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Edge AI Inference as a Service via Dynamic
Resources from Repeated Auctions
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AbstractÐTo enable edge AI providers to recruit edge devices and use them to deploy AI models and provision inference services,

we conduct a comprehensive mathematical and algorithmic study on a novel incentive and optimization mechanism based on repeated

auctions. We first model and formulate a time-cumulative social cost optimization problem to capture the challenges of the trade-off

between cost and accuracy, the dependency between adjacent auctions, and the need of achieving desired economic properties. Then,

to solve this intractable non-linear integer program in an online manner, we design a set of polynomial-time algorithms that work together.

Our approach dynamically chooses and switches winning bids under careful control, incorporates online learning to overcome posterior

inference accuracy and workload queue dynamics, and leverages randomization to strategically convert fractional decisions of model

placement and query dispatch into integers. We also allocate payments to meet the necessary and sufficient conditions for the desired

economic properties. Further, we rigorously prove the constant competitive ratio, the sub-linear regret and fit, and the truthfulness and

individual rationality for our proposed approach. Finally, through extensive experiments using real devices, AI models, and data traces,

we have validated the substantial advantages of our proposed approach compared to the baselines and the state-of-the-art methods.

Index TermsÐEdge AI, Inference, Edge Computing, Online Optimization, Online Learning, Auction

✦

1 INTRODUCTION

Edge AI inference [1] entails deploying machine learning
models upon devices at the network edge closer to the end
users, substantially reducing response time and bandwidth
consumption and safeguarding data privacy [2]. As a ser-
vice, edge AI inference is adopted in a range of applications,
such as virtual reality [3], healthcare [4], and autonomous
vehicles [5]. For example, in virtual reality, the inference
service receives the end users’ inference requests such as
gestures and voices and provides inference results promptly.

Unfortunately, many edge AI services do not actually
have sufficient and satisfying edge devices for deploying
edge AI inference. Although today’s cloud computing ven-
dors also provide ªpay-as-you-goº edge computing services
[6], they could still be costly, especially for small-scale edge
AI businesses. For instance, Amazon CloudFront has the
computation price 6 times higher than its EC2 [7]. Besides,
such existing edge infrastructures, distributed though, often
reside at pre-specified fixed locations, and may still be
unable to sufficiently reach the target group of end users in
particular geographic locations at a finer granularity. More
importantly, current commercial edge provisioning focuses
on edge servers only; yet, an edge device does not actually
have to be an edge server, and it can be a smart router [8],
a home NAS [9], and a personal computer, e.g., the ªAI PCº
[10]. Ideally, it could be better if any of such edge devices
at any location could be potentially and appropriately em-
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Fig. 1: Architecture of Auction-Based Edge AI Inference

ployed and released as needed by the edge AI service.

Moving toward this direction, what is needed here is an
incentive mechanism to incentivize the edge device owners
to contribute their edge devices or idle resources on such
edge devices to the edge AI service. Auction can serve as
such an incentive mechanism, as shown in Fig. 1. The edge
AI inference service can act as the auctioneer and conduct
auctions to procure edge resources as bids from the edge
devices that can act as the bidders. Auction has many
advantages indeed, including reducing the chance of mis-
pricing, matching the demand with the supply better, and
capturing the market dynamics in real time [11], [12].

However, it is non-trivial to design auction-based mech-
anisms to continuously operate and orchestrate the edge
AI inference service with desired service quality at min-
imum cost upon dynamically-recruited edge resources,
while keeping the edge devices incentivized to contribute
such resources. We identify three unique and fundamental
challenges as follows, also highlighted in Fig. 2.

Cost vs. Accuracy under System Dynamics: Given the
often limited edge capacity, we need to carefully choose
between high-accuracy models which can consume exces-
sive edge resources and low-accuracy models which can



IEEE TRANSACTIONS ON MOBILE COMPUTING 2

Incentive Mechanisms

Cost vs. Accuracy under 
System Dynamics

Dependency between 
Adjacent Auctions

Hinder

User-owned Edge 
Devices

Challenges

Social Cost Optimization 
Problem

Pre-specified Economic 
Properties for Auction

Novel Polynomial-time 
Algorithms

Online Learning 

Randomized Rounding

Payment Allocation

Online Auction

Theoretical Guarantees 

Regret and Fit

Truthfulness and 
Individual Rationality

Trace-Driven 
Experiments/Testbed

Our Work

Insufficient 
Existing Research

Edge AI Service 

Need

Unsatisfying
Edge Infrastructures

Help

Competitive Ratio

Incentivize

Fig. 2: Structure of the Introduction Section

save resources but have less satisfying service quality. What
complicates this is that the inference accuracy is posteriorÐ
we only observe the accuracy (or the error rate) of a model
upon users’ inference queries after we actually deploy and
use this model to serve those queries. When making model
deployment decisions, as the actual queries have not been
served yet, we have no knowledge about the model’s per-
formance on those queries. The difficulty further escalates
because meanwhile we need to (i) dispatch users’ queries
to different edge devices under time-varying network con-
ditions at minimum communication cost, and (ii) maintain
and eventually clear the query queue on each edge device
given models’ diverse execution speeds on different devices.

Dependency between Adjacent Auctions: The auctions
are not a one-time transaction, but are often repetitive as
we continuously recruit edge resources; yet, each auction
cannot just work independently. An edge device that was
a winning bid in the last auction but does not win in the
current auction may revoke its resources, shut down, or
leave the system; if it joins again in the next auction and
is selected to win, then it can incur ªswitching costº, be-
cause the inference service needs to re-authorize the device,
re-initialize its execution environment, and re-deploy the
model(s), causing leading time and effort. To mitigate such
switching cost, ideally, we should choose a winning bid in
one auction by cautiously expecting whether this bid could
also win in the next auction; yet, this is pretty hard if ever
possible, because the next auction has not occurred yet and
the inputs then could all change as it happens [1], [13].

Economic Properties of Each Auction: Even for a single
auction in our scenario, it is still non-trivial to design and

solve. Choosing winning bids requires to not only balance
cost and accuracy but also attain the desired economic
properties such as truthfulness and individual rationality
[11], [14]. Truthfulness ensures that every bid maximizes its
utility by bidding the price that reflects the bidder’s true
valuation (i.e., no motivation to lie about the bidding price),
and individual rationality ensures that every bid always has
non-negative utility regardless of the auction outcome (i.e.,
voluntary auction participation). The well-known Vickrey-
Clarke-Groves (VCG) mechanisms [15] can achieve such
economic properties. However, original VCG requires to
exactly solve the underlying optimization problem, but our
problem, due to the complexities and integer decisions, is
intractable as will be shown; fractional VCG [16] is also
inapplicable, due to the existence of the extra terms of the
edge AI inference overhead and accuracy in each auction.

Existing studies fall short to effectively tackle the afore-
mentioned challenges. Many works [1], [13], [17]±[19] on
edge AI inference systems often assume abundant resources
without dynamically adding or removing resources through
economic means, unable to meet the needs of our scenario.
Other works [11], [12], [20]±[23] on incentive mechanisms at
the network edge typically do not consider AI inference,
or ignore the unique features and challenges of edge AI
inference as we highlight above, thus inapplicable to our
scenario. See Section 6 for detailed discussions.

In this paper, we overcome all the aforementioned chal-
lenges via a mathematical and algorithmic study with solid
theoretical analysis. We make multiple contributions:

First, we model and formulate a time-cumulative social
cost optimization problem, which minimizes the sum of
the edge AI service’s cost, the edge devices’ cost, and the
inference error rate, subject to resource capacity and infer-
ence query queue dynamics. The control decisions include
winning-bid selection, model placement, query dispatch,
and payments to bids in each auction at each corresponding
time slot. This problem is a non-linear integer program,
unsurprisingly NP-hard, but is general enough with almost
zero assumption on the input dynamics and heterogeneities.

Second, to enable the edge AI service to solve this prob-
lem to provision the inference service while procuring the
resources, we propose four novel polynomial-time online
algorithms that can work jointly. We decouple our original
problem into two sub-problems based on the bid-switching
cost. We design our overall online optimization algorithm to
dynamically balance the switching cost and all the rest of the
cost terms by only triggering a new switch operation when
the accumulated other costs exceed a pre-specified parame-
ter times the switching cost of the last switch operation. To
that end, we invoke our second algorithm, which is based on
online learning, to address the posterior inference accuracy
and the query queue state transitions for each auction. Dur-
ing this process, we also invoke our third algorithm which
adopts randomization to convert all our fractional control
decisions into integers without violating any constraints at
each time slot. Via our fractional and integral bid-selection
decisions, our fourth algorithm calculates payments in each
auction using the real bidding prices and the conceived
alternative bidding prices of the winning bids.

Third, we rigorously prove the multiple worst-case per-
formance guarantees associated with our algorithms. Over-
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all, our combined algorithmic approach achieves a constant
competitive ratio, i.e., the social cost incurred by our online
approach (which observes the inputs gradually) is upper-
bounded by this constant times the social cost in the offline
optimal situation (which observes all inputs in hindsight
at once). For our online learning component that addresses
all the non-switching costs, we achieve sub-linear regret
and fit, i.e., as time goes, the time-averaged difference
between those costs incurred by our approach and those
incurred in the series of one-shot optimums vanishes, and
the time-averaged violation of the long-term constraints
also vanishes. Our payment allocation component meets
the sufficient and necessary conditions for truthfulness and
individual rationality in randomized auctions, and thus
achieves these economic properties simultaneously.

Fourth, we build a testbed with real hardware, adopt real
AI models, and compare our approach to a variety of other
methods driven by real traces (e.g., edge device locations,
workload variations) for various performance metrics. We
briefly summarize our observations: (i) Our approach saves
social cost in real time, reducing social cost by 55%∼70%
cumulatively compared to baselines and by 30%∼49% cu-
mulatively compared to state-of-the-arts; (ii) Our approach
scales well with inputs and consistently outperforms others;
(iii) Our online learning component has the lowest regret,
achieving sub-linear growth in both regret and fit; (iv) Our
approach achieves truthfulness and individual rationality
in practice; (v) Our algorithms run fast and finish in tens
of milliseconds, except the payment allocation which could
consume seconds, acceptable per 15-minute-long time slot.

