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AbstractÐFacing the growing demand for Low Earth Orbit
(LEO) edge services, in order to address the manageability and
economic issues in LEO edge computing, this study introduces
an innovative two-timescale optimization approach designed
to dynamically optimize satellite access selection, user request
dispatching, and service replica placement. Integrating both
online and offline optimizations, our method adapts to real-time
fluctuations in user demand and satellite resources, effectively
managing long-term decisions such as service migration and
replica placement. We formalize this optimization challenge as
a finite-horizon, integer-variable problem, taking into account
both switching costs and resource utilization. Through extensive
experimentation, our approach is proven to significantly balance
performance enhancement and resource efficiency, and we prove
the approximation ratio for each time slot the competitive ratio
for the long-term cost. Our work contributes to the understanding
of multi-timescale optimization in LEO edge computing and pro-
vides valuable insights for designing efficient control mechanisms
in satellite-based systems.

Index TermsÐLEO satellite networks, edge computing, request
dispatching, computation offloading.

I. INTRODUCTION

In the rapidly evolving frontier of technological innovation,

the assimilation of Low Earth Orbit (LEO) satellites with edge

computing services [1], [2] heralds a new era of connectivity.

These satellites, in their low-altitude orbits, provide a critical

advantageÐreduced signal latency, which is pivotal for a host

of modern applications that demand real-time data exchange.

The deployment of LEO satellites in close proximity to the

Earth markedly enhances communication networks, extend-

ing the reach of edge services to previously underserved

or inaccessible areas, and offering seamless integration with

terrestrial networks. The establishment of a space backbone

[3], [4] serves as a cornerstone, fortifying the underlying

infrastructure. It provides a resilient framework for commu-

nication between satellites, further bolstering the deployment

of sophisticated network topologies. The integration of the

Walker Delta topology, in conjunction with the grid pattern

framework [5], [6], significantly contributes to the overall ef-

ficiency and resilience of the satellite communication system.
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The imperative for service migration within this context can

be traced to two fundamental factors. Firstly, the presence of

stateful services [7] necessitates the dynamic relocation of

services. This is crucial to accommodate the ever-evolving

user requirements and ensure the continuous and optimal

functionality of services. Secondly, the intrinsic limitation in

resources on satellites [8] underscores the need for a strategic

approach to managing and distributing services. This involves

avoiding resource exhaustion, thus optimizing the overall

system performance. With the rapid advancement of edge

computing and Internet of Things (IoT) technologies, LEO

satellites have emerged as a crucial component for delivering

edge services. These satellites operate in close proximity to

the Earth’s surface, enabling low-latency and high-bandwidth

connectivity to a wide range of applications and devices.

Leveraging the capabilities of LEO satellites, edge services can

be efficiently deployed to serve users in diverse environments.

The fact that a ground station is often covered by multiple

satellites simultaneously means that, during specific time peri-

ods, the ground station can choose to establish communication

with different satellites. Each satellite provides a window of

visibility as it flies over the ground station, during which

the ground station can establish a connection and perform

data transmission. However, due to the orbital dynamics of

the satellites, their visibility windows are typically limited

[6]. Therefore, the ground station needs to intelligently select

the appropriate satellite to establish a connection, ensuring

communication reliability and efficiency.

The scenario of a ground station being covered by multiple

satellites is prevalent in LEO satellite communication systems,

this scenario is illustrated in Fig. 1. This situation can be

attributed to factors such as satellite orbit designs, increased

satellite density, and requirements of the communication net-
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work [9]±[11]. Having a ground station covered by multiple

satellites allows for better utilization of satellite resources

and a wider service coverage [12]. However, the coverage

of multiple satellites also presents some challenges. Firstly,

the ground station needs to select the most suitable satellite

for communication among the multiple visible satellites. This

involves considering factors such as satellite positions, trans-

mission quality, signal strength, and the distance between the

ground station and the satellites. Secondly, the ground station

may need to switch connections between different satellites to

meet user demands and manage system resource allocation.

This can result in connection switching overhead and impact

on service quality [13], [14].

