into account and mainly discuss the
content placement problem [34]-[37]. Nevertheless, none of the
existing work like EMS pays attention to the multi-server selection
problem in the context of integrating erasure-coded storage with
multi-source streaming.

Multi-Armed Bandit (MAB) for video streaming. There
are some recent studies that exploit multi-armed bandit to model
bitrate selection [20], [38] or server selection [39], [40] for video
streaming. However, they only require to select one arm, which
is different from EMS. The most related work is [14], which
attempts to select a fixed number of workers by proposing a
variant of e-greedy algorithm. However, the considered service
quality metric is different from EMS (i.e., different objective
functions). In addition, it does not involve a long-term constraint
on the average number of selected servers. Moreover, its proposed
algorithm does not provide a theoretical performance guarantee.

TABLE 1: Summary of related works on multi-source streaming.

Existing Storage Server Selection  Algorithmic
Works Mode Constraint Bound
[30], [31] P2P based No No
[13], [32] Replication No No
[16] Erasure-coding No Yes
[14] P2P based Fixed number No
Ours Erasure-coding Long-term Yes

Summary. We highlight the characteristics of the highly
related multi-source streaming works in Table 1. To the best

of our knowledge, EMS is the first work that integrates
erasure-coded storage with multi-source streaming, concentrates
on the multi-server selection problem with novel service quality
metrics and a long-term constraint, and proposes efficient
algorithms with performance guarantee and low complexity.

3 SYSTEM DESIGN

In this section, we provide the specific design of EMS including
the basic components and interactions, then formulate the critical
multi-server selection problem with a constrained reinforcement
learning model.
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TABLE 2: Main notations.

Parameters Descriptions
m the index of video chunk that also indicates the round
of multi-server selection during a video streaming
D the number of data blocks per video chunk that also
indicates the required number of video blocks to
decode and recover each video chunk
P the number of parity blocks per video chunk
t the round of global aggregation at the portal server
0} (m) the local deadline-aware indicator
O} (t) the global deadline-aware indicator
wit(m) the local latency-sensitive indicator
QU(t) the global latency-sensitive indicator

K(t) the associated servers of the requested video at round ¢

that also indicates the video servers that can be selected

H the predefined threshold to limit the average number of
selected servers per video chunk

Variables

S(m) € K(t)

Descriptions

the set of selected video servers for video chunk C,,,

3.1 Basic Components and Interactions

As shown in Fig. 1(a), EMS consists of a portal server located
in a central DC and a set K = {1,2,..., K} of video servers
located in the regional DCs. Due to the resource limitation, we
consider EMS only serves popular UHD videos which can be
easily identified by OTT content providers in practice. In the
following, we will introduce the basic system components and
detail their functionalities along with the interactions occurring
in the erasure-coded video deployment and streaming. The main
notations in EMS are given in Table 2.

Erasure-coded video deployment. When the portal server
receives a popular UHD video from OTT content providers,
it will encode it to be an erasure-coded video, and then
deploy it to several video servers. Specifically, as shown in
Fig. 5(a), each video is generally divided into multiple chunks
with the same duration (e.g., several seconds) denoted by
C ={C1,Cy,...,Cup}, and each chunk C,, is erasure-coded
into D data blocks and P parity blocks (i.e., D+ P video
blocks) denoted by {B1m, Bam, - .., BNm} where N =D+ P.
In this context, we define a “block group” as a set of M
video blocks satisfying no video blocks comes from the same
video chunk. For example, we can exploit the set G, =
{Bn1,Bna,...,Bnam},Vn € {1,2,..., N} to indicate a block
group. Naturally, the erasure-coded video is made of N block
groups which are of the same file size.

In order to fully reap the benefit of multi-source streaming, we
consider that the portal server will assign IV block groups of an
erasure-coded video to N different video servers. For example, it
can randomly select IV servers from the total K video servers?. In
other words, each video server will store only one block group for
each video, which does not consume too much storage resource
and accordingly is highly suitable for the resource-restricted video
servers within cloud native 5G networks. In practice, the regional
DCs will set up a video container to store the assigned block group
and reserve several backup containers for elastic scaling and load
balancing (i.e., erasure-coded video component and Step (a) in
Fig. 5(b)). That is, each video server in EMS is made of several
containers. Besides, the portal server will create a video profiler
component to keep the metadata of each UHD video (e.g., media
presentation description (MPD) file) along with the identification
of its associated video servers (e.g., IP addresses).

As to the storage redundancy of erasure-coded video compared
with the original video, if we exploit |Cy,| to denote the file
size of chunk C,,, then the size of its data block and that of
its parity block are both |C,y,|/D due to the principle of erasure
coding. In this context, the size of each block group G, is
Zn]\le |Cm|/D (i.e., 1/D of the original video), and the storage
redundancy of each erasure-coded chunk is P/D. As such, the
storage redundancy of erasure-coded video is also P/ D, in terms

of the following expression:

SN (14+P/D)|Cr| — M |C

M
Zm:l |Cm|
where (14 P/D)|C,,| represents the file size of erasure-coded

= P/D,

chunk for each chunk C),. If we exploit a 5+2 encoding

configuration, then the storage redundancy is 0.4. Note that since
we only consider popular UHD videos in EMS (i.e., the number
of deployed videos is limited), we believe this erasure-coded video
deployment is acceptable in practice.

Note that we can easily extend the scope of the block group
to adapt to the UHD video with multiple discrete bitrates (e.g.,
R bitrate versions) so as to be compatible with the adaptive
streaming. Briefly, we will introduce a “super block group” as
a set of R block groups satisfying no block groups from the
same bitrate version and assign N super block groups to N video
servers. Similarly, we can also extend the scope of the block group
to facilitate viewpoint based streaming (i.e., erasure-coding each
tile rather than each chunk). Besides, the erasure-coded video has

2. How to select the optimal servers for the erasure-coded video deployment
(i.e., content placement problem) is not the main focus of this paper.



no impact on the super-resolution based streaming. In other words,
EMS is compatible with it with no modifications.