The rest of this paper is structured as follows. Section 2
models and formulates the social cost optimization problem.
Section 3 proposes and designs our algorithms to solve this
problem online. Section 4 analyzes and proves the theo-
retical performance guarantees of our algorithms. Section
5 validates the practical performance of our algorithms
via testbed-based experiments. Section 6 summarizes the
existing research. Section 7 discusses some related issues in
this work. Section 8 concludes.

2 MODELING AND FORMULATION

2.1 Scenario Feasibility

Today’s user-owned edge hardware already supports the
deployment of edge AI inference and also has the idle capac-
ity for it. These edge devices just need to be incentivized to
participate in edge AI inference, which motivates our study.

• Abundant Idle Resources at Edge: The number of the
edge devices in reality, such as smart routers and
home NAS systems [9], has been growing steadily
in recent years. According to the Global IoT Market
Forecast report [24], the number of IoT devices is
expected to reach 40 billion by 2030. Yet, a significant
portion of such devices remain idle [25] for long
periods. Statistics indicates that idle devices account
for 32% of total energy consumption. Leveraging
these underutilized devices can help reduce resource
waste and maximize efficiency.

• AI-Aware Edge Hardware Technology: The rapid
advancement in edge hardware supports the de-
ployment of edge AI inference. First, an increasing

TABLE 1: Notations

Input Description

N Set of edge devices
M Set of AI models
T Set of time slots

Bn,t Bid submitted by edge device n at time slot t
bn,t Bidding price of bid n at t
ln Switching cost for edge device n
cn Computing resource capacity of edge device n
rm Computing resource demand of model m
qn Query queue capacity of edge device n

pn,m # of queries processed by model m on edge device n
per time slot

en,m,t Comm. cost for sending model m to edge device n at t
dn,t Comm. cost for sending one query to edge device n at t

δn,m,t Whether to send model m to edge device n at t
an,m,t Error rate of model m on edge device n at t

τt # of queries submitted by end users at t

Decision Description

xn,t Whether edge device n wins in the auction at t
yn,m,t Whether model m is deployed on edge device n at t
zn,m,t # of queries sent to model m on edge device n at t
wn,t Payment made to edge device n at t

number of edge devices are now equipped with AI
accelerators (e.g., NVIDIA NX Series [26]), enabling
efficient inference. Second, the storage capacity of
edge devices (e.g., home NAS [9] and Webcam [27])
has expanded significantly, with many now support-
ing TB-level storage. Third, the widespread adoption
of 5G [28] and Wi-Fi 6 [29] has significantly reduced
the communication latency and increased the avail-
able bandwidth between edge devices and central
servers, making edge inference more effective.

• Applications of Edge AI Inference: As deep learning
models evolve, inference services have become criti-
cal for supporting many real-time applications (e.g.,
virtual reality [3], healthcare [4], and autonomous
vehicles [5]). These applications require the timely
processing of large volumes of data to deliver high-
precision and low-latency intelligent services, where
deploying AI models at edge has been widely be-
lieved to be a valid solution.

2.2 System Settings and Models

Our notations are summarized in Table 1.

Edge AI Inference System: As shown in Fig. 3, the
edge AI inference system under our consideration is mainly
composed of three entities. First, the inference service is
operated and managed by a service provider, who wants to
leverage the edge devices to deploy its AI models and run
the inference service on such edge devices to serve the end
users’ inference queries. We use the set M = {1, 2, ...,M}
to denote the AI models of the inference service. Second,
the edge devices are owned by the corresponding device
owners, respectively, and have available resources that can
be used by the edge AI inference service. Such edge devices
are often distributed at diverse locations in close proximity
to the end users, and can include edge servers, desktops,
and mobile devices. We use the set N = {1, 2, ..., N} to
denote all the edge devices. Third, the end users submit
inference queries to the edge AI inference service, which
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will be processed on the edge devices, and receive the infer-
ence results. We consider the entire system operating over
consecutive time slots, denoted by the set T = {1, 2, ..., T}.

Procurement Auctions: At each time slot, the edge AI
inference service acts as the auctioneer and conducts an auc-
tion with the edge devices that act as the bidders. Without
loss of generality, we consider each edge device submitting
one bid in each auction. If an edge device does not submit
a bid in an auction, we equivalently treat it as submitting
a ªvirtual bidº with the positive infinity bidding price, and
thus this virtual bid will never be chosen as a winning bid.

The auction at any time slot t ∈ T has multiple steps,
as depicted in Fig. 3. First, the inference service solicits
bids, and each edge device submits a bid in the format
of Bn,t = {bn,t, cn, βn}, n ∈ N , where bn,t represents the
bidding price, i.e., the amount of money that the edge device
n wants to charge for the inference service’s usage of the
resources on this edge device during the time slot t; cn
denotes the available resource capacity, e.g., total number of
available processors (or processor cores) on the edge device
n; and βn is the processing speed per processor (or per
processor core) on the edge device n. Here, processor types
and speeds may vary across devices, but we only consider
homogeneous processors (or cores) on a given device; our
work in this paper can be easily extended to the heteroge-
neous case. Second, after receiving all the bids, the inference
service determines the winning bids while also calculating
the payment to each winning bid. Note that the payment to
a winning bid may not be necessarily equal to the bidding
price of the bid. Part of our goal in this paper is to design
algorithms to decide the winning bids and the payments.
Third, based on the auction outcome, the inference service
sends selected AI models to the corresponding edge devices,
dispatches the users’ inference queries to those edge devices,
uses the models to process the queries, and returns the
inference results to the users. Fourth, the inference service
makes payments to the edge devices. Depending on the
reached agreement between the auctioneer and the bidders,
the third step may occur before or after the fourth step.

Control Decisions: We consider multiple control deci-
sions for the inference service at each time slot: xn,t ∈ {1, 0}
indicates whether or not the inference service chooses the
edge device (or the bid) n as a winner in the auction at the
time slot t; yn,m,t ∈ {1, 0} indicates whether or not the in-
ference service selects and deploys the model m on the edge
device n at the time slot t; zn,m,t ∈ Z+ indicates the number
of inference queries that the inference service distributes to
the model m on the edge device n for processing at the time
slot t; and wn,t ≥ 0 indicates the payment that the inference
service makes to the edge device n at the time slot t.

Cost of Inference Service: At each time slot t, the cost
incurred at the inference service consists of multiple compo-
nents. First, the service makes payments to the winning bids

as
∑N

n=1 xn,twn,t. Second, the service dispatches models to
each edge device, which incurs the communication cost,

denoted as
∑N

n=1

∑M
m=1 en,m,tyn,m,tδn,m,t. Here, en,m,t can

represent the transmission time or traffic volume for send-
ing the model m to the edge device n at the time slot t. δn,m,t

is a binary indicator that captures whether or not the model
m actually needs to be sent to the edge device n at the time
slot t. If it is needed, then δn,m,t = 1; if not, δn,m,t = 0.
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Fig. 3: Auction in the Edge AI Inference System

The model may not be needed if this same model has
already been on the edge device due to previous auctions;
the model could be needed, because the model itself may
be updated by the inference service, or the edge device may
have deleted the model due to not winning a previous auc-
tion. Third, the service dispatches inference queries to each
model on each edge device for processing, which also incurs

the communication cost, denoted as
∑N

n=1

∑M
m=1 dn,tzn,m,t.

Here, dn,t can represent the transmission time or traffic
volume for sending a single inference query to the edge
device n at the time slot t. Consequently, the total cost of

the inference service over time is
∑T

t=1(
∑N

n=1 xn,twn,t +∑N
n=1

∑M
m=1(en,m,tyn,m,tδn,m,t + dn,tzn,m,t)).

Cost of Edge Devices: At each time slot t, the cost
incurred on each edge device n also consists of multiple
components. First, the bidding cost xn,tbn,t, which can
be determined by the edge device’s operational cost such
as electricity consumption at the time slot t, amortized
hardware expense per time slot, etc. Second, the payment
received from the inference service, which is treated as
negative cost, i.e., −xn,twn,t. The third is the ªswitching
costº. When the inference service did not choose an edge
device as a winner in the previous auction at t − 1 but
chooses this edge device as a winner in the current auction
at t, then the inference service may need to re-connect to and
re-authorize the edge device; and the edge device may also
need to re-initialize the execution environment, re-prepare
the resources, or even re-start the device. Such operations
can take the leading time, considered as a type of cost that

we call the switching cost. We use
∑N

n=1 ln[xn,t − xn,t−1]
+

to denote the switching cost, where [·]+ ≜ max{·, 0}, and
ln is such leading or startup time of the edge device n.
Consequently, the total cost of the edge devices over time

is
∑T

t=1

∑N
n=1(xn,t(bn,t − wn,t) + ln[xn,t − xn,t−1]

+).

Error Rate of Inference: If we use Υn,m,t to represent the
accuracy of the model m on the edge n at the time slot t, then
we can define the error rate correspondingly as an,m,t =
1 − Υn,m,t. That is, the lower the error rate is, the better
the service quality the inference service provides. The error
rate depends on the specific model chosen and the specific
inference queries that are resolved by this model [30]. A
model may also have different versions with different error
rates, which can be essentially treated as different models.
The total error rate of the inference of all models on all

edge devices over time is
∑T

t=1

∑N
n=1

∑M
m=1 an,m,tyn,m,t.

Note that an,m,t is posterior, i.e., it is only observed by the
inference service after deploying the model m on the edge
n and using this model to resolve inference queries there at
the time slot t, no matter what value it is. As the inference
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queries from the end users could vary as time goes, the error
rate of a given model could thus also vary.

2.3 Problem Formulation

Optimization Constraints: We consider the following con-
straints for our optimization problem.