To respond to constantly changing environments in a cost-

efficient manner, we advocate for dynamically controlled LEO

edge services with multi-timescale flexibility [15]. This ap-

proach enables intertwined decisions regarding access satellite

selection for ground stations, user request dispatching from

access satellites to service satellites, and service replica place-

ment in satellite constellations. User requests from different

regions often fluctuate, necessitating continuous migration of

services across satellites. However, in satellite networks with

rapidly changing topology, a myopic approach that optimizes

decisions in isolation can be counterproductive. While this

may seem optimal in the short term, it overlooks the aggregate

impact of frequent handovers, leading to service degradation

due to interruptions and delays [16]. Excessive migration

incurs high performance costs, while conservative approaches

may force users to suboptimal satellites, hindering timely

adaptation to request dynamics [9], [11], [17]. Moreover,

multiple satellites are visible with varying time windows, com-

plicating access satellite selection [18]. Choosing the satellite

with the longest visibility may be impractical due to capacity

restrictions, and frequent switching can incur handover over-

head, damaging perceived service quality. Thus, synchronizing

service migration and satellite selection poses a significant

challenge, underscoring the need for a strategic approach that

balances immediate access with long-term stability and sus-

tainability [19], [20]. The problem involves multiple objective

functions, such as minimizing total costs and maximizing

service quality. These objectives may conflict, necessitating

careful trade-offs and optimization strategies. Handling multi-

objective optimization requires developing algorithms to iden-

tify optimal or approximately optimal solutions, which is

particularly challenging given the previous complexities.

To the best of our knowledge, our work is the first to (1)

investigate the three dimensions of satellite selection, request

dispatching, and service provisioning jointly in LEO edge

computing, and (2) model and solve this problem from a two-

timescale online optimization perspective [21].

In this paper, we initiate our exploration by formulating the

problem of social cost minimization as a non-convex mixed-

integer program spanning the entire time horizon. Our goal

is to devise effective solutions to this challenging problem,

and to this end, we propose a series of polynomial-time

online algorithms. To address the intricacies of the problem,

we introduce two innovative algorithms, namely primal-dual-

based Algorithm 1 and Algorithm 2. These algorithms are

specifically designed to tackle the one-shot problem, involving

the strategic placement of offline classifiers, data dispatching,

and inference aggregation. It is important to note that our

algorithmic approach assumes that all other control decisions

have been pre-determined. An additional facet of our approach

is the derivation of a parameterized-constant competitive ratio

for the total cost concerning the offline optimum. This ratio is

established under the assumption that all inputs over the entire

time horizon are observed simultaneously beforehand. This

implies that our algorithms are not only efficient in their online

execution but also yield competitive results when compared

to the optimal solution derived from full knowledge of inputs

across the entire temporal span.

Through these algorithmic innovations and competitive ratio

considerations, our methodology presents a comprehensive and

efficient framework for addressing the social cost minimization

problem. In the subsequent sections, we delve into the specifics

of our algorithms, their theoretical underpinnings, and the

empirical evaluations conducted to validate their efficacy in

real-world scenarios.

II. RELATED WORK

In this section, we provide an overview of the existing stud-

ies related to LEO satellite edge computing and two-timescale

optimization approaches for edge services. We categorize the

related work into two groups and highlight their limitations

compared to our proposed approach.

LEO Satellite Edge Computing:

Research on LEO satellite edge computing has focused

on various aspects, including server placement, controller

placement, resource placement. Li et al. [10] studied how to

efficiently deploy services on satellite edge computing nodes.

Zhang et al. [22] reduced transmission costs by integrating

multiple access edge computing in the LEO network and use

decision variables to schedule requests. Yan et al. [23] con-

ducted research on edge computing server placement based on

various system delays. Tang et al. [24], [25] introduced novel

strategies and algorithm for controller placement problem and

load balancing in satellite networks. Both Pfandzelter and Lai’

teams built content delivery networks (CDN) to reduce system

latency and bandwidth usage in satellite networks [5], [26].

However, these existing studies have certain limitations

when compared to our work. Firstly, they often overlook the

interdependencies and interactions among the placement deci-

sions, failing to capture the holistic optimization perspective

required for efficient edge service management. Moreover, the

nonlinear relationship between handover penalties and service

migration costs poses a significant challenge that has not

been adequately addressed in the literature [27]. Lastly, most

existing approaches focus solely on online control decisions,

neglecting the benefits of incorporating multi-timescale flexi-

bility into the optimization framework.