Erasure-coded video streaming. When a client starts a UHD
video streaming, the portal server will receive the client request
and check if the video profiler component has the metadata of the
requested video. If not, the UHD video streaming will be provided
by the general multi-CDN. If yes, the portal server will forward the
corresponding video metadata (e.g., MPD file), the identification
of the associated video servers (e.g., IP addresses), and the service
quality of the associated video servers for that user maintained by
the server profiler component to the client (i.e., Step (b)). When
the client receives the information of the requested video and that
of its associated video servers, it will respectively store them in the
video info and server info component and then start the following
erasure-coded video streaming.

In terms of the received MPD file, the client will invoke
any bitrate adaptation algorithm (e.g., [21], [28]) to select an
appropriate bitrate for the next video chunk (i.e., Step @ and
bitrate adaptation component). Then, the chunk index and the
selected bitrate will be forwarded to the download and decode
component (i.e., Step ). In the meanwhile, The multi-server
selection component is invoked to obtain the received service
quality of video servers stored in the server info component to
make multi-server selection (i.e., Step ®), and then passes the
selected servers to the download and decode component (i.e., Step
®). Next, the download and decode component will download the
stored video blocks from those selected servers (i.e., Step (c)).
The streaming controller component in each selected server will
allocate the corresponding video container or one of its backup
container to that client in terms of some predefined rules (e.g.,
round-robin or load balancing). When the download and decode
component has successfully downloaded D video blocks, it will
decode them to recover the playable video chunk, approximately
calculate the achievable downstream bandwidth as the file size
of the recovered video chunk divided by the download time of
the D-th downloaded video block, and then send it to the bitrate
adaptation component to facilitate subsequent bitrate adaptation
(i.e., Step ©). Note that the Step @ — Step ® will operate
recurrently until the video streaming finishes.

3.2 Problem Formulation

In terms of the above discussions, we can easily find that the
multi-server selection component (the core of EMS) requires
to address a critical problem: how to optimally select a set of
video servers so as to achieve efficient UHD video streaming?
The desirable multi-server selection algorithm should satisfy the
following two requirements:

(1) High user QoE. It is not easy to accurately indicate
the service quality of video servers. Although the downstream
bandwidth is a widely used metric, accurate measurement is
still challenging [18], [19], which is also validated by our
measurements in Fig. 4. Multi-server selection with inaccurate
bandwidth prediction could easily give rise to the cask effect [14].

(2) Low system cost. Selecting a large number of video servers
can effectively alleviate the cask effect of multi-source streaming.
However, EMS in practice should restrict the number of selected
servers to avoid excessive redundant data transmission.

Our idea. As to requirement (1), we will respectively
introduce a deadline-aware metric and a latency-sensitive metric
to indicate the service quality of video servers for users, since

many studies have pointed out that users may quickly abandon
a requested video if the number of rebuffering is large or the
duration of rebuffering is long [20], [21], [28]. In order to
efficiently measure the proposed metrics, we exploit the concept
“user area” which refers to a geographical location whose mobile
traffic exhibits a particular pattern or distribution [22], [23], and
further consider the service quality of video servers for a user
area can approximately represent that for the users belonging to it.
In this context, we advocate a Federated Learning (FL) paradigm
for the adaptively update of service quality of video servers for
each user area, which consists of a Reinforcement Learning (RL)
based multi-server selection (i.e., local training at the client side)
and a global service quality aggregation at the portal server side
as shown in Fig. 5(c). As to requirement (2), we will introduce
a long-term constraint to ensure the average number of selected
servers per video chunk cannot exceed a predefined threshold,
which is embedded into the RL based multi-server selection. Note
that such a soft constraint can extend the flexibility of multi-server
selection in the context of dynamic network conditions. The
specific design is given as follows.

Deadline-aware metric. We consider this metric to capture
the scenario that users dislike a large number of rebuffering during
the video streaming. Motivated by many OTT platforms such
as Youtube and Netflix have given the recommended bandwidth
for different types of videos, we introduce the “unit download
deadline” of each video type v (e.g., 8K/12K and 2D/3D) as
Tmaz (V) = 1/W,, where W, refers to the lowest required
bandwidth (in Mbps). For simplicity, we only consider one video
type and omit the index v in the following. Then, we can derive
the download deadline of any a video block of chunk C,, as
Tnaz(m) = FuiTiaz, Where Fy, refers to the file size of the
video block* of chunk m. To proceed, we introduce s (m) to
indicate whether the latency’ I(m) of downloading a video
block of chunk C,,, from server k is smaller than the deadline.
Intuitively, si(m) = 1if Ix(m) < Tnaz(m) and O otherwise. In
this context, we define the deadline-aware metric as the probability
of successfully transmitting a video block before its corresponding
deadline, and exploit {6}'(m), ©3 ()} to indicate the local and
global service quality of server k for user area u. Here, m refers
to the index of video chunk that also indicates the round of
multi-server selection during a video streaming, and ¢ refers to
the round of global aggregation kept by the portal server. The
specific 8}'(m) is given in the expression (4).

Latency-sensitive metric. We consider this metric to
capture the scenario that users also dislike a long duration
of rebuffering during the video streaming. Then, we introduce
the ‘“normalized truncated latency” of downloading any a
video block B, from video chunk C,, as I,(m) =
min{li(m), Trnaz (M) }/Tinaz(m), where I (m) and T)pq.(m)
share the same meanings as those mentioned above. To maintain
consistency with the deadline-aware metric, we define the
latency-sensitive metric as the average gap between the chunk
download latency and the its corresponding deadline, and exploit

3. Note that “user area” has been widely considered in the research of edge
computing and edge caching, where multiple edge servers jointly satisfy the
computation tasks and content requests from any user area. In practice, user
area can be indicated by a set of base stations that are in proximity to each
other [22], [23].