First, on each edge n, the AI models deployed there must
respect the resource capacity of the edge:

∀t, n :
∑M

m=1 rmyn,m,t − cnxn,t ≤ 0, (a)

where rm is the amount of resource, e.g., the number of
processors (or processor cores) requested by the model m
for conducting inference; and cn is as explained before.

Second, each edge device n maintains a queue formed
by the inference queries and the queue dynamics needs to
be correctly reflected:

∀t, n :Qt+1,n=[Qt,n +
∑

m zn,m,t−
∑

m yn,m,tpn,m]+,

∀t, n :Qt,n ≤ qnxn,t.
(b)

Here, Qt,n, ∀t is the current length of the queue, i.e., the
number of inference queries that are currently in the queue
and waiting to be processed, on the edge device n at the
time slot t; zn,m,t refers to the inference queries that arrive
at the edge device n to be processed by the AI model m
at the time slot t; pn,m refers to the number of inference
queries processed by the model m on the edge device n
per time slot, which could depend on βn, rm, and the
model m itself; and qn refers to the query queue capacity
on the edge device n. We enforce QT+1,n = 0, ∀n i.e., the
queue on every device is eventually cleared. We use the
function [·]+ ≜ max{·, 0} to capture the transition from
Qt,n to Qt+1,n, ∀t, n. Note that we target edge AI services
that use their models to process ªsmallº and lightweight
inference queries quickly and efficiently. We enforce the
queue capacity for each time slot, by which we implicitly
push the queued inference queries to get processed. We
do not consider lengthy inference tasks where a task may
need to run for multiple time slots, and also do not consider
explicit deadlines in this work.

Third, all the inference queries submitted to the inference
service at the time slot t, i.e., τt, need to be fully dispatched
to all the AI models on all the edge devices:

∀t :
∑M

m=1

∑N
n=1 zn,m,t = τt. (c)

Optimization Problem: We minimize the social cost over
time, i.e., the sum of the total cost of the inference service,
the total cost of the edge devices, and the total error rate
of the inference over time, subject to Constraints (a)∼(c).
Yet, solving this optimization problem as is in an online
manner is particularly challenging, if ever possible. First,
some inputs cannot be observed in time and can only be
revealed after making the decisions, e.g., the error rate
am,t, and/or the transmission time en,m,t and dn,t. Making
control decisions obliviously without observing the inputs is
intrinsically difficult. Second, the state-transition constraint
based on the non-linear operator [·]+ couples every pair of
adjacent time slots. It is non-trivial to enforce such queue
dynamics on the fly while eventually clearing the queue.

We thus reformulate our problem as follows, and treat
this reformulated problem as our original problem P . In

this reformulation, we selectively relax the ªinstantaneousº
Constraints (b)∼ (c) to the ªlong-termº Constraints C2∼C4.
That is, rather than enforcing the instantaneous constraint
at every time slot, now we only enforce such constraints
cumulatively in the long run.

min
∑T

t=1
{
∑N

n=1

∑M

m=1
{en,m,tyn,m,tδn,m,t+an,m,tyn,m,t+

dn,tzn,m,t}+
∑N

n=1
{xn,tbn,t + ln[xn,t − xn,t−1]

+}}

s.t. C1 :∀t, n : hn
t =

M∑

m=1

rmyn,m,t − cnxn,t ≤ 0,

(1)

C2 :∀n :
T∑

t=1

g1n,t =
T∑

t=1

((T−t)(
M∑

m=1

(zn,m,t−yn,m,tpn,m))

− qnxn,t) ≤ 0,

C3 :
T∑

t=1

g2t =
T∑

t=1

(
N∑

n=1

M∑

m=1

zn,m,t − τt) ≤ 0,

C4 :
T∑

t=1

g3t =
T∑

t=1

(τt −
N∑

n=1

M∑

m=1

zn,m,t) ≤ 0,

var. ∀t, n,m : xn,t ∈ {0, 1} , yn,m,t ∈ {0, 1} , zn,m,t ∈ Z+.

Constraint C1 is Constraint (a), ensuring the resource capac-
ity on each edge at every time slot. Constraint C2 is from
Constraint (b). From Constraint (b), for each n, we have
QT+1,n ≥ QT,n+

∑
m zn,m,T −

∑
m yn,m,T pn,m ≥ QT−1,n+∑T

t=T−1(
∑

m zn,m,t −
∑

m yn,m,tpn,m) ≥ ... ≥ Q1,n +∑T
t=1(

∑
m zn,m,t −

∑
m yn,m,tpn,m) ≥

∑T
t=1(

∑
m zn,m,t −∑

m yn,m,tpn,m), where all ª≥º hold since [a]+ ≥ a, for any
a, and the last ª≥º holds due to Q0,n = 0, zn,m,0 = 0
and yn,m,0 = 0, ∀n,m. Also, due to QT+1,n = 0, we
then have ∀t, qnxn,t+1 ≥ Qt+1,n ≥

∑t
t′=1(

∑
m zn,m,t′ −∑

m yn,m,t′pn,m). Then we sum the inequalities above from
t = 1 to T − 1 and obtain Constraint C2. Constraints C3

and C4 are from Constraint (c). In the above, the optimiza-
tion objective is to minimize the social cost. Aligned with
existing typical social cost optimization, the payments are
cancelled in the social cost; yet, we still need to calculate the
payments as part of our auction outcome in each time slot.
Such cancellation is a common practice in lots of existing
auction-related research. Yet, this does not imply that wn,t

is independent of other decision variables.

Algorithmic Challenges: Solving the relaxed problem
P as above in an online manner is still challenging. First,
the switching cost that couples adjacent time slots still exists
in the objective, so no matter what the bid-selection decision
is made currently, it will impact the switching cost between
the current time slot and the next time slot where the bid-
selection decision for the next time slot is yet unknown
currently. Second, the long-term constraints, supposed to be
easier than instantaneous constraints though, also need to
be carefully handled and enforced on the fly and due to
uncertain future conditions and posterior observed inputs.
Third, the integer decision variables make our problem
an integer program, which is typically NP-hard [31], even
in the offline setting. Fourth, we need to determine the
payment for each winning bid in each auction, which often
depends on the bidding prices and the auction outcome,
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Fig. 4: Workflow of the Proposed Approach

in order to satisfy the desired economic properties such as
truthfulness and individual rationality as elaborated later.

3 ONLINE MECHANISM DESIGN

Algorithm 1 is our main online control algorithm, which in-
vokes Algorithm 2 and Algorithm 3 for bid selection, model
deployment, and query dispatch and invokes Algorithm 4
for payment allocation. This is shown in Fig. 4. These four
algorithms are elaborated in Sections 3.1∼3.4, respectively,
where we also highlight our insights on how each of our
algorithms has overcome the various aforementioned al-
gorithmic challenges. Our proposed algorithms compose a
creative and innovative combination that utilizes and unifies
different ideas in a common framework of handling NP-
hardness in polynomial time in repetitive online auctions
with switching cost and long-term constraints, while being
able to provide provable overall performance guarantees.

Notations: We use {x̄, ȳ, z̄} to denote the integral so-
lution returned by Algorithm 1 as it invokes Algorithm
3, where {x̄t, ȳt, z̄t} is for each time slot t. We also use
{x̃t, ỹt, z̃t}, ∀t to denote the fractional solution produced
within Algorithm 1 as it invokes Algorithm 2.

3.1 Controlled Switch

We decouple Problem P into two sub-problems, i.e., Prob-
lem P1 and Problem P2, based on the switching cost. To
that end, we need to introduce some auxiliary notations:

Θt
S(xt,xt−1) =

∑N
n=1 ln[xn,t − xn,t−1]

+,

Θt
−S(xt,yt, zt) =

∑N
n=1

∑M
m=1(en,m,tyn,m,tδn,m,t+

an,m,tyn,m,t + dn,tzn,m,t) +
∑N

n=1 xn,tbn,t.

Θt = Θt
S(xt,xt−1) + Θt

−S(xt,yt, zt).

Having these, Problem P1 and Problem P2 are as follows.

min
∑T

t=1 Pt,1 ≜
∑T

t=1 Θ
t
−S(xt,yt, zt)

s.t. ∀t : h1
t ≜ ht(xt,yt) ⪯ 0,

∑T
t=1 g

1
t (yt, zt) ⪯ 0,

∑T
t=1 g

2
t (zt) ⪯ 0,

∑T
t=1 g

3
t (zt) ⪯ 0,

var. ∀t, n,m : xn,t ∈ [0, 1], yn,m,t ∈ [0, 1], zn,m,t ∈ R+.

min
∑T

t=1 Pt,2 ≜
∑T

t=1 Θ
t
−S(x̄t,yt, zt)

s.t. ∀t : h2
t ≜ ht(x̄t,yt) ⪯ 0,

∑T
t=1 g

1
t (yt, zt) ⪯ 0,

∑T
t=1 g

2
t (zt) ⪯ 0,

∑T
t=1 g

3
t (zt) ⪯ 0,

var. ∀t, n,m : yn,m,t ∈ [0, 1], zn,m,t ∈ R+.

Note that, compared to P1, the decision variables are only
y and z in P2; and x̄, produced by our algorithms, is given

Algorithm 1 Online Auction Algorithm (OAA)

1: Initialization: t′ = 0, x̄−1 = 0, x̄0 = ȳ0 = z̄0 = 0 ;
2: for t = 1, 2, ..., T do
3: Obtain x̃t, ỹt, z̃t from P1 via Algorithm 2;
4: if Θt′

S (x̄t′ , x̄t′−1)≤η
∑t−1

u=t′ Θ
u
−S(x̄u, ȳu, z̄u) then

5: Round x̃t to x̄t via Algorithm 3;
6: if x̄t ̸= x̄t−1 then
7: Set t′ = t;
8: end if
9: end if

10: Set x̄t= x̄t′ , and get ỹt, z̃t from P2 via Algorithm 2;
11: Round ỹt, z̃t to ȳt, z̄t via Algorithm 3;
12: Apply decisions x̄t, ȳt, z̄t to t;
13: Invoke Algorithm 4 to allocate payment for t;
14: end for

as input in P2. Here, ht is an aggregation of h1
t , h

2
t , ..., and

hN
t ; and g1

t is an aggregation of g11,t, g
1
2,t, ..., and g1N,t.