Service Migration:

A significant and noteworthy extension within the realm of

related work revolves around the thoughtful consideration of

service migration. The exploration of this aspect involves an

in-depth analysis of service migration, a process that dynam-

ically relocates services to adapt to evolving user demands,
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TABLE I: Comparison of Existing Work on LEO Edge Optimization to This Work

Reference Mechanism Problem
Online /

Offline

Optimization

Objective
Constraints Performance Guarantees

[10] Heuristic
Convex,
Linear

Offline
Latency

Minimization
Instantaneous No Theoretical Bound

[16]
Single-

Timescale
Convex Online Energy Efficiency Steady-state Lyapunov Stability

[17] Heuristic
Mixed-
integer

Offline Service Continuity Resource limits No Theoretical Bound

[23] Heuristic Linear Offline
Server Placement

Cost
Capacity No Theoretical Bound

[24]
Controller

Game
Non-convex Offline Load Balancing Instantaneous Nash Equilibrium

[28] Heuristic Linear Offline Link Stability Orbital dynamics No Theoretical Bound

[35]
Decoupled

Control
Mixed-
boolean

Online
Microservice

Reliability
Time-averaged Learning Regret Bound

[36]
Potential

Game
Non-convex Offline

Interference
Mitigation

Channel capacity Nash Equilibrium

[37] Deep RL Non-convex Online Adaptive MIMO
Nonstationary

channels
Convergence Analysis

[38]

Two-
Timescale
Learning

Mixed-
integer

Online
Task Offloading

Cost
Hybrid resources Learning Regret Bound

This Work

Two-

Timescale

Optimization

Mixed-

integer

Nonlinear

Online

Total Cost

Minimization

(Global/Local

Accuracy,

Comm/Comp

Costs)

Long-term,

Instantaneous
Competitive Ratio

thereby ensuring the continuous and optimal functionality

of the system [17], [28]. Several studies have dedicated

efforts to delve into the nuanced aspects of service migration,

recognizing its pivotal role in maintaining a responsive and

adaptable system [29], [30]. Jin et al. [31] proposed an

online learning framework for provisioning edge inference

services, which dynamically adapts to fluctuating workloads

but focuses on terrestrial edge networks rather than satellite

environments. Separately, Liu et al. [32] introduced a dynamic

relocation mechanism to enhance service delivery efficiency

in distributed systems, providing a foundational strategy for

resource adaptation.

However, despite the strides made in understanding service

migration, the existing literature in this domain often exhibits

certain limitations. One notable gap lies in the lack of a

comprehensive understanding of how service migration intri-

cately interacts with other pivotal placement decisions within

the system. The interplay between service migration and

other decision-making processes, such as server placement,

controller placement, and resource allocation, is not always

sufficiently explored [33], [34]. Moreover, a critical aspect

that the current body of literature may not effectively address

pertains to the intricacies associated with multi-timescale

optimization. Service migration, when considered in isolation,

might not seamlessly align with the broader spectrum of

decision-making processes operating at different timescales.

The need for a holistic and integrated approach, considering

the multi-faceted temporal dimensions of system optimization,

remains an area where the existing literature falls short.

Two-Timescale Optimization for Edge:

Existing literature has mainly focused on single-timescale

optimization, where decisions are made either in real-time or

with long-term planning. These approaches often overlook the

need for coordinating control decisions at different timescales

to adapt to dynamic environments and achieve optimal perfor-

mance. Thus, they may fail to effectively balance the trade-

off between resource allocation and service quality, Chai et

al. [35] use Lyapunov optimization methods to decouple the

joint optimization problem of LEO, but there are also some

existing research on two-timescale optimization, Shi et al.

[36] constructed a novel two-timescale resource management

framework for mobile edge computing. Moreover, the existing

literature lacks comprehensive solutions that consider both

online and offline optimization. Online optimization aims to

dynamically adjust control decisions in response to real-time

changes in user demands and satellite resources. On the other

hand, offline optimization focuses on long-term planning,

such as service migration and replica placement, considering

factors like service performance, resource utilization, and cost

efficiency [15].

The two-timescale division (time frames and slots) is justi-

fied by LEO orbital dynamics and service demand charac-

teristics. Large-timescale frames align with satellite orbital

periods (90±120 mins) and hourly demand patterns, while

small-timescale slots address millisecond-level channel vari-

ations and bursty requests. This hierarchy is theoretically
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grounded in prior works: Chen et al. [37] for topology-aware

resource allocation, Lin et al. [38] for adaptive nonstationary

optimization, Shi et al. [36] for MEC-based two-timescale

co-design, and Han et al. [39] for satellite-terrestrial hybrid

networks. Such decoupling enables stable long-term planning

and agile short-term adaptation. Our work significantly differs

from the existing literature in multiple aspects. Firstly, we

explicitly consider the two-timescale nature of the control

decisions, encompassing both online and offline optimization.