4. The data blocks and parity blocks are of the same file size in the context
of erasure-coding. The file size of video block of each video chunk can be
viewed as one kind of video metadata stored by the video profiler component.

5. This value can be derived from the download and decode component.



{wi(m), Q¢ (t)} to indicate the local and global service quality
of server k for user area w. In practice, wj'(m) is updated by
1—1'(m). Intuitively, the local service quality 6}'(m) and wj (m)
are both within [0, 1] and a larger value indicates a higher service
quality of server k for user area u.

FL based adaptive update of service quality. We regard
the UHD video streaming of the users belonging to the same
user area as an asynchronous FL task. Taking the deadline-aware
metric as an example, when a user ¢ € u requests an UHD video,
it will obtain the current global service quality indicator O3 (¢)
from the server profiler component, train the local service quality
indicator 6}'(m),Vm € {1,2,...,M} with 6}'(0) = O} (¢)
during the video playback (i.e., Step ® in Fig. 5(b)), and upload
the trained indicator 6}'(M) to the server profiler component
for global aggregation (i.e., Step (d) in Fig. 5(b)). Note that
the specific aggregation method is not the main focus of this
paper. In practice, we can simply update the global indicator by
Oyt +1) = [OF(t) x t + ;1 (M)] /(t + 1) or adopt advanced
methods from asynchronous FL studies (e.g., [41]).

We believe this asynchronous procedure is ease to implement
and does not affect user video streaming in practice. We can
also conduct the global aggregation per video chunk from
multiple video clients in a synchronous manner and then distribute
the updated parameters back to those clients. However, it
could introduce additional synchronization time and transmission
overhead for training, which inevitably damages the performance
of user video streaming.

RL based multi-server selection. To facilitate user local
training without sacrificing the QoE of UHD video streaming,
we consider multi-server selection is invoked per video chunk and
model it with reinforcement learning. To proceed, we will omit
the user area index w for clarity and exploit the server set K(t) to
indicate the video servers that can be selected (i.e., the associated
servers of the requested video) at round ¢. Then, we can define the
state, action and reward as follows.

o State: the local service quality indicator Oi(m) or
wr(m),Ym € {1,2,..., M} of each server k € K(t).

o Action: a subset S(m) C K(t) of video servers
that satisfies the following long-term constraint for the
restriction on the number of selected servers:

1 M
i > ISsm)<H, (1)

where H refers to a predefined server selection threshold.

o Reward: we adopt 7(S (m)) to uniformly indicate the
reward when selecting the server subset S(m). As to the
deadline-aware metric, it should be

r(sm) = 3" B (X (m)] = x), @

PIXtml=2)2 Y B(X(m),
X(m)CS(m),| X (m)|=z

]P(X(m))é H Ox(m) H (1—0x(m)).

keX(m) keS(m)\X (m)

Here, X (m) refers to the “successful” subset of S(m)
and | X (m)| = = refers to the event that the size of the
“successful” subset is . In this context, r(S(m)) can be
interpreted as the probability of successfully downloading
at least D video blocks (i.e., the required number of video
blocks to decode and recover the video chunk) from S(m)
within the deadline.

As to the latency-sensitive metric, it should be

r(S(m)) = minge s (m) wi(m), 3)
S'(m) £ {8 (m) : |S'(m)| = D} C S(m).

Here, |z| refers to the size of set z and 7(S(m)) can
be interpreted as the time consumption of successfully
downloading D video blocks from S(m), which is
obviously determined by the D-th fastest server (i.e., the
D-th largest average gap between latency and deadline).

« Update: take the local service quality indicator (m) as
an example® and it will be updated at runtime as follows:

Ox(m—)ng(m—1)+sk(m) .
Or(m) = ng(m—1)+1 if keS(m), @
Or(m—1) else,

where 1, (m—1) refers to the times the server k is selected
at the end of round m — 1, which is updated as follows:

_Jne(m—=1)+1
ny(m) = {nk(m—l)

if k € S(m),
else.

&)

To sum up, we can uniformly formulate a constrained RL
based multi-server selection problem as follows:

M

Zm:l 7“(3(771)), subject to (1).

Note that it is non-trivial to solve this problem, mainly due to
the following issues:

(i) The general RL models do not involve a long-term
constraint (i.e., constraint (1)), and accordingly we need to provide
a specific technique to cope with it. In addition, the unique feature
of the above two reward expressions (e.g., nonlinearity) further
complicates the efficient algorithm design;

(ii) The proposed multi-server selection algorithm should be
lightweight (e.g., at the timescale of milliseconds). Otherwise, it
will offset the benefit of multi-source streaming.

max
{8(m),m=>1}

4 MULTI-SERVER SELECTION ALGORITHM

In this section, we cast the above RL problem into two
different Multi-Armed Bandit (MAB) models in terms of the
proposed two service quality metrics, and respectively design two
lightweight Upper Confidence Bound (UCB) based algorithms
with a theoretical performance guarantee. We first tackle the more
straightforward latency-sensitive multi-server selection and then
delve into the deadline-aware multi-server selection.

4.1 Latency-sensitive multi-server selection

Problem reformulation. In the MAB model, we regard each
server k € K as an arm, and the selected subset S(m) is
referred to as a super arm. To begin with, we adopt the widely
used regret metric to reformulate our problem. Briefly, we denote
by wj = Efwg(m)] the expectation of local service quality of
arm k. In this case, the expected optimal super arm is S$* =

arg max { min WZ } Then, we can define the cumulative
SCK(t),|S|=D k€S
regret of any given algorithm as

Mare = Mr(S) ~E[SiLi ()], ©

6. Note that for the local service quality indicator wy, (m) the only difference
in the expression (4) is to substitute sz, (m) with 1 — I} (m).