Algorithm 1 uses the pre-specified parameter η > 0 to
balance the switching cost and the non-switching cost. In
Line 3, the fractional decisions of winning-bid selection,
model placement, and query dispatch are computed, via
Algorithm 2 which will be elaborated in Section 3.2. In Line
4, if the cumulative non-switching cost since the time slot
t′ exceeds 1

η times the switching cost of the last switch

operation that occurred from t′ − 1 to t′, then it seeks to
use the new decisions which have been just computed,
as in Lines 5∼8. In Line 5, the fractional decisions are
rounded into integers using Algorithm 3, which will also
be elaborated later. Lines 6∼8 record the time slot as a new
switch operation has to occur. In Line 10, it uses x̄t as the
given input to solve P2 via Algorithm 2, where x̄t can be
either just generated at the current time slot or carried over
from the previous time slot, depending on the value of t′ at
this point. In Line 11, all other corresponding decisions are
rounded. Line 13 calculates the payment via Algorithm 4,
which will be described later.

Insights: The way the parameter η is used in Algorithm 1
forces that between adjacent switch operations the previous
switching cost is no greater than η times the non-switching
cost accumulated; intuitively, this guarantees the total cost,
including both switching and non-switching, is no greater
than 1 + η times the non-switching cost. To further make
such total cost incurred by our online decisions ªcompeti-
tiveº against the offline optimum, we only need to focus on
the offline optimum of the non-switching cost, eventually
removing our concern on the switching cost. This ªwait
and delayº idea on handling switch operations is passive
or reactive, rather than proactive; yet, it is well under pre-
specified control via η. This enables us to overcome the
dependency between bid selections in adjacent auctions.

3.2 Online Learning

We note that both P1 and P2 are in the form as follows:

minXt∈X

∑T
t=1 ft(Xt)

s.t. ht(Xt) ⪯ 0, ∀t;
∑T

t=1 gt(Xt) ⪯ 0,

where Xt is the decision variable for each t and X is the
domain;

∑T
t=1 ft(·) is the objective function, subject to the

long-term constraint
∑T

t=1 gt(·) ⪯ 0 over the time horizon,
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Algorithm 2 Online Learning Algorithm (OLA), ∀t

// For P1,Xt={x̃t, ỹt, z̃t}, ft = Pt,1, ht = h1
t , ∀t;

// For P2,Xt={ỹt, z̃t}, ft = Pt,2, ht = h2
t , ∀t;

// gt = {g1
t , g

2
t , g

3
t }, ∀t;

// Initialize step sizes µ and α;
1: Set ωt = [ωt−1 + µgt−1(Xt−1)]

+;
2: Given ωt, obtain Xt by solving the problem below:

min
X∈X

∇ft−1(Xt−1)(X−Xt−1)+ωtgt−1(X ) + ||X−Xt−1||
2

2α

s.t. ht−1(X ) ⪯ 0.

3: Observe ft, gt, and ht to be used at t+ 1;

and the instantaneous constraint h(·) ⪯ 0 for each t.
This problem can be reformulated equivalently using the
Lagrangian method [32], [33] into the following form:

minXt∈X max
ωt∈R

dim(Xt)
≥0

∑T
t=1

(
ft(Xt) + ωtgt(Xt)

)
,

s.t. ht(Xt) ⪯ 0, ∀t,

where ωt represents the Lagrange multiplier. Based on this,
we can then design a primal-dual method to update the
primal variable Xt and the dual variable ωt alternately in
an online manner as time goes.

Algorithm 2 does exactly this. That is, at each time slot t,
it firstly computes ωt in Line 1, where µ ≥ 0 is the step size.
Then, in Line 2, given ωt, it solves that problem and uses its

solution as Xt, where
||X−Xt−1||

2

2α is a regularization term.
Thus, note that these are not standard primal-dual steps,
but have a ªmodifiedº gradient-descent step. We will show
later that we can obtain provable performance this way.
Also, in Line 2, this per-time-slot problem is a standard con-
vex optimization problem [34], and thus can be solved by
directly invoking any standard convex optimization solver
(e.g., CVXPY [35] or Gurobi [36]).

Insights: We highlight the following two insights with
Algorithm 2. First, the long-term constraint is no longer a
concern, because it is absorbed into the objective and then
only the instantaneous constraint still exists, naturally mak-
ing the problem splittable and solvable at each individual
time slot. Second, the posterior input is also no longer a
challenge, because, for example, when computing Xt, no
input about or beyond the time slot t is needed or used,
not to mention anything posterior. In fact, this is why this
process can be called ªonline learningº. These two insights
enable us to overcome the challenges of the query queue
dynamics and the posterior inference error rate.

3.3 Randomized Rounding

Algorithm 3 rounds the fractional decisions into integers, as
all control decisions in the original problem P are integers.

To round and z̃t and x̃t, as in Lines 19∼22 and Lines
23∼26, respectively, we use a simple randomized approach
which utilizes their fractional parts as the probabilities to
round them into integers. Our goal is to ensure E(z̄t) = z̃t
and E(x̄t) = x̃t. z̃ and x̃ appear in the long-term con-
straints of the problem P . We allow but will bound the
violation of such long-term constraints. Both E(z̄t) = z̃t
and E(x̄t) = x̃t are important for the bound analysis; the
latter is also crucial for the economic properties analysis.

Algorithm 3 Randomized Rounding Algorithm (RRA), ∀t

Input: The fractional solutions ỹt or z̃t or x̃t;
Output: The integer solutions ȳt or z̄t or x̄t;

// Round ỹt

1: for n ∈ N do
2: if ε =

∑M
m=1 rmỹn,m,t is not an integer then

3: With probability ε−⌊ε⌋, set ỹn,m,t =
⌈ε⌉
ε ỹn,m,t, ∀m;

With probability ⌈ε⌉−ε, set ỹn,m,t =
⌊ε⌋
ε ỹn,m,t, ∀m;

4: end if
5: Set M′ = {m|ỹn,m,t ∈ {0, 1}}, M′′ = M\M′;
6: Set ȳn,m,t = ỹn,m,t,∀m ∈ M′;
7: while |M′′| ≥ 0 do
8: Choose u, v ∈ M′′, where u ̸= v;
9: Set θ1 = min{ru(1− ỹn,u,t), rv ỹn,v,t},

Set θ2 = min{ruỹn,u,t, rv(1− ỹn,v,t)};
10: With probability θ2

θ1+θ2
,

Set ỹn,u,t = ỹn,u,t +
θ1
ru

, ỹn,v,t = ỹn,v,t −
θ1
rv

;

With probability θ1
θ1+θ2

,

Set ỹn,u,t = ỹn,u,t −
θ2
ru

, ỹn,v,t = ỹn,v,t +
θ2
rv

;
11: if ỹn,u,t ∈ {0, 1} then
12: Set ȳn,u,t = ỹn,u,t, M

′′ = M′′\{u};
13: end if
14: if ỹn,v,t ∈ {0, 1} then
15: Set ȳn,v,t = ỹn,v,t, M

′′ = M′′\{v};
16: end if
17: end while
18: end for
// Round z̃t

19: Set z̄n,m,t = z̃n,m,t, ∀(n,m) ∈ {(n,m)|z̃n,m,t ∈ Z+};
20: for (n,m) ∈ N ×M\{(n,m)|z̃n,m,t ∈ Z+} do
21: With probability z̃n,m,t−⌊z̃n,m,t⌋,set z̄n,m,t = ⌈z̃n,m,t⌉;

With probability ⌈z̃n,m,t⌉−z̃n,m,t,set z̄n,m,t = ⌊z̃n,m,t⌋;
22: end for
// Round x̃t

23: Set x̄n,t = x̃n,t, ∀n ∈ {n|x̃n,t ∈ {0, 1}};
24: for n ∈ N\{n|x̃n,t ∈ {0, 1}} do
25: With probability x̃n,t − ⌊x̃n,t⌋, set x̄n,t = ⌈x̃n,t⌉;

With probability ⌈x̃n,t⌉ − x̃n,t, set x̄n,t = ⌊x̃n,t⌋;
26: end for

To see E(x̄t) = x̃t, for example, we have E(x̄n,t) = (x̃n,t −
⌊x̃n,t⌋)⌈x̃n,t⌉+(⌈x̃n,t⌉−x̃n,t)⌊x̃n,t⌋ = (⌈x̃n,t⌉−⌊x̃n,t⌋)x̃n,t =
x̃n,t.

To round ỹt, as in Lines 1∼18, we design a more so-
phisticated double randomization approach. The goal here
is multi-fold. We elaborate on them below, respectively. We
also provide a flowchart here, as shown in Fig. 5.

First, we ensure the instantaneous constraint of the prob-
lem P , where ỹ appears, has no violation after rounding ỹ.
Note that, for each n at each t, before rounding ỹ, we have
ε =

∑
m rmỹn,m,t ≤ cnx̄n,t. If x̄n,t = 0, then we directly

have ȳn,m,t = ỹn,m,t = 0, ∀m. If x̄n,t = 1, then after Line 3,

we either have ⌈ε⌉
ε

∑
m rmỹn,m,t = ⌈ε⌉

ε ε = ⌈ε⌉ ≤ cn as cn
is an integer, or have ⌊ε⌋

ε

∑
m rmỹn,m,t =

⌊ε⌋
ε ε = ⌊ε⌋ ≤ cn.

That is, the constraint still holds at this point. As we con-
tinue to Line 10, for the arbitrary u and v, we either have
ru(ỹn,u,t +

θ1
ru
) + rv(ỹn,v,t −

θ1
rv
) = ruỹn,u,t + rv ỹn,v,t, or

have ru(ỹn,u,t −
θ2
ru
) + rv(ỹn,v,t +

θ2
rv
) = ruỹn,u,t + rv ỹn,v,t.

That is, after this step, the sum between any ruỹn,u,t and
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Fig. 5: Flowchart for Randomized Rounding

rv ỹn,v,t does not change. So, the instantaneous constraint
still holds.