This allows us to capture the dynamic changes in user demands

and satellite resources while optimizing long-term decisions

such as service migration and replica placement. Secondly,

we formulate the optimization problem as a finite-horizon,

integer-variable optimization problem, taking into account the

switching costs associated with accessing different satellites

and managing service replicas. This formulation enables us

to find near-optimal solutions that balance performance and

resource utilization effectively.

Regarding the advantages of our approach over the two

aforementioned papers [40], [41]: Both of these existing

papers rely on the Lyapunov optimization framework [42]

to design their dual-timescale optimization algorithms. They

feature the following aspects: (i) Their problems need to

be formulated in the format of optimizing a time-averaged

objective subject to time-averaged constraints, while often

pushing the length of the time horizon into infinity; (ii)

Their algorithms need to be generally in a control theory

style, i.e., constructing virtual queues and stabilizing such

virtual queues through drift-plus-penalty functions; (iii) Their

theoretical analysis focuses on upper-bounding the regret,

i.e., the difference between the objective value incurred by

their proposed online approach and the objective value of the

offline optimum. In contrast, our proposed approach is never

related to Lyapunov optimization, and features the following

aspects: (i) Our problem optimizes a cumulative objective over

a time horizon of realistic finite length, subject to long-term

cumulative constraints for the large timescale and the small

timescale, respectively; (ii) Our algorithms are novel, with a

unique switching-cost-aware online optimization structure for

solving both timescales; (iii) Our theoretical analysis includes

upper-bounding the competitive ratio, i.e., the ratio of the

objective value incurred by our proposed online approach over

the objective value of the offline optimum. Due to all such

stark discrepancies, while the algorithmic approaches in the

two reference papers have their own advantages, it is unclear

to us how they, with or without adaptions, can be applied

to solving our problem; our own proposed dual-timescale

approach is yet dedicatedly designed to solve our problem

with provable performance guarantees. Our work also uniquely

captures and addresses the LEO-specific challenges arising

from orbital dynamics and intermittent connectivity, explicitly

modeling time-varying satellite visibility and inter-satellite

handover penalties and enabling adaptive cost minimization

under LEO’s unique spatiotemporal conditions.
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Fig. 2: Two-timescale decision making

III. MODELS AND FORMULATION

A. System Models

In this section, we present our system model and formulate

the total cost minimization problem. For the quick reference,

we summarize all our major notations in Table II.

LEO Edge Constellation: We consider a LEO constellation

of one orbit shell which consists of M orbit plains in total

and N satellites evenly spreading in each orbit plain. We use

I “ t1, 2, ...,MNu to denote the set of all the satellites in

the constellation. We also consider the set J “ t1, 2, ..., Ju
of ground stations that are geographically distributed around

the globe. To access the services hosted in the LEO edge

constellation, a user connects to one of the ground stations

via terrestrial networks (e.g., Internet), which further connects

to the LEO satellite network. We do not explicitly consider the

case where a user directly connects to the satellite network via

a dedicated terminal device without ground stations, since this

terminal device can be regarded as a ªvirtualº ground station

and then our models and formulations still apply.

Control Decisions: We study the system over a series of

time frames T “ t1, 2, ..., T u, where each time frame further

consists of a series of time slots K “ t1, 2, ...,Ku. Time

frames correspond to service placement decisions, and time

slots correspond to satellite selection and request dispatching

decisions. To facilitate subsequent explanations, we define the

series of time frames as the large time scale, and the series

time slots as the small time scale. That is, we make control

decisions as follows: xtk
ij P t1, 0u, @i P I, @j P J , @k P K,

@t P T , denoting whether or not the ground station j selects

and connects to the satellite i as the access satellite at the

time slot k of the time frame t; yti P t1, 0u, @i P I, @t P T ,

denoting whether or not the satellite i hosts a service replica

at the time frame t; ztkim ě 0, @i,m P I, @k P K, @t P T ,

denoting the amount of user workload (e.g., requests) sent via

the access satellite i to the service satellite m at the time slot

k of the time frame t.