Algorithm 1: L-EMS

Input: Q(¢), K(t), D

Output: S*(m), m € {1,2,..., M}

> [Initial model download from the portal server

wk(O) = Qk(t),nk(O) =1, ke K:(t);

> RL based local training at the client side

For each video chunk m € {1,2,...,M} do
Calculate @ (m) by the expression (8);
Sort {&Wk(m), k € K(t)} in the descending order;
Select the top D arms from the sorted order as S*(m);
Update wy(m) by the expression (4) (i.e., substituting
0r(m) and s (m) with wi(m) and 1 — I},(m));

> Asynchronous global aggregation at the portal server side

Update Q. (t + 1) by wi (M) such as
Qu(t+1) = [Q(t) *t +wp(M)]/(t+1).

where r(S*) = mingegs- wj, refers to the expected reward
achieved by the super arm S*. According to the expression (3), we
can observe that there is no benefit to play more than D arms in
S(m). This observation motivates us to reformulate the constraint
(D as|S(m)| = D,¥Ym € {1,2,..., M}. In this context, we can
derive the reformulated problem for latency-sensitive multi-server
selection as follows:
{S(ler)l%z” Aarg, subject to |S(m)| = D. )
Algorithm design. According to the above formulation and
the expression (3), we can observe the feedback for each arm
k independently rather than for each super arm S as a whole.
In this context, we will design a UCB based algorithm for such
a classic MAB problem. Specifically, we denote by Wy (m) the
UCB estimate of the service quality of arm k at the beginning of
the local training round m which is given by

Bu(m) £ we(m—1) +/(D+ 1) lnm/ng(m—1), @)

where wy(m —1) and /(D+1)Inm/ng(m—1) respectively
correspond to exploitation and exploration, and 1, (m) is updated
by the expression (5). Then, our solution for the problem in (7) is
to select a super arm per round satisfying

S8*(m) = argmax {minwg(m)}. ©)
SCK(t),|S|=D k€S
Note that we can easily derive S*(m) by sorting the arms in the
descending order of their UCB estimates and selecting the top D
arms. The detailed algorithm L-EMS are given in Alg. 1.
Performance analysis. According to Alg. 1, we can know
that the complexity of latency-sensitive multi-server selection
is lightweight (i.e., dominated by the sorting). In addition, the
expected cumulative regret can be upper bounded by

4D*(D+ 1)Ky In M
572 } ’
where both ¢ and ¢’ are constant values during user local training,
and K refers to the size of IC(¢). The detailed proof is provided
in our online technical report [42]. Clearly, the cumulative regret
grows as O(In M), which is strictly in a logarithmical way in the
number of local training rounds (i.e., the number of video chunks).
In addition, according to the discussions in the third paragraph
of §3.1, K; by definition equals to the number of video blocks
(i.e., D + P). Therefore, it seems that we should set a small
number of data blocks (i.e., D) complemented by a large number

7{'2
Aarc < 5[2Kt+§DKt+

of parity blocks (i.e., P) to balance data redundancy and algorithm
performance (i.e., theoretical bound). However, a small number of
data blocks (i.e., D) will enlarge the file size of each video block
(i.e., data block and parity block), which requires more server
bandwidth (i.e., impacting the service quality of video servers). In
this context, we will evaluate different combinations of D and P
on the overall performance of EMS in §5.

4.2 Deadline-aware multi-server selection

Problem reformulation. We also adopt the widely-used regret
metric to reformulate our problem. However, different from the
expression (3) we cannot easily derive the expected optimal
super arm S* due to the complicate reward expression (2).
To this end, we introduce a vector of probability distributions
p = {p(S),¥S C K(t),|S| > D}, where S refers to a
qualified super arm whose size is at least D, and p(S) refers
to the probability that the super arm S will be played. Intuitively,
> sp(S) = 1. In this case, the constraint (1) can be rewritten
as y_sp(S)|S| < H. In addition, given any super arm S and
the expectation of local service quality of arm &k which is denoted
by 65 = E[f;(m)], we can derive the expected reward r*(S) of
super arm S in terms of the expression (2). Then, we can easily
solve the following linear problem:

max Yo sp(S)r*(S)

s. t. Y sp(S)S| < H,
Ysp(S) =1,

var p(S) € [0,1],

to derive the optimal probability p*(S) for each super arm S.
After that, we can define the cumulative regret of any given
algorithm as follows:

Aare = MY p*(S)r*(S) — E[zﬁ;l r(S(m))} . (10)

To cope with the long-term constraint (1), we first introduce a
virtual queue Q(m) with dynamics:

Q(m+1) = max {Q(m)—H, 0} +|S(m)|, an

and further resort to the Lyapunov drift-plus-penalty technique
[43] to derive the reformulated problem for deadline-aware
multi-server selection as follows:

: M
sein VAALG + Emay QM)IS(m)]
S [Vr(sm) - @ysml], a2

max
{S(m),m>1}
where V' is a predefined system parameter, which is widely used
in the Lyapunov drift-plus-penalty technique.

Algorithm design. According to the above formulation and
the expression (2), we can only observe the feedback for each
super arm S as a whole. In this context, we will design a
UCB based algorithm for such a combinatorial MAB problem.
Specifically, we denote by 0 (m) the UCB estimate of the service
quality of arm k at the beginning of the local training round m
which is given by

0~k(m) £ min {0y (m—1) + y/2Inm/ni(m—1), 1}, (13)

where ng(m) is updated by the expression (5) and we utilize
such a truncated UCB estimate to ensure the positive reward in
terms of the reward expression (2). Next, we provide the criterion



Algorithm 2: D-EMS

Input: O (t), K(t), D, H

Output: S*(m), m € {1,2,..., M}

> [Initial model download from the portal server
0r(0) = Ok(t),nk(0) = 1,k € K(t);

> RL based local training at the client side

For each video chunk m € {1,2,...,M} do

Calculate 05 (m) by the expression (13);

Sort {0 (m), k € K(¢)} in the descending order;

Select the top D arms and repeatedly add the next arm from

the sorted order until the new added one cannot increase

the objective in (12) as S*(m);

Update 0 (m) by the expression (4);

Update the virtual queue Q(m) by the expression (11);
> Asynchronous global aggregation at the portal server side
Update Oy (t + 1) by 0, (M) such as

Or(t +1) = [Ok(t) * t + 0,(M)] /(t + 1).

of playing a super arm S(m) in each local training round m to
maximize the following objective:
§*(m) =

arg max [Vr (g(m)) (14)

S(m)CK(t)

—Qm)IS(m)]].