Second, we ensure E(ȳt) = ỹt. In Line 3, we have (ε −
⌊ε⌋) ⌈ε⌉ε ỹn,m,t+(⌈ε⌉−ε) ⌊ε⌋ε ỹn,m,mt = ỹn,m,t; further, in Line

10, for u, we have θ2
θ1+θ2

(ỹn,u,t +
θ1
ru
) + θ1

θ1+θ2
(ỹn,u,t −

θ2
ru
) =

ỹn,u,t, and for v, have the analogous result. That is, after
taking the expectation twice, we have E(ȳt) = ỹt, which
also contributes to the violation bound analysis of the long-
term constraints.

Third, we ensure each iteration of Lines 7∼17 produces
at least one integer. In Line 9, no matter what values θ1 and
θ2 take, Line 10 always produces at least one integer. For
example, suppose θ1 = ru(1 − ỹn,u,t) and θ2 = ruỹn,u,t.
Then, in the first case of Line 10, we have ỹn,u,t = 1 and
in the second case of Line 10, we have ỹn,u,t = 0. One can
easily verify Line 10 for all the other cases of θ1 and θ2. This
shows the conversion from fractions to integers succeeds.

Insights: Algorithm 3, with Algorithm 2 in the frame-
work of Algorithm 1, overcomes the NP-hardness of our
problem, because the relaxed problem without integer deci-
sion variables is not NP-hard any more but polynomial-time
solvable; and rounding can be used to achieve approximate
solutions (i.e., rather than exact optimal solutions). Random-
ization incurs no violation of instantaneous constraints; it
also preserves the expectation for the violation bound anal-
ysis for the long-term constraints, and attains the desired
economic properties, both of which will be elaborated later.

3.4 Payment Allocation

Algorithm 4 calculates the payment to each bid in the
auction that occurs at the time slot t. If bid n is a winning
bid, its payment is as shown in Line 3, consisting of two
parts. x̃n,t(bn,t,b−n,t) represents the fractional solution as
shown in Algorithm 1. bn,t denotes the bidding price of bid
n, and b−n,t denotes the bidding prices of all the other bids.

Algorithm 4 Online Payment Allocation (OPA), ∀t

1: for n ∈ N do
2: if x̄n,t == 1 then
3: wn,t = bn,tx̃n,t(bn,t,b−n,t) +

∫ϖt

bn,t
x̃n,t(b,b−n,t)db;

4: end if
5: if x̄n,t == 0 then
6: wn,t = 0;
7: end if
8: end for

ϖt in the integration represents an upper bound, intuitively
reflecting the maximum unit payment the service provider
can tolerate and make to the bid. If bid n is not a winning
bid, then it just receives no payment, as in Line 6.

Insights: Algorithm 4 follows the sufficient and neces-
sary conditions [37] for randomized auctions to be truthful
and individual rationality. The reason that we can directly
design our payment algorithm like this is that we have
ensured E(x̄t) = x̃t in our previous algorithms.

4 PERFORMANCE ANALYSIS

We define and analyze (i) the regret and the fit, (ii) the
competitive ratio, and (iii) the truthfulness and the indi-
vidual rationality in Sections 4.1∼4.3, respectively, whose
detailed proofs are in Sections 4.4∼4.6 correspondingly. We
note that the regret and the fit are for the sub-problem P2;
the competitive ratio, the truthfulness, and the individual
rationality are for the original holistic problem P .

Notations: For additional notations, we use {x∗,y∗, z∗}
to denote the offline optimal integer solution to the problem
P . For each t, given x̄t, we use {ỹ∗

t , z̃
∗
t } to denote the

offline optimal fractional solution to the one-shot slice of
the problem P2 at t.
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4.1 Regret and Fit

The regret measures the difference between an optimization
problem’s objective value incurred by an online algorithm
and that incurred by the series of one-shot offline optimums.
The fit measures the violation of the constraints. Typically,
we expect the regret and the fit to be sub-linear with time.
That is, they grow slower than time elapses; in other words,
the time-averaged regret and the time-averaged fit diminish
as time goes. We formally define regret and fit, respectively,
as below and afterwards show that for the problem P2, our
proposed approach indeed leads to sub-linear regret and fit.

Definition 1 (Regret [38]). For the optimization problem

minXt∈X

∑T
t=1 ft(Xt)

s.t. ht(Xt) ⪯ 0, ∀t;
∑T

t=1 gt(Xt) ⪯ 0,

whose one-shot slice at t is

minXt∈X ft(Xt)

s.t. ht(Xt) ⪯ 0; gt(Xt) ⪯ 0,

we define the regret associated to an online algorithm as

Reg =
∑T

t=1(ft(X̄t)− ft(X
∗
t )),

where {X̄t, ∀t} represent the solutions returned by this on-
line algorithm and {X ∗

t , ∀t} represent the series of the one-
shot offline optimal solutions, i.e., for each t, X ∗

t minimizes
the aforementioned one-shot slice problem at t.

Definition 2 (Fit [33]). For the aforementioned optimization
problem, we define the fit associated to an online algorithm
as

Fit =
∑T

t=1 ||[gt(X̄t)]
+||,

where {X̄t, ∀t} represent the solutions returned by this
online algorithm, and [·]+ ≜ max{·, 0}.

The instantaneous constraints are always respected, and
therefore we only consider the fit for the long-term con-
straints. We present the following theorem, where the expec-
tation is due to the randomization introduced in rounding:

Theorem 1. Given {x̄t, ∀t} as the input, the regret and the
fit of the problem P2 incurred by our algorithms are

∑T
t=1

(
E[Θt

−S(x̄t, ȳt, z̄t)]−Θt
−S(x̄t, ỹ

∗
t , z̃

∗
t )
)
≤ O(T ς1),

∑T
t=1 ||[E[gt(ȳt, z̄t)]]

+|| ≤ O(T ς2),

where ς1, ς2 ∈ (0, 1).

Proof. See Section 4.4.

4.2 Competitive Ratio

The competitive ratio measures the multiplicative gap be-
tween an optimization problem’s objective value incurred
by an online algorithm against that incurred by the offline
optimum. Typically, we expect such a ratio to be a constant
that is independent of time. That is, as time goes, the ratio
stays unchanged. The formal definition is as follows.

Definition 3 (Competitive Ratio). For a minimization prob-
lem, the competitive ratio ς of an online algorithm satisfies
P(X̄ ) ≤ ς · P(X ∗), where P(·) refers to the objective

function; X̄ represents the solution returned by this online
algorithm; and X ∗ represents the offline optimal solution.

The offline optimal solution refers to the optimal solution
to the problem as a whole, instead of breaking the problem
into one-shot slices and solving each slice to its optimum
individually. Thus, the offline optimum is different from the
series of one-shot optimums in Section 4.1, where the latter
can better align with existing literature on online learning.
Using the offline optimum in the definition of regret can
be of independent interest, outside the scope of this paper.
We highlight that our algorithms indeed possess a constant
competitive ratio via the following theorem.

Theorem 2. For the problem P , the switching cost and the
non-switching cost incurred by our algorithms satisfy

∑T
t=1 Θ

t
S(x̄t, x̄t−1) ≤ Ξ

∑T
t=1 Θ

t
−S(x̄t, ỹ

∗
t , z̃

∗
t ),

and the total cost incurred by our algorithms satisfies

T∑

t=1

[Θt
S(x̄t, x̄t−1)+Θt

−S(x̄t, ỹ
∗
t , z̃

∗
t )] ≤ ς2

T∑

t=1

Θt(x∗
t ,y

∗
t , z

∗
t ),

where ς2 = ξ(1 + Ξ). Based on this, for the problem P , our
algorithms lead to

E[
∑T

t=1 Θ
t(x̄t, ȳt, z̄t)] ≤ ς ·

∑T
t=1 Θ

t(x∗
t ,y

∗
t , z

∗
t ),

where ς is the competitive ratio independent of time.

Proof. See Section 4.5.

4.3 Truthfulness and Individual Rationality

Intuitively, the utility of a bid is the difference between the
payment received from the auctioneer and the true cost of
the bid. Based on that, one can define truthfulness, which
means every bid maximizes its utility by using its true cost
as the bidding price (i.e., no motivation to lie about cost) and
individual rationality, which means every bid always has
non-negative utility regardless of the auction outcome (i.e.,
no loss for voluntary participation of the auction). After pre-
senting the formal definitions, we show that our algorithms
have indeed achieved the desired economic properties of
truthfulness and individual rationality in each auction.

Definition 4 (Utility). The utility of bid n for a randomized
auction at the time slot t is

νn(bn,t,b−n,t)=





ωn,t(bn,t,b−n,t)− b′n,tE[x̄n,t(bn,t,b−n,t)],

if x̄n,t = 1,

0, otherwise,

where bn,t is the bidding price; b′n,t is the true cost; b−n,t

represents the bidding prices of all other bids except bid
n; ωn,t(bn,t,b−n,t) denotes the payment, which depends on
bn,t and b−n,t; and x̄n,t indicates whether bid n wins in
this auction or not, also depending on bn,t and b−n,t. The
expectation is because this is for a randomized auction.

Definition 5 (Truthfulness). A randomized auction at t
is truthful in expectation if and only if every bid can
achieve the maximum utility when it bids its true cost, i.e.,
νn(b

′
n,t,b−i,t) ≥ νn(bn,t,b−n,t), ∀bn,t ̸= b′n,t, ∀n.
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Definition 6 (Individual Rationality). A randomized auc-
tion at t is individually rational in expectation if and only if
every bid has non-negative utility, i.e., νn(bn,t,b−n,t) ≥ 0,
∀n.

Theorem 3. Our algorithms make the auction at each time
slot truthful and individually rational.

Proof. See Section 4.6. Via E[x̄n,t] = x̃n,t. Also via the nec-
essary and sufficient conditions for a randomized auction to
be truthful and individually rational [37].