Two-Timescale: Fig. 2 illustrates the hierarchical two-

timescale decision framework central to our LEO edge com-

puting model, we divide the time frame t into multiple small

time slots k. Each frame spans has the same fixed length

and minutes to hours, aligning with the orbital periodicity

of LEO satellites and global service demand trends. At this

scale, decisions focus on service placement (e.g., determining

which satellites host service replicas) and service migration

(e.g., relocating replicas between satellites). These decisions

are updated at the beginning of each frame. Each slot spans has

the same fixed length and seconds to minutes, corresponding

to rapid environmental variations such as bursty user requests,
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TABLE II: Notations

Inputs Meaning

I Set of all satellites

J Set of ground stations

T Set of time frames

K Set of time slots

ztkim Amount of user workload sent via i to m at k of t

Qi Access capacity of satellite i

Ci Service capacity of the satellite i

dtkij Transmission delay between i and j at k of t

λtk
j User requests sent from j at k of t

ej Handover penalty for j to change access satellite

ltkim Network delay between i and m at k of t

ati Cost of i hosting service replica at t

ltim Average network delay for t

R The total number of service replicas

Decisions Meaning

xtk
ij Whether or not the ground station j selects i as the

access satellite at k of t

yti Whether or not the satellite i hosts a service replica
at t

ztkim Amount of user workload sent via the access satellite
i to the service satellite m at k of t

satellite-ground visibility windows, and instantaneous channel

fading. At this scale, decisions involve satellite selection

(e.g., choosing an optimal access satellite for ground stations)

and request dispatching (e.g., distributing user workloads to

service satellites). These decisions are updated at the beginning

of each slot.

Satellite Selection: In Fig. 2, at any time slot k of any

time frame t, we denote the set of the satellites that fly over

the ground station j as Itk
j . Correspondingly, we use J tk

i

to denote the set of the ground stations that are within the

connection range of the satellite i at the time slot k of the time

frame t. Thus, at k of t, the ground station j needs to choose

one and only one satellite in Itk
j as its access satellite, i.e., the

first-hop satellite to connect to in order to access the satellite

network. We use Qi (@i) to denote the access capacity of the

satellite i, i.e., the number of ground stations it can accept at

most at any given time, which can be in terms of, for example,

the number of beam signals equipped on the satellite. We also

use dtkij to represent the unit transmission cost between the

ground station j and the satellite i at the time slot k of the

time frame t. We further use ej to denote the handover penalty

for the ground station j to change the access satellite across

time slots. Based on these notations, we can represent the user

requests’ total delay from ground stations to access satellites asř
t

ř
k

ř
j

ř
iPItk

j
dtkij λ

tk
j xtk

ij , where λtk
j is described as below,

and represent all the handover penalty of the system across

time slots as

Ctk
H pxtk,xtk´1q “

ř
j

ř
iPItk

j
ej maxtxtk

ij ´ xtk´1

ij , 0u.

Request Dispatching: At any time slot k of any time frame

t, we denote the number of user requests received at the

ground station j as λtk
j . The user requests will firstly reach

the access satellite of the ground station j and then be sent

to those satellites with service replicas, i.e., service satellites,

for processing. We denote by ltkim the network delay between

satellites i and m at the time slot k of time frame t, and by Ci

the service capacity of satellite i. Note that, depending on the

request dispatching decisions, the requests from a single access

satellite may be split and sent to multiple service satellites.

We can then represent the user requests’ total delay within

the satellite network as
ř

t

ř
k

ř
i

ř
m ltkimztkim.

Service Placement: We suppose there exist R service

replicas of one service at any time in the system, where each

service replica is placed at a different satellite. We consider

only one service in this paper, and our work can be easily

extended to multiple services. We use ati to denote the cost

of hosting the service replica at the satellite i at the time

frame t. In fact, given any existing satellite-network routing

algorithm, we can use ltim to denote the number of hops, or the

average network delay for t, or the instant network delay as

the service migration occurs during t, for migrating a service

replica from the satellite i to the satellite m at the time frame

t in our satellite network, and use wt
im to denote the decision

variable of whether or not to move the service replica from

the satellite i to the satellite m at t. Then, we can define the

service migration cost:

Ct
M pyt,yt´1q “ min

ř
i

ř
m ltimwt

im

s.t.
ř

m wt
im ď yt´1

i R,@i, (1a)ř
i w

t
im “ ytm,@m, (1b)

wt
im P t1, 0u,@i,@m.

We denote the optimal solution to Ct
M as pwt. Note that even

though we use a standard linear program solver to solve Ct
M

in polynomial time, our optimal solutions are automatically

integers because the coefficient matrix of the constraints in

Ct
M is a ªtotally unimodular matrixº [43].

In the above, (1a) ensures that any service replica at t ´ 1

can be replicated to up to R service replicas (or satellites) at t;

(1b) ensures that any service replica at t can only be replicated

from an existing service replica at t ´ 1. That is, the service

migration cost is the minimum cost needed to accomplish all

the service replica movements within the satellite network

from the time frame t ´ 1 to the time frame t. Based on

these, we represent the service operational cost and the service

migration cost as
ř

t

ř
i a

t
iy

t
i `

ř
t C

t
M pyt,yt´1q.