Here, r(g(m)) substitutes 0 (m) in r(S(m)) with 6 (m).
Although the problem in (14) is a one-shot optimization, it is still
hard to handle due to the product of a sequence in ’)"(S (m)) To
this end, we introduce the following lemma. _
Lemma 1. Without loss of generality, we assume 61 (m) >
92( ) > -+ > B, (m) in round mn. Consider all possible subsets

S(m) C IC ( t) with a given cardinality ¢ (i.e., |S.(m)| = c), then
the optimal S} (m) satisfying
Si(m) = argmax [Vr(Se(m)) — Q(m)|S.(m))|

S.(m)CK(t)

refers to the top ¢ video servers in terms of the value of 0, (m). In
other words, S¥(m) = {61(m),02(m),...,0:(m)}.

Proof. We prove this lemma by contradiction. Specifically,
we consider Sy (m) is the optimal subset with cardinality ¢, and
assume there is a server v ¢ S~1( m) satisfying 6,(m) > 6,(m)
(i.e., the c-th largest value of 05(m),Vk € K(t)). In this case,
there must exist a server v’ € Sy (m) satisfying 0,/ (m) < 6.(m).
Then, we can build a subset So(m) = S1(m)\{v'}U{v}. In other
words, So(m) \ {v} = S1(m) \ {v'}. According to the specific
expression in (2), we can verify that 7(S2(m)) — r(S1(m)) > 0,
which produces a contradiction (i.e., S (m) is not optimal).

In terms of the above lemma, we can derive $*(m) by sorting
the arms in the descending order of their UCB estimates, selecting
the top D arms and adding the next arm from the sorted order
repeatedly until the new added one cannot increase the objective
in (12). The detailed algorithm D-EMS are given in Alg. 2.

Performance analysis. To begin with, we can prove that the
above deadline-aware multi-server selection is feasibility (i.e., the
long-term constraint (1) is satisfied). Then, its complexity is also
lightweight (i.e., dominated by the sorting). Besides, the expected
cumulative regret can be upper bounded by

M(H+Kt)2 72 (H+Kt)2 2
— Y 4+ K, <——Y M+ —K
oV 6 ST 2 e
where K, refers to the size of XC(). The detailed proof is tedious,
and therefore we provide it in our online technical report [42].

Aare <

Note that if we give V' a reasonably large value (i.e., V > VM ),
then the cumulative regret grows as O(\/M ) which is in a
sub-linear way in the number of local training rounds (i.e., the
number of video chunks). We will evaluate different values of V'
on the overall performance of EMS in §5.

5 PERFORMANCE EVALUATION

In this section, we implement a prototype of EMS and conduct
extensive testbed driven experiments to evaluate the performance
of the proposed multi-server selection algorithms.

Central DC

‘

K8S for
Cloud natlve

Fig. 6: The testbed of EMS.

5.1 Testbed implementation

As shown in Fig. 6, our testbed consists of 9 desktops connected
with a Huawei gigabit switch, and each desktop will exploit
Kuberenets (K8S) to orchestrate the containerized 5G components

as well as video clients and servers. Particularly, K8S for

Cloud-native 5G orchestrates all the containers in the regional DCs

and central DC dedicated for 5G components (i.e., 5G UPF and

5G core), and K8S for Central (Regional) DC orchestrates local

containers for edge services (e.g., edge computing and caching).

Cloud Native 5G network. We exploit two open-source
projects UERANSIM [44] and OPENS5GS [45] to emulate the
components and functionalities of 5G, in which UERANSIM
works as 5G UE and RAN (gNodeB) and OPEN5GS works as
5G UPF and 5G Core. In the testbed, we launch one K8S in the
central DC to manage the cloud native 5G network. That is, it will
create a UERANSIM container for each video client, a 5G UPF
container for each regional DC, and a 5G UPF and a 5G Core
container for the central DC. These 5G components cooperate
harmoniously with a specific configuration file, and they provide
the underlying connection for each video client and server.

Video Client. For ease of implementation, we create a
container to emulate each video client that consists of a video
player in the browser (i.e., dash.js [46]) and a proxy created
by Python that enables multi-server selection and erasure-coded
chunk decoding. Specifically, we exploit Zfec [47], an open-source
Python package for erasure coding, overwrite Zfec’s APIs to
achieve in-memory decoding (i.e., avoiding the data transmission
between memory and storage), and create a local socket program
to achieve the data transmission between Zfec and dash.js.

Video Server. We create a container to emulate each video
server that is built by Apache Tomcat [48]. As to erasure-coded
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Fig. 7: Performance of the proposed multi-server selection algorithms (i.e., L-EMS and D-EMS).

video, we download an 8K video (10-minute length) from Youtube
and encode it with the bitrate 100Mbps by FFmpeg [49]. Then, we
divide the encoded video into multiple video chunks with a typical
4-second duration (i.e., 150 video chunks in total) and package all
the derived chunks in the DASH format by MP4Box [50]. We
erasure-code each video chunk into D data blocks and P parity
blocks by Zfec [47] (D = P =6 by default), and deploy one video
block on one video server’.