4.4 Proof of Theorem 1

Following Definitions 1∼2, we first prove that the regret
and fit in the real domain is sub-linear with time, detailed
illustration in Lemma 1. Then, we link the regret/fit in
the real domain and integral domain via E[ȳt] = ỹt and
E[z̄t] = z̃t.

Lemma 1. The regret and fit of P2 in the real domain
incurred by Algorithm 2 grows sub-linearly with time:
∑T

t=1{Θ
t
−S(x̄t, ỹt, z̃t)}−

∑T
t=1{Θ

t
−S(x̄t, ỹ

∗
t , z̃

∗
t )}≤O(T ς1),

∑T
t=1 ||[gt(ỹt, z̃t)]

+|| ≤ O(T ς2),

where ς1, ς2 ∈ (0, 1).

Proof. For simplicity, we use ft(X̃t), ft(X̃
∗
t ) and gt(X̃t) to

represent Θt
−S(x̄t, ỹt, z̃t), Θt

−S(x̄t, ỹ
∗
t , z̃

∗
t ) and gt(ỹt, z̃t),

respectively. Therefore, we need to prove
∑T

t=1(ft(X̃t) −
ft(X

∗
t )) ≤O(T ς1) and

∑T
t=1 |[gt(X̃t)]

+|| ≤O(T ς2).
Before proving it, some commonly adopted and easily

met assumptions, which are also widely used in similar
settings [38], [39], are introduced as follows: (i) ∀t, gt(X̃t)
is bounded (i.e., ||gt(X̃t)|| ≤ G, ∀X̃t ∈ X, ∀t ∈ T , where
G is a constant and X is the convex domain); (ii) The
radius of convex domain X can be bounded by R (i.e.,
||X̃i − X̃j || ≤ R, ∀X̃i, X̃j ∈ X, where R is a constant).

For convex function ft(·), we have ft(b) ≥ ft(a) +
∇fT

t (b − a). After taking a = X̃t and b = X̃ ∗
t , we obtain

ft(X̃ ∗
t ) ≥ ft(X̃t) +∇fT

t (X̃ ∗
t − X̃t). After rearranging it, we

have the following equalities:

ft(X̃t)− ft(X̃ ∗
t ) ≤ −∇fT

t (X̃ ∗
t−X̃t)

(a)

≤ µβ1+αβ2+

(β3||X̃
∗
t−X̃ ∗

t−1||+ β4(||X̃t−X̃
∗
t−1||

2−||X̃ ∗
t −X̃ ∗

t+1||
2))

α

+
β5(||ωt+1||

2 − ||ωt+2||
2)

µ
, (2)

where Inequality (2)a holds since Lemma 6 of the previous
work [38] and β1∼β5 are all constants in this lemma. Then,
we take the sum for the equality above from t = 1 to t = T
and obtain:

∑
t ft(X̃t)−

∑
t ft(X̃

∗
t )

(a)

≤ T ∗ (µβ1 + αβ2)

+ (β3 ∗ V̄I + β4 ∗ (||X̃1 − X̃ ∗
0 ||

2 − ||X̃ ∗
T − X̃ ∗

T+1||
2))/α

+ β5 ∗ (||ω2||
2 − ||ωT+2||

2)/µ

(b)

≤ T (µβ1 + αβ2) +
β3V̄I + β4||X̃1 − X̃ ∗

0 ||
2

α
+

β5(||ω2||
2)

µ
(c)

≤ T (µβ1 + αβ2) + (β3V̄I + β4R
2)/α+ β5µG

2

(d)
= O(max{T

1
α1 , T

α1−1
α1 }) ≜ O(T ς1), (3)

where Inequality (3)a holds since V̄I =
∑

t∈T ||X̃ ∗
t − X̃ ∗

t−1||
which is the accumulated variation of the per-slot min-
imizers X̃ ∗

t . (3)b holds since ||X̃ ∗
T − X̃ ∗

T+1||
2 ≥ 0 and

||ωT+2||
2 ≥ 0; (3)c holds since the bounded domain of

Assumption (ii) and ||ω2||
2 ≤ (µG)2 of Assumption (i); (3)d

holds since we take µ = α = O(T− 1
α1 ), α1 > 2.

According to the definition of ω in Line 1 of Algo-
rithm 2, we have ωt = [ωt−1 + µgt−1(X̃t−1)]

+ ≥ ωt−1 +
µgt−1(X̃t−1) ≥ ωt−2 + µgt(X̃t−2) + µgt−1(X̃t) ≥ ... ≥
µ
∑

t gt(X̃t) + ω1 = µ
∑

t gt(X̃t), obtaining:

∥[
∑

t gt(X̃t)]
+∥

(a)

≤ ∥
∑

t gt(X̃t)∥
(b)

≤ ∥ωT+1∥/µ
(c)
= β6/(αµ) + β7/µ+ β8

(d)
= O(T

2
α1 ) = O(T ς2),

(4)

where β6 ∼ β8 are constants. Equality (4)a holds since the
nature of [·]+; (4)b holds since the above equalities. (4)c
holds since Lemma 2 of previous work [1] and β6 ∼ β8

are all constants from this lemma. (4)d holds since we take

µ = α = O(T− 1
α2 ). We have ς2 ∈ (0, 1), since α1 > 2.

Based on Lemma 1, we have the derivation:
∑T

t=1{E[Θt
−S(x̄t, ȳt, z̄t)]} −

∑T
t=1{Θ

t
−S(x̄t, ỹ

∗
t , z̃

∗
t )}

(a)
=

∑T
t=1{Θ

t
−S(x̄t, ỹt, z̃t)} −

∑T
t=1{Θ

t
−S(x̄t, ỹ

∗
t , z̃

∗
t )}

(b)

≤ O(T ς1), (5)

where (5)a holds since E[ȳt] = ỹt and E[z̄t] = z̃t; (5)b holds
since Lemma 1;

As for the fit incurred by our algorithm for P2, we have
the derivation:

∑T
t=1 ||[E[gt(ȳt, z̄t)]]

+||

(a)
=

∑T
t=1 ||[gt(ỹt, z̃t)]

+||
(b)

≤ O(T ς2), ς2 ∈ (0, 1), (6)

where (6)a holds since E[ȳt] = ỹt and E[z̄t] = z̃t; (6)b holds
since Lemma 1.

4.5 Proof of Theorem 2

We first connect the switching cost term Θu
−S(x̄u, ỹ

∗
u, z̃

∗
u),

abbreviated as Θu
−S(X̂u), to the non-switching cost term

Θu
S(x̄u, x̄u−1), abbreviated as Θu

−S(X̂u), via the control

parameter η. We then connect Θu
−S(X̂u) to its optimum

Θu
−S(x

∗
u,y

∗
u, z

∗
u), abbreviated as Θu

−S(X
∗
u).

Here, we link the switching cost and non-switching cost.
We use t′l, ∀1 ≤ l ≤ l′ to denote the timestamps when the
switch operations occur, where l′ is the total number of the
switch operations over the time horizon under considera-

tion. The switching cost incurred at t′l is Θ
t′l
S (X̂t′

l
). The non-

switching cost accumulated during the period [t′l, t
′
l+1 − 1]

is at least 1
η times the switching cost at t′l, denoted by

1

η
Θ

t′l
S (X̂t′

l
) ≤

t′l+1−1∑

u=t′
l

Θu
−S(X̂u), ∀1 ≤ l ≤ l′. (7)

Furthermore, when the switching operation occurs in time
slot t′l, the ratio of potential switching cost to potential non-
switching cost can be bounded as follows:

Θ
t′l
S (X̂t′

l
)

Θ
t′
l

−S(X̂t′
l
)

(a)

≤

∑N
n=1 ln

minn{bn,t′
l
}
≜ ϑ, ∀1 ≤ l ≤ l′, (8)
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where Inequality (8)a holds since the numerator of the

middle term (i.e.,
∑N

n=1 ln) is the upper bound of the
switching cost in each time slot, while the denominator
(i.e., minn{bn,t′

l
}) represents the lower bound of the non-

switching cost. Therefore, for all 1 ≤ t ≤ T , we have the
following derivation equations:

t∑

u=1

Θu
S(X̂u) =

∑

1≤l≤l′

t′l+1−1∑

u=t′
l

Θu
S(X̂u) +

t∑

u=t′
l′
+1

Θu
S(X̂u)

=
∑

1≤l<l′

{Θ
t′l
S (X̂t′

l
) +

t′l+1−1∑

u=t′
l
+1

0}+Θ
t′
l′

S (X̂t′
l
) +

t∑

u=t′
l′
+1

0

(a)

≤
∑

1≤l<l′

{η

t′l+1−1∑

u=t′
l

Θu
−S(X̂u)}+ϑΘ

t′
l′

−S(X̂t′
l′
)+ϑ

t∑

u=t′
l′
+1

Θu
−S(X̂u)

= η

t′
l′
−1∑

u=1

Θu
−S(X̂u) + ϑ

t∑

u=t′
l′

Θu
−S(X̂u)

≤ max{η, ϑ}
∑t

u=1
Θu

−S(X̂u) ≜ Ξ
∑t

u=1
Θu

−S(X̂u), (9)

where Ξ is a constant. And Inequality (9)a holds since
the Inequalities (7) & (8) and the extra added term (i.e.,

ϑ
∑t

u=t′
l′
+1 Θ

u
−S(X̂u)) is non-negative.

Then, we take ξ ≜ maxu
max

X̂u
Θu

−S(X̂u)

min
X̂u

Θu
−S

(X̂u)
, and have

Θu
−S(X̂u) ≤ ξΘu

−S(X
∗
u), ∀u ≤ T,

where we link the non-switching cost corresponding to
solution {x̄t, ỹ

∗
t , z̃

∗
t } and offline optimum {x∗

t ,y
∗
t , z

∗
t }.

After taking u = 1 to u = t, ∀t ≤ T , we have the
following inequality:

∑t

u=1
Θu

−S(X̂u) ≤ ξ
∑t

u=1
Θu

−S(X
∗
u) ≤

ξ
∑t

u=1
{Θu

S(X
∗
u) + Θu

−S(X
∗
u)} ≤ ξ

∑t

u=1
Θu(X∗

u),

where we link the non-switching cost and the total cost.