Regarding service migration costs, we acknowledge that

satellites have greater computing and communication capabil-

ities compared to Internet of Things (IoT) devices and small

base stations. Yet, it is important to note that, compared to

typical ground-based cloud or edge computing infrastructures,

satellite resources are still restrictive due to size, weight, and

power constraints, and thus the cost of service migration in

satellite edge computing is not negligible and is still a serious

concern. Frequent migrations can lead to significant perfor-

mance overhead, including increased latency, energy consump-

tion, and potential service disruptions, which are critical in

a highly dynamic and resource-constrained environment like

satellites. To further illustrate the impact of service migration

costs, we provide two practical use cases as follows.

Global IoT Data Collection: In LEO edge computing,

satellites are often used for global IoT data collection, such

as agricultural sensor networks that require periodic data

transmission to ground stations for processing. In this sce-

nario, frequent service migration can lead to increased data
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transmission delays, impacting real-time decision making. For

example, if agricultural sensors need to transmit data to a

satellite, frequent migration of the processing task between

satellites can cause delays in data analysis, which may hinder

timely decisions on irrigation or pest control. This is supported

by [10].

Emergency Rescue and Disaster Response: In emergency

scenarios, LEO satellites are tasked with rapidly processing

and analyzing large volumes of data to support rescue opera-

tions. For instance, during a natural disaster, satellites may be

used to process real-time data from ground sensors to identify

affected areas and coordinate rescue efforts. Frequent service

migration in such high-stakes environments can lead to task

interruptions and delays in data processing, severely impacting

rescue efficiency. This is supported by [16].

B. Problem Formulation and Algorithmic Challenges

Total Cost Minimization:

Having the models as the above, we can then formulate the

optimization problem of minimizing the long-term total cost

of the system as follows:

P0 : min
ř
t

ř
k

ř
j

ř
iPItk

j

dtkij λ
tk
j xtk

ij `
ř
t

ř
k

Ctk
H pxtk,xtk´1q

`
ř
t

ř
k

ř
i

ř
m

ltkimztkim `
ř
t

ř
i

atiy
t
i `

ř
t

Ct
M pyt,yt´1q

s.t.
ř

iPItk
j
xtk
ij “ 1, @j,@k,@t, (2a)

ř
jPJ tk

i
xtk
ij ď Qi, @i,@k,@t, (2b)ř

m ztkim ě
ř

jPJ tk
i

λtk
j xtk

ij , @i,@k,@t, (2c)ř
i z

tk
im ď ytmCm, @m,@k,@t, (2d)ř

i y
t
i “ R, @t, (2e)

xtk
ij , y

t
i Pt0, 1u, ztkim ě0, @i,@m,@j,@k,@t. (2f)

Constraint (2a) ensures that every ground station selects

one satellite only as the access satellite at every time slot.

Constraint (2b) ensures that the access capacity of every

satellite is respected at every time slot. Constraint (2c) ensures

that the user requests received at every access satellite are fully

dispatched at every time slot. Constraint (2d) ensures that the

service capacity of every satellite is respected at every time

slot. Constraint (2e) ensures that the total number of service

replicas that exist in the satellite network is always as specified

at every time frame. Constraint (2f) just enforces the domains

of all the decision variables.

Algorithmic Challenges:

Solving our total cost minimization problem in an online

manner confronts critical challenges.

First, the handover penalty
ř

j

ř
iPItk

j
ej maxtxtk

ij ´

xtk´1

ij , 0u couples every time slot k´1 and its next time slot k,

it is important to make the decision of xtk´1

ij at k´1 for min-

imizing the long-term cost because any decision of xtk´1

ij will

potentially impact the handover penalty between k ´ 1 and k,

however, we can not know xtk
ij at k´1, our xtk´1

ij at k´1 can

therefore hardly optimize
ř

j

ř
iPItk

j
ej maxtxtk

ij ´ xtk´1

ij , 0u.

Attempting to solve each individual component of a series of

single-round problems optimally or frequently switching the

access satellite for each time slot can lead to an accumulation

Social cost 

minimization

P0

tk
HC

Primal dual

Primal dual

Algorithm 3

0
t

3
tk

1
t

Solve

Algorithm 2

Algorithm 1

t
MC

tk tkx z,

Solve

2
tk

Switch
Condition

Set 1tk tkx x

Switch
Condition

Set
1t ty y

tkx

tkz
ty

Algorithm 4

Solve

tk tk tx z y, ,

Fig. 3: Algorithm design

of handover penalties over time. This occurs because each

switch may involve significant overhead in terms of commu-

nication interruptions, additional signal processing, and the

re-establishment of connections, all of which contribute to

reduced efficiency and increased latency.