Bandwidth setting. We synthesize a series of downstream
bandwidth samples between client and server in terms of the
real data distribution in Fig. 3. Specifically, we exploit the curve
fitting tool in Matlab to derive three approximate distributions
for each CDF curve (i.e., Gamma, Burr and Johnson) and then
randomly generate 10000 bandwidth samples denoted by x for
each distribution (AVG refers to the average value of those
samples). Next, we consider three classes of bandwidth settings
(i.e., Low: 12 — 15Mbps, Mid: 18 — 21Mbps and High: 24
— 27Mbps), indicating the mean value denoted by MEAN of
synthetic bandwidth used in the following evaluation. Note that
these values are intentionally selected in terms of the given video
bitrate and erasure-coding pattern mentioned above, and different
value settings have little impact on the performance evaluation
(e.g., the comparison among different algorithms). In this context,
we can derive the final bandwidth sample 2’ from any a generated
sample x € x by a simple transformation (Other transformations
are also applicable):

«' =z x (MEAN — MIN)/AVG + MIN,

where MIN refers to the specified minimum bandwidth, which
is set to SMbps for simplicity. In the evaluation, we exploit the
Linux built-in Traffic Control (TC) tool in each server to control
its bandwidth capacity every 2 seconds®, in terms of the derived
final bandwidth samples (i.e., x’).

5.2 Testbed driven evaluation

Metric. We exploit the cumulative regret denoted by Regret to
indicate algorithm performance (i.e., the cumulative gap between
the expected optimal reward and the actual reward derived by
a given algorithm), and exploit the total rebuffer time denoted by
Rebuffer to indicate streaming performance since our experiments
do not involve any ABR algorithms (i.e., video bitrate is fixed).

7. Note that different 8K videos have little impact on the performance
evaluation by using the above erasure-coded video making. In addition, we do
not consider multiple bitrate versions so as to eliminate the impact of adaptive
bitrate algorithms (i.e., we do not involve any ABR algorithms).

8. This setting is used to generate various and dynamic network conditions,
and different settings have little impact on the algorithm comparison.

Note that the expected optimal reward can be easily calculated in
terms of the given system setting as mentioned in §4, the actual
reward can be obtained when D video blocks of each chunk are
downloaded, and the total rebuffer time can be obtained at the end
of each time of streaming. We conduct the performance evaluation
by answering the following questions.

Q1: Does the practical performance of the proposed
algorithms coincide with the theoretical analysis?

Setting. The experiment consists of 1 client and 12 servers
that store 6 data blocks and 6 parity blocks (i.e., erasure-coding
pattern is 6/6). The client streams the test video 10 times (i.e.,
150 x 10 = 1500 algorithm execution rounds). One third of
servers respectively select Low, Mid and High class associated
with a randomly selected bandwidth distribution from Gamma,
Burr and Johnson to generate 3000 bandwidth samples (i.e., one
algorithm execution round corresponds to a 4s video chunk, and
the bandwidth is changed every 2s). As to D-EMS, we set the
predefined system parameter V' = 100 and the threshold of the
average number of selected servers I = 9. Besides, we consider
D-EMS(6) in which the parameter V' = 100 and the threshold
H = 6, so as to facilitate the performance comparison between
D-EMS and L-EMS. Without specific statements, the following
experiments will adopt the same setting.

Result. The evaluation results are shown in Fig. 7. To begin
with, we can find from Fig. 7(a) that the achievable regret of
each algorithm is consistency with the theoretical analysis. That
is, it is in a sub-linear way in the number of algorithm execution
rounds. In addition, Fig. 7(b) reveals that the total rebuffer time
of one time of streaming achieved by each algorithm decreases
with algorithm execution rounds increasing. For example, the total
rebuffer time of the 9-th streaming under L-EMS and D-EMS
respectively achieves 74% and 82% reduction compared with that
of the 1-th streaming. These results indicate that our proposed
algorithms can effectively filter out good servers and accordingly
achieve better performance over time. In addition, we can find that
the performance of L-EMS is better than that of D-EMS(6) (i.e.,
smaller total rebuffer time and smaller fluctuation). For example,
the total rebuffer time of the former one is 15% smaller than
the latter one’s at the 1-th streaming round. This gap is shorten
with the streaming round increasing. In other words, L-EMS
has a faster convergence rate compared with D-EMS when both
of them select the minimum number of servers (i.e., 6 in the
current setting) for chunk recovery. The reason is that L-EMS
by definition aims to filter out the “best” video servers while
D-EMS will only filter out the “qualified” ones. We also evaluate
the performance of D-EMS with different V' as shown in Fig.
7(c) and Fig. 7(d), which are in accordance with the behavior of
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Fig. 8: Performance comparison under different algorithms.

Lyapunov-based algorithms. That is, a larger V' can facilitate the
objective while loosing the long-term constraint.

Q2: How is the performance of the proposed algorithms
compared with alternative ones?

Setting. The experiment considers both multi-source
streaming algorithms and UCB based algorithms for performance
evaluation. The first one includes

e ALLS: adopt the same setting with EMS in which the client
will download the video blocks from all the servers;

e PreBW [13], [32]: adopt the replication storage mode
(i.e., only two servers store the whole video as our
erasure-coding pattern is 6/6) in which the client will
proportionally download the video chunk in terms of the
bandwidth prediction (i.e., Harmonic mean method);

e ProBW: also adopt the replication storage mode in which
the client will proportionally download the video chunk in
terms of the bandwidth probing [31].

The second one includes

e LinUCB [51]: a contextual-aware bandit algorithm which
picks one arm per round. Here, the context is the predicted
bandwidth and we run it D times to get sufficient servers;

o e-greedy [14]: attempt to select D servers by using a
variant of e-greedy algorithm;

e PR:regard the UCB estimate as the probability to conduct
the multi-server selection. It will repeatedly operate until
D servers are selected.