Therefore, the overall cost can be bounded by

T∑

t=1

[Θt
S(X̂t) + Θt

−S(X̂t)] ≤ (1 + Ξ)
T∑

t=1

Θt
−S(X̂t)

≤ ξ(1 + Ξ)
T∑

t=1

Θt(X∗
t ) ≜ ς2

∑T

t=1
Θt(X∗

t ) = ς2P
∗. (10)

Then, for Theorem 2, we have the following derivation:

E[P(x̄, ȳ, z̄)] = E[
∑T

t=1{Θ
t
S(x̄t, x̄t−1) + Θt

−S(x̄t, ȳt, z̄t)}]
(a)

≤
∑T

t=1{Θ
t
S(x̄t, x̄t−1) + Θt

−S(x̄t, ỹt, z̃t)}
(b)

≤
∑T

t=1{Θ
t
S(x̄t, x̄t−1) + Θt

−S(x̄t, ỹ
∗
t , z̃

∗
t ) +O(T ς1)}

(c)

≤ ς2P
∗ +O(T ς1)} ≜ ςP∗, (11)

where (11)a holds since E[ȳt] = ỹt and E[z̄t] = z̃t ; (11)b
holds since Equality 5(b) in Lemma 1; (11)c holds since
Equality (10). Please note that given T , O(T ς1) is a constant.

Nvidia Jetson

Tesla V100

RTX 2080 Ti

RTX 3090

Huawei Atlas

(a) Real Devices

Device Latency
Edge Clients

Huawei 311 ms
Jetson 191 ms

Edge Servers
Tesla V100 24 ms
RTX 3090 25 ms

RTX 2080Ti 39 ms

(b) Inference Latency

Fig. 6: Testbed Setup and Measurement

4.6 Proof of Theorem 3

(1) Proof of truthfulness for our randomized auction. We first
introduce the following proposition [37]:

Proposition 1. A randomized auction is Truthfulness in
expectation if and only if (i) E[x̄n,t(bn,t,b−n,t)] is mono-
tonically non-increasing at b′n,t for any bidder n, when
all inputs except for n remain unchanged; (ii) The up-
per bound of the integral must be less than infinity, i.e.,∫∞
bn,t

E[x̄n,t(b,b−n,t)]db < ∞;

From Proposition 1, we begin the following two proofs:
(i) For the problem P1, the objective function of each
time slot is Θt

−S(xt,yt, zt). For each bidder n, given the
inputs except for xn,t and bn,t, we convert this function as
Θt

−S,n(xn,t, bn,t|b−n,t) with variables xn,t and bn,t. Assum-

ing that x̃n,t and x̃1
n,t are the optimal solutions with the

bidding prices of bn,t and b1n,t, we have the equalities:

Θt
−S,n(x̃n,t, bn,t|b−n,t) ≤ Θt

−S,n(x̃
1
n,t, bn,t|b−n,t),

Θt
−S,n(x̃

1
n,t, b

1
n,t|b−n,t) ≤ Θt

−S,n(x̃n,t, b
1
n,t|b−n,t).

Add two inequalities together, reorganize them, and we
have: (bn,t−b1n,t)∗x̃n,t ≤ (bn,t−b1n,t)∗x̃

1
n,t. Take bn,t−b1n,t >

0, and we have x̃n,t ≤ x̃1
n,t. Since E[x̄n,t] = x̃n,t and

E[x̄1
n,t] = x̃1

n,t, we obtain E[x̄n,t]
(a)

≤ E[x̄1
n,t].

From Proposition 1, we make the other proof (ii):
∫ ∞

bn,t

E[x̄n,t(b,b−n,t)]db=

∫ ϖt

bn,t

E[x̄n,t(b,b−n,t)]db≤ϖt < ∞.

As for P2, we have a similar conclusion.
(2) Proof of individual rationality for our randomized

auction. For the utility of each winning bidder n, we have:

νn(bn,t,b−n,t) = wn,t(bn,t,b−n,t)− b′n,tE[x̄n,t(bn,t,b−n,t)]

= bn,tx̃n,t(bn,t,b−n,t) +

∫ ϖt

bn,t

x̃n,t(b,b−n,t)db

− b′n,tE[x̄n,t(bn,t,b−n,t)]
(a)

≥

∫ ϖt

bn,t

x̃n,t(b,b−n,t)db ≥ 0, (12)

where Inequality(12)a holds since E[x̄n,t] = x̃n,t and bn,t ≥
b′n,t.

5 EXPERIMENTAL EVALUATIONS

5.1 Evaluation Setup

We evaluate the performance of our proposed approach in
practice, and compare it to multiple baseline and state-of-
the-art approaches. For the inputs to all these algorithms,
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TABLE 2: Parameter Values

Para. Value

bn,t Bidding price in $4 ∼ $18 from AWS [40]
ln Switching cost in 10 ∼ 100s [41], [42]
cn Computing capacity in 4 ∼ 128 cores [40]
qn Queue capacity in 204 ∼ 8100 [43]
τt # of passengers [21], [44]±[46],

# 50 ∼ 1250 queries/passenger [47]
dn,t Comm. cost per query in 0.1 ∼ 0.9s [48], [49]
an,m,t Error rate in 0.1 ∼ 0.3 [47]
rm Resource requirement in 1 ∼ 20 cores [50]
pn,m Processing speed in 105 ∼ 2447 from testbed and [51]
en,m,t Model transmission cost in 50 ∼ 850s [1]
δn,m,t Traces on whether to send models to edges [52]

we use our lab testbed measurement results and data from
other existing works, as in Table 2. The details are as follows.

Testbed-Based Measurement: We construct a real-world
testbed consisting of multiple hardware components, in-
cluding the GeForce RTX 2080Ti, the GeForce RTX 3090,
the Nvidia Tesla V100, the Huawei Atlas 200DK, and the
Nvidia Jetson NX, as shown in Fig. 6(a). On this testbed, we
measure the inference performance of different real-world
models (on computer vision and natural language process-
ing): YOLOv4 [53], DeepLabv3 [54], BERT [55], VGG16 [56],
and Inceptionv3 [57]. For example, the results of YOLOv4
are displayed in Fig. 6(b). These will be used as the inputs
to our subsequent experimental evaluations.

Edge Devices and Bidding: The bidding prices come
from the Amazon EC2 platform [40], ranging in $4∼$18.
The server’s switching cost (e.g., re-connecting time, re-
preparing resource time) is set to 10∼100s based on exist-
ing statistics [41], [42]. Each bidder’s available computing
capacity is set to 4∼128 processor cores [1]. The queue
capacity is related with the edge device’s memory, which
is set to 204∼8100 [43], [58]. The processing speed ranges
in 105∼2447 requests per time slot, which comes from our
testbed measurement results and an existing study [51]. We
consider up to 1200 bidders in the system.

Inference Workload: The inference workloads at each
edge are obtained from the dynamic passenger counts of the
268 London underground stations [44], which was collected
in 15-minute intervals over a four-day period in November
2016, resulting in a total of about 300 time slots. This is
our default dataset, denoted by London. From this dataset,
we set the duration of each single time slot to 15 minutes
[1], also aligned with recent studies [1], [11], [47], [59] and
datasets [60]. To demonstrate the robustness and applica-
bility of our algorithms across different workloads, we also
explore multiple other datasets:

• IRSMSeting [21]: Based on the setup in the IRSM
study. 5∼30 users generated per time slot.

• MTA [46]: Passenger volumes from the Metropolitan
Transportation Authority (MTA), including records
from subway, MTA Staten Island Railway (SIR), and
Roosevelt Island tram systems.

• Telecom [45]: Shanghai Telecom dataset, containing
over 7.2 million records collected over six months
and involving 9,481 mobile devices accessing the
Internet via 3,233 base stations.

For London, we consider that each passenger submits
50∼1250 inference queries [47] at each time slot; for the other

datasets, we consider that each user or device submits one
inference query at each time slot. Then, at each time slot, we
sum up the total number of inference queries received and
use this as the inference workload for the edge AI service.
The communication cost for sending one query ranges in
0.1∼0.9s [1], [43].

Machine Learning Settings: We set the models’ infer-
ence error rates and resource requirements to 0.1∼0.3 and
1∼20 cores, respectively [1], [47]. Usually, models with low
error rates have high resource requirements. We set the
model transmission time to 50∼850s [1]. We obtain the
traces [52] for δn,m,t regarding whether to send models as
time goes. We consider up to more than a dozen of models
available for conducting inference in the system.

Algorithm Parameters: The step sizes in Algorithm 2 are

set as λ = µ = 300−
1
3 . η in Algorithm 1 is set to 1/2 [61].

Algorithms for Comparison: We implement our pro-
posed approach OAA in Python, using CVXPY [35] for the
online learning component. We also implement multiple al-
ternative algorithms for comparison. Our implementations
include 900+ lines of Python codes in total:

• OAA: Our proposed approach;
• Random: Winning bids are chosen randomly;
• All: All bids are chosen as the winning bids;
• Price: Bids that have the highest cost-effectiveness are

chosen as the winning bids;
• IRSM [21]: A state-of-the-art approach that maxi-

mizes the total social welfare of all edge servers and
devices to select the winning bids;

• TARFO [20]: A state-of-the-art approach that mini-
mizes the completion time of all the tasks via strate-
gic resource allocation.

5.2 Evaluation Results

Social Cost: Fig. 7(a) and Fig. 7(b) show the normalized real-
time social cost and the normalized cumulative social cost,
respectively, incurred by different algorithms. Our approach
OAA consistently outperforms others, leading to an average
cost reduction of about 50%. Compared to the heuristics, i.e.,
All, Random, and Price, OAA reduces the social cost by about
65% on average. Compared to the state-of-the-arts, i.e.,
IRSM and TARFO, OAA reduces the social cost by about 40%
on average. The fluctuation of the real-time cost is due to the
system dynamics, i.e., the inputs such as the communication
cost, the inference workload, the model error rates, and the
bidding prices to each time slot are varying as time goes.
The cumulative social cost of OAA grows more slowly than
others. IRSM and TARFO are for edge computing tasks but
do not consider the specific characteristics of AI inference,
such as model error rates, while overlooking the switching
cost associated with edge devices. As a result, these methods
could lead to higher error rates and also increase the social
cost. We further calculate the practical competitive ratio of
OAA and find it to be 1.6∼3.9, with the majority in 1.6∼3,
which is good and fully acceptable in practice.