Second, the total cost minimization problem is NP-hard. It

is difficult to achieve in an offline situation, and it will be far

more difficult in an online setting. Even without replacement

cost, our problem is made up of a succession of single-round

problems, each of which can be reduced from the NP-hard

weighted set cover problem. To address our NP-hard, we desire

polynomial-time online approximation algorithms.

Third, the problem involves multiple constraints related

to ground station and satellite capacity limitations, user re-

quest dispatching requirements, and other system-specific con-

straints. These constraints can be nonlinear, coupled, or have

complex structures. Effectively handling these constraints to

ensure compliance with system requirements is a significant

challenge [44]. This is not easy, especially considering the

existence of the previous two challenges.

Our proposed algorithms provide a parameterized-constant

competitive ratio, ensuring that the gap between the approxi-

mate solution and the theoretical optimal solution is bounded

and stable under the given assumptions. This is validated by

both theoretical analysis and experimental results.

IV. ALGORITHM DESIGN

We design a polynomial-time approximation algorithm to

solve the aforementioned problems while simultaneously solv-

ing the total cost minimization problem and determining

satellite selection, satellite migration, and mission scheduling

problems. We rigorously prove the approximation ratio, the

truthfulness, and the individual rationality as the performance

guarantees for our algorithm. We then determine content place-

ments strategically in an online manner in the next section. Our

entire approach can be structured as in Fig. 3.

A. Primal-Dual Algorithm

We choose to split the single-shot problem P
t
0

into multiple

subproblems for analysis. We design Algorithm 1 to simul-

taneously construct integral feasible solutions to the primal

problem P
t
1

and feasible solutions to the dual problem D
t
1
. we

define the following problems:

P
t
1
: min f tpytq “

ř
i a

t
iy

t
i (3)
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Algorithm 1: Primal-Dual Algorithm for Pt
1, @t

1 Input ai, Ci, Lk, R
2 Initialize δk
3 for k P K do

4 i` “ argminiPIpδk ` ai)

5 i˚ “ i`

6 δk “ δkp1 ` 1

Lk
q `

a
i˚

Lkξ

7 R “ ´minpδk ` ai˚ q
8 y˚

i “ 1

9 end

10 Output pyt

s.t.
ř

i y
t
iCi ě

ř
j λ

tk
j ,@k, (3a)ř

i y
t
i “ R, (3b)

yti Pt0, 1u,@i. (3c)

By relaxing the variables yi into real domains and introducing

dual variables δk, R for (4a) and (4b), respectively, to solve

the problem P1 in an online manner, we write the Lagrange

dual problem D1 of the problem P1 as follows:

D
t
1
: max f tpytq “ ´

ř
k Lkδk ´ R (4)

s.t. ai ` δk ` R ě 0,@k, (4a)

var. δk ď 0. (4b)

We set
ř

j λ
tk
j “ Lk and then design a primal-dual-based

online algorithm, we design Algorithm 1 to simultaneously

construct integral feasible solutions to the primal problem (3)

and feasible solutions to the dual problem (4).

Algorithm 1 is devised to concurrently develop integral

feasible solutions for the primary problem (3) and viable

solutions for its counterpart dual problem (4). The conceptual

framework of the primal-dual approach involves progressively

increasing the dual variables until each dual constraint is

precisely met (i.e., a constraint of the nature ax ď b reaches

a state of tightness when ax “ b). At this juncture, the

corresponding primal variable can be adjusted to a non-zero

figure, ensuring the primal and dual solutions maintain the

complementarity required by the Karush-Kuhn-Tucker (KKT)

optimality conditions [45]. The algorithm is applied iteratively

at each time step t; therefore, the notation t is excluded for

brevity in the algorithm’s description.

Algorithm 1 is structured as a primal-dual method that

iteratively seeks feasible solutions for a set of constraints

represented by K. It begins by initializing dual variables,

δk, which are crucial for the dual aspect of the problem.

For each constraint k, the algorithm selects an action i that

minimizes the sum of the current value of δk and a cost

factor ai, reflecting the action’s relative expense or penalty.