We consider two kinds of experiments: (1) only varying
transmission bandwidth; (2) given the transmission bandwidth
while vary propagation delay. For the first one, we consider all

every 2 seconds, in terms of the derived CDF of RTT values from
the FCC dataset. We repeatedly run each experiment 20 times.

Results. Here, we consider the streaming performance under
different algorithms. Fig. 8 presents the total rebuffer time of the
10-th streaming. In the first experiment (i.e., Fig. 8(a) and Fig.
8(b)), L-EMS and D-EMS can achieve better performance. For
example, when the bandwidth setting is the Mid class for servers,
the total rebuffer time under L-EMS is on average 61% and 73%
reduction compared with the multi-source streaming algorithms
(except for ALLS) and the UCB based algorithms, respectively.
The reasons are two-fold. First, it is difficult to accurately
predict or probe bandwidth, resulting in suboptimal multi-source
streaming. Second, the comparable UCB based algorithms lack
theoretical performance, which could not always select reasonably
good servers per round and result in suboptimal performance over
time. In addition, the performance of D-EMS is much better (i.e.,
63% on average) than that of L-EMS. The main reason is that
D-EMS associated with the long-term constraint can exploit and
explore more servers per round, which contributes to filtering out
qualified servers. Indeed, as shown in Fig. 8(a) the performance of
D-EMS is only on average 13% worse than that of ALLS (Low:
20%, Mid: 17% and High: 3%) In the second experiment (i.e.,
Fig. 8(c) and Fig. 8(d)), we can find that the algorithm comparison
shares the same trend when taking RTT into account. The reason
is that the operation of all the algorithms (except ALLS) depends
on the end-to-end bandwidth, which is mainly influenced by the
allocated server bandwidth and the propagation delay (i.e., RTT)
in practice, and the impact of RTT on the end-to-end bandwidth
could be viewed as a “penalty” for the allocated server bandwidth.
Indeed, when the number of servers with RTT increase, the
performance of all the algorithms will slightly decrease.

As to the algorithm running time, we should emphasize that

the 12 servers will select the same class from Low, Mid or

all the algorithms are lightweight compared with the duration of

High associated with the Gamma distribution and do not take the

video chunk (i.e., 4s). For example, the running time of LinUCB

round-trip time (RTT) into account. For the second, we consider

and e-greedy are less than 1ms, and that of PreBW is less than

all the 12 servers will select the same class from Mid associated

20ms. Although our proposed D-EMS has a longer running time,

with the Gamma distribution and respectively control RTT values

it is still acceptable in practice as discussed in Q5.

for 4, 8 and 12 servers. Specifically, we consider the latest
broadband measurement dataset (2022.01 —2022.06) released by
federal communications commission (FCC) [52], which contains
a “Latency Under Load” field to indicate the round-trip time
between clients and servers. We derive the CDF of RTT values
from the dataset and exploit it to adjust the transmission delay for
servers. Note that since the round-trip time is impacted by many
factors (e.g., packet queueing and loss in the routers) in practice,
we instead adjust the transmission delay at the server side to
simulate the round-trip time. That is, we exploit the Linux built-in
traffic control tool in each server to control its transmission delay

Q3: How is the impact of erasure-coding pattern (i.e.,
different combinations of D and P) on the performance of
the proposed algorithms?

Setting. We consider two kinds of experiments. The first one
fixes the number of video blocks (i.e., D+P = 12) while changing
the proportion of D and P. The second one considers a different
number of video blocks while keeping the proportion of D and
P (i.e., 1:1). As to the bandwidth setting, we consider that all
the servers will select the Mid class associated with the Gamma
distribution. Both experiments are run 20 times.

Results. Here, we consider the streaming performance with
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Fig. 9: The impact of erasure-coding (EC) pattern on the performance.

different erasure-coding patterns. Fig. 9 presents the total rebuffer
time of the 10-th streaming. As shown in Fig. 9(a), the total
rebuffer time experiences a quick decrease in the beginning and
a slight increase in the end with the number of data blocks (i.e.,
D) increasing. This observation verifies our argument in §4.1.
That is, a small number of data blocks will enlarge the file
size of each video block and accordingly require more server
bandwidth. In contrast, a large number of data blocks will enlarge
the upper bound of regret, both of which could damage the
practical performance. Therefore, we consider that EMS should
exploit a relatively balanced combination of D and P. As shown
in Fig. 9(b), the total rebuffer time decreases from the pattern
4/4 to 6/6, while keeping it relatively stable from 6/6 to 8/8.
The reasons are two-fold. First, The larger number of video
blocks refers to a larger number of video servers, which indicates
the more bandwidth at the server side and accordingly benefits
the streaming performance. Second, the streaming performance
cannot continuously increase with the number of video blocks
increasing, since decoding more video blocks require more time
as shown in Fig. 11.

Q4: Does the federated learning paradigm benefit EMS?

Setting. From the previous evaluations, we can find the
superior performance of the RL-based multi-server selection.
Here, we wonder if the global aggregation can further enhance
the performance. To this end, this experiment considers multiple
clients to conduct video streaming simultaneously, consisting of
6 clients and 12 servers. Note that the setting where only one
client conducts video streaming represents the no FL scenario
(i.e., single user scenario). The erasure-coding pattern is still 6/6.
As to the bandwidth setting, we consider that all the 12 servers
will select the same class from Low or High associated with
the Gamma distribution. Note that as our bandwidth samples
are synthesized from real data distributions, we do not consider
the server bandwidth competition from multiple clients’. In other
words, we exploit the TC tool to control the server bandwidth
capacity for each pair of client and server. We repeatedly run the
experiment 20 times.