Regret and Fit: Fig. 7(c) and Fig. 7(d) visualize the regret
and the fit for our proposed approach, respectively, under
different step sizes. The growth of the regret and that of
the fit are both sub-linear, which is consistent with our
theoretical analysis. We can observe the trade-off between
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Fig. 7: Social Cost of Different Approaches and Performance of Online Learning
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Fig. 8: Social Cost Impacted by Different Factors
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Fig. 9: (a) Cost on Different Datasets; (b) Error Rates

regret and fit: a step size that reduces the regret inevitably
increases the fit, which is also aligned with our theoretical
analysis. As the step size goes from T−1/2.5 to T−1/3, the fit
decreases by 15%∼25% and the regret grows by 10%∼15%.

Scalability: Fig. 8 exhibits how the normalized total so-
cial cost of our proposed approach is influenced by different
factors. In Fig. 8(a), the social cost increases with the growth
of the workloads. To process more inference queries, the
system needs to recruit more edge devices in each auction,
which incurs more social cost. Specifically, as the query
workload increases by 0.2x∼0.4x, the social cost increases by
16%∼66%, and the rate of increase gradually slows down.
In Fig. 8(b), the social cost decreases with the growth of the
number of models. In this figure, as we add new models
to the pool of candidate models, the social cost decreases.
Note that the capacities of the edge devices do not change. A
larger and more heterogeneous pool means more available
choices of models with the cost versus accuracy trade-off,
thereby resulting in control decisions that achieve lower
optimization objective values. Besides, as the number of the
models available goes to more than a dozen, e.g., 1.6x∼2x,
the social cost can be significantly reduced by more than
80% compared to the case that only has fewer than three

models, e.g., 0.1x. Fig. 8(c) depicts the impact on the social
cost incurred by the switching cost. The social cost increases
with the growth of the switching cost. Fig. 8(d) shows the
social cost under varying numbers of bidders. A larger
number of bidders can lead to the growth in the social cost.
The number of cost-effective edge devices increases with the
total number of edge devices, and all of them could have the
potential to win the auction.

Fig. 9(a) further investigates how the dynamic workload
impacts the social cost. OAA consistently achieves the best
social cost. Compared to other algorithms, OAA reduces the
social cost by 63%, 38%, 27%, and 10% on average upon Lon-
don, IRSMSetting, MTA and Telecom datasets, respectively.

Error Rates: Fig. 9(b) visualizes the averaged ªerror rateº
of all the models selected and deployed processing all the
inference queries seen in the system over the entire time
horizon. The error rate is actually a term already contained
in our optimization objective. As shown, the error rate of
our approach is 8%∼24% less than the error rates of others.

Individual Rationality and Truthfulness: Fig. 10
demonstrates the economic properties of our approach for
two randomly selected bidders. Fig. 10(a) shows the pay-
ment and the cost for bidder 1 and bidder 2. The payment
calculated by our approach at each time slot is higher than
the cost, implying individual rationality; the bidders who
lose in an auction receive zero payment. Fig. 10(b) and
Fig. 10(c) display the utility functions for bidder 1 and
bidder 2, where the maximum benefits are only achieved
when bidding at true cost, implying truthfulness.

Running Time: Fig. 11 displays the running time of our
proposed approach OAA, including its different algorith-
mic components of online learning (OLA) and randomized
rounding (RRA). We run our algorithm codes at different
scales on a commercial desktop server with 16 2.5 GHz Intel
Core i7 CPUs and 32 GB memory. The results show that
our approach consistently finishes in tens of milliseconds.
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Our OPA algorithm averages around 10 seconds, which is
not shown in this figure. As OPA does not have strict time
constraints, it only needs to be completed before the end of
the time slot (e.g., it can run while conducting inference).
Overall, the running time of our approach is significantly
less than the length of a single time slot.

6 RELATED WORK

We summarize representative previous work in two groups,
and highlight their insufficiency compared to this paper.

6.1 Edge AI Inference Optimization

Liu et al. [17] proposed an adaptive Deep Neural Network
(DNN) inference framework for mobile edge computing
which selects exit and partition points in an online man-
ner. Sun et al. [13] developed an online adaptive selection
algorithm for the long-term impact of the batches on the
inference results. Huang et al. [18] used Multi-Exit Deep
Neural Networks (ME-DNNs) and a distributed offloading
mechanism to reduce latency in edge computing. Jin et al. [1]
addressed the dynamic volatility of the edge environments
via online learning. Miao et al. [19] showed a load-balancing
algorithm for splitting DNN with Directed Acyclic Graph
(DAG) structures to accelerate DNN inference. Wen et al.
[62] formulated a ISCC problem for optimizing the inference
accuracy under the constraints of latency, energy, and trans-
mission, which was solved by the optimal ISCC scheme.

6.2 Edge Incentive Mechanisms

Wang et al. [20] proposed a resource allocation algorithm
that enforces truthfulness, flexible task offloading, and lo-
cality constraints. Li et al. [21] proposed a task offloading
strategy at edge for dynamic tasks and energy restrictions,
improving social welfare. Yuan et al. [11] proposed an in-
centive mechanism for edge federated learning, considering
data volume and user dynamism, with performance guar-
antees. Wang et al. [23] devised an incentive mechanism to
balance the profit of resource providers with the Quality of
Experience of mobile devices. Chen et al. [12] incentivized
user devices to provide relay services for computation of-
floading via a two-stage auction model, maximizing utility
and considering node authenticity and users’ rationality.
Wang et al. [22] incentivized electric vehicles to discharge
energy to support edge computing demand response.

6.3 Research Gap

Table 3 contrasts these prior research with our work in mul-
tiple dimensions. Overall, the aforementioned first group
of works either assume resources are abundant and readily
available, or overlook the resource usage. They do not
consider the setting where existing resources are insufficient
to meet the varying demand and new resources need to be
dynamically recruited and released; they could also incur
high operational cost, especially when paying for edge
resources in a large scale at a fixed per-unit price, making it
impractical for many service providers. The aforementioned
second group of works typically have not targeted edge
AI inference, or its unique features and challenges as we
have identified in this paper, which would lead to degraded
inference accuracy and poor service quality if such existing
literature and methods were directly applied to the edge AI
inference service. This paper bridges all these gaps.

7 DISCUSSIONS

Bidders’ Unstable Connections: Our system runs in a time-
slotted manner, where each time slot has one and only one
auction. For each single auction, generally, it is assumed
that any edge device (i.e., bidder) that participates in the
auction stays connected and committed to this auction. This
assumption aligns with many existing research on auctions
related to cloud and edge computing systems. In a ªweirdº
case where, for example, a bidder submits a bid and leaves
the system before the outcome of the current auction, we
could strategically exclude this bidder from subsequent
auctions due to credibility and reliability issue of this bidder.

Frequent Quitting and Repeated Bidding: Our current
work allows arbitrary quitting and repeated bidding across
auctions. Any bidder can join one auction and does not
join another auction, or vice versa. We do not penalize any
bidder for this behavior, because each bidder should feel
free and volunteer to join or not to join any of the auctions.
If a bid does not join or is not selected as a winning bid for
some auctions, and then if this bid wins in a later auction,
this may incur the switching cost; yet, our current system
modeling has already considered such switching cost as part
of the social cost that is being minimized.

Applicability of Deep Reinforcement Learning: Deep
Reinforcement Learning (DRL) could be relevant, but we do
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TABLE 3: Comparing Previous Work to Our Work

Ref.
Problem Space Solution Space Evaluation

Year
Edge
Incentive

Inference
Task

Online
Scenario

Long-term
Constraints

Approximate/
Competitive Ratio

Economic
Properties

TestBed
Prototype

[17] ✓ ✓ ✓ ✓ 2024
[13] ✓ ✓ ✓ ✓ 2023
[18] ✓ ✓ ✓ ✓ 2021
[1] ✓ ✓ ✓ ✓ 2020
[19] ✓ ✓ ✓ 2020

[20] ✓ ✓ ✓ ✓ 2024
[21] ✓ ✓ ✓ ✓ ✓ 2023
[22] ✓ ✓ ✓ ✓ 2023
[11] ✓ ✓ ✓ ✓ ✓ 2022
[23] ✓ ✓ ✓ ✓ 2022
[12] ✓ ✓ ✓ 2021

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2024

not adopt DRL in this work. First, DRL algorithms often tar-
get problems and settings that have no explicit models. Our
problem is well-defined with a clear mathematical formula-
tion, and thus, there seems no need to bother DRL. Second,
DRL algorithms often lack rigorously-provable guarantees,
making it difficult to predict their worst-case performance.
In contrast, in this work, our proposed approach is proven
to come with multiple performance guarantees. Third, DRL
algorithms typically require a large amount of training data
and time and lengthy cold-start or convergence overhead.
In contrast, our online algorithms make control decisions
directly on the fly without the need of ªtrainingº.

8 CONCLUSION

Our work in this paper enhances the edge AI service by en-
abling it to dynamically and continuously recruit resources
on a wider range of edge devices and use such resources to
provision the inference service at the minimum cost to the
end users. We formulate the repeated auctions, and propose
a combination of novel online algorithms to jointly control
winning-bid selection, model deployment, inference query
dispatch, and payment allocation, while overcoming multi-
ple non-trivial challenges. We rigorously analyze our algo-
rithmic approach in terms of multiple performance metrics,
and conduct solid experiments to validate the superiority
of our design in practice, including comparison to existing
baseline and advanced methods. While the focus of this
current paper is on inference, we also plan to investigate
edge AI training with resource trading in future work.
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