Results. Here, we consider the streaming performance with
a different number of clients. Fig. 10 presents the total rebuffer
time of the 10-th streaming. Intuitively, the performance of both
proposed algorithms gets better as the number of concurrent
clients increases. For example, the performance of D-EMS when
the number of clients is 6 is respectively 94% and 42% better
than that when the number of clients is 1 (i.e., no FL scenario)

9. In practice, video servers can exploit some isolation techniques to allocate
bandwidth for users so as to avoid resource competition. For example, as to
each video, they can set many backup containers with the same amount of
resources and serve each client with one container exclusively.
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Fig. 10: Performance comparison with different number of clients.

in the Mid and Low bandwidth setting. This is because given
a set of clients, increasing the number of concurrent clients is
approximately equivalent to increasing the times of streaming.
Therefore, we can hold that the federated learning paradigm,
including RL-based multi-server selection and global aggregation,
can achieve a good performance.

Q5: How is the overhead of EMS?

Setting. At last, we evaluate the extra overhead of EMS.
Compared with the general video streaming, EMS as discussed
in §3 introduces multi-server selection, video chunk decoding and
transmission of local trained service quality of servers. To this
end, we run the experiment in Q1 multiple times to collect the
algorithm running time and chunk decoding time. Besides, we
further evaluate the chunk decoding time with different system
settings such as erasure-coding patterns and chunk sizes. Note
that we do not need to consider the transmission of local trained
service quality of servers, since it is of small size and only occurs
when the video streaming finishes.
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Fig. 11: System overhead.

Results. The evaluation results are shown in Fig. 11. From
Fig. 11(a), we can observe that EMS is a lightweight framework.
For example, the running time of both L-EMS and D-EMS is
less than 70 ms, and the erasure-coding based chunk decoding
time is 100 ms on average, which is negligible compared with
the 4s chunk duration. From Fig. 11(b), we can find that the
erasure-coding pattern greatly impacts the decoding time. For
example, the decoding time when the erasure-coding pattern
is 8/8 is on average 54% longer than that when it is 4/4,
and it will exceed 1s when the chunk size is 300MB (.e.,
bitrate is 300x 8/4=600Mbps). However, we should emphasize
that a fine-granularity erasure-coding pattern also means many
cooperative video servers, which can greatly reduce the data
transmission time. In this context, we believe multi-source
streaming and erasure-coding storage could complement each
other in practice, which indicates the feasibility of EMS.

We also exploit the NVIDIA Jetson TX2 [53] (Quad-Core
ARM Cortex-A57 CPU and 8G RAN) to emulate a mid-end



mobile device and repeat the above experiment. The derived
algorithm running time and chunk decoding time are slightly
longer than the test desktop’s (Dual-Core INTEL i7-8700 CPU
and 8G RAN). For example, the running time of both L-EMS and
D-EMS is less than 120 ms, and the erasure-coding based chunk
decoding time is 210 ms on average (i.e., roughly 0.3s overhead
in total). Therefore, we consider that EMS is lightweight and can
be applied to many off-the-shelf mobile devices in practice.

6 DISCUSSION AND LIMITATION

EMS is a practical and promising framework built on top
of cloud native 5G networks. As containers and microservices
can offer many benefits such as agility, flexibility, resilience and
cost efficiency, cloud native 5G networks have been receiving
increasing attention from many MNOs and will be commercially
available in the near future [5], [6]. As shown in Fig. 1, EMS
can be viewed as a specific “microservice” tailored to UHD video
streaming, in which each video server consists of a video container
and several backup containers. Besides, as EMS operates at the
application layer, it does not need to care about but benefits from
various promising underlying network technologies such as 5G
new radio specifications, flexible ethernet and segment routing.

EMS can also be extended to support provider-driven
multi-server selection. According to the algorithm design in
84, the client-driven multi-server selection is conducted by
the individual user with the granularity of video chunk (i.e.,
local control), aiming to maximize user QoE while respecting
system cost constraints. With a different design philosophy, the
provider-driven multi-server selection will be conducted by the
portal server with the granularity of time slot (i.e., global control),
aiming to minimize system cost while respecting user QoE
constraints. We consider the proposed federated learning based
service quality of video servers can also benefit the provider-driven
multi-server selection, such as facilitating the modeling of average
user QoE per user area, and we can design a deep reinforcement
learning based algorithm for the multi-server selection, due to the
sufficient processing capacity of the portal server.

Realistic evaluation issue. We should emphasize that our
testbed tries the best to emulate the realistic video streaming
for EMS, since (1) it controls the transmission bandwidth of
each video server for each client; (2) it exploits the end-to-end
bandwidth fluctuation from real datasets and measurements; (3) it
takes UERANSIM and OPENS5GS, two open-source 5G projects
into account so as to emulate the behavior of cloud native
5G network. Therefore, we believe our evaluation results are
meaningful. Nevertheless, due to budget and hardware limit
our testbed driven evaluation is an emulational and small-scale
laboratory experiment (e.g., no packet loss or queueing at the
routers), and we will consider a more realistic and large-scale
evaluation involving 5G network and edge servers through the
cooperation with some mobile network operators in the future.

User mobility issue. In this paper, we simply assume user
movement during video streaming should be relatively small.
In other words, the event that a user moves from one area to
another during video streaming occurs infrequently. Therefore,
if EMS detects the event occurrence (e.g., with the help of
the functionalities of 5G Core), it will simply exclude that user
from the global aggregation of service quality. More sophisticated
processing for user area handover in EMS will be considered in
the future work.

7 CONCLUSION

We present EMS, a novel UHD video streaming framework
within cloud native 5G networks by integrating erasure-coded
storage with multi-source streaming. We respectively introduce
a deadline-aware and a latency-sensitive metric to indicate the
service quality of video servers and advocate a federated learning
paradigm for the adaptive service quality update, including
a reinforcement learning based multi-server selection and a
global service quality update. We cast the multi-server selection
associated with the restriction on the average number of selected
servers per video chunk into two kinds of MAB models in terms of
the proposed service quality metrics and correspondingly design
lightweight UCB based algorithms with a theoretical performance
guarantee. Extensive testbed driven experiments confirm the
superiority of the proposed multi-server selection algorithms.
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