The selected action’s index is denoted by i˚. Subsequently,

scaling up δk in proportion to the tightness of constraint k

and the cost of the chosen action i˚. This process essentially

evaluates the dual problem’s constraints, gradually increasing

their values until they are tight, meaning the inequality turns

into an equality. When a constraint’s requirements are deemed

adequately metÐusually signaled by δk reaching a certain

thresholdÐthe corresponding primal variable y˚

i is set to 1,

marking the selection of the action for constraint k in this

iteration. After iterating through all constraints in K, the

algorithm concludes by outputting the feasible solution pyt

Algorithm 2: Primal-Dual Algorithm for Ptk
2 , @k,@t

1 Input dij , λj , Lk, yi
2 Initialize δk
3 for j P J do

4 i` “ argminiPIpdijλj ` ni)

5 i˚ “ i`

6 ni˚ “ ni˚ p1 ` 1

Qi
q `

d
i˚j

λj

QiP

7 µj “ ´pni˚ ` di˚jλjq
8 xi˚j “ 1

9 end

10 Output pxtk

from the primal problem P1, signifying the decisions or actions

determined to be feasible at time t. This output reflects a

balance between meeting immediate system constraints and

working towards long-term objectives, accounting for the

dynamic interplay between the primal and dual aspects of the

problem. The update of δk is carefully designed for achieving

low additive loss in approximation ratio, as in Line 6, where

ξ “ maxkPKtLku. Lines 7 and 8 update the dual variable R

and the primal variables y˚

i , respectively.

Similar to problem P1, where we formulate the dual prob-

lem D1 to enable an online solution approach, we also require

a feasible solution for P2.

P
tk
2

: min gtkpxtkq “
ř

j

ř
iPItk

j
dtkij λ

tk
j xtk

ij (5)

s.t.
ř

iPItk
j
xtk
ij “ 1, @j, (5a)

ř
jPJ tk

i
xtk
ij ď Qi,@i, (5b)

xtk
ij Pt0, 1u, @i,@j. (5c)

Given that P2 introduces an additional set of constraints and

objectives, it necessitates the construction of a tailored dual

problem, denoted as D2. By relaxing the variables xij into

real domains and introducing dual variables ni, µj for (6a)

and (6b), respectively, we write the Lagrange dual problem as

D
t
2
: max f tpytq “ ´

ř
i Dini ´

ř
j µj (6)

s.t. dijλj ` µj ` ni ě 0,@i, j, (6a)

var. ni ě 0,µj PR, . (6b)

Following the framework established by Algorithm 1, we

devise Algorithm 2, a similar primal-dual-based online algo-

rithm, aimed at constructing integral feasible solutions for the

primal problem (5) as well as viable solutions for the dual

problem (6).

The algorithm concludes by outputing the feasible solution

pxtk from the primal problem P2, signifying the decisions or

actions determined to be feasible at k of t. The update of

ni is carefully designed for achieving low additive loss in

approximation ratio, as in Line 6, where P “ maxiPItk
j

tDiu.

Lines 7 and 8 update the dual variable µj and the primal

variables xtk
ij , respectively.

For Algorithm 1, the time complexity is OpK ¨ |I|q, where

K is the number of time slots and |I| is the total number

of satellites. Algorithm 2 exhibits Op|J | ¨ |Itk
j |q complexity,

where |J | is the number of ground stations and and |Itk
j | is the

average visible satellites per station per time frame, computed

as 1

K

řK
k“1

|Itk
j | to reflect typical orbital visibility patterns.
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B. Two-Timescale Optimization Online Algorithm

We split the objective function P
t
0

into two components

Ct “ Ct
´M ` Ct

M in time frame scale, where Ct
M is the

service placement cost and

Ct
´M pxt, zt,ytq “

ř
k

`
Ctk

´Hpxtk, ztkq ` Ctk
H pxtk,xtk´1q

˘

`
ř

i a
t
iy

t
i

is other costs that need to be analyzed at the time slot scale,

where

Ctk
´Hpxtk, ztkq “

ř
j

ř
iPItk

j
dtkij λ

tk
j xtk

ij `
ř

i

ř
m ltkimztkim

corresponds to request dispatching decisions. Now, through

Ctk
´H and the corresponding constraints, we define the follow-

ing problem:

P
tk
3

: min htkpztkq “
ř

i

ř
m ltkimztkim

s.t.
ř

m ztkim ě
ř

jPJ tk
i

λtk
j xtk

ij , @i,ř
i z

tk
im ď ytmCm, @m,

ztkim ě 0, @i,@m.

We denote the optimal solution to P
tk
3

as pztk. Note that even

though we use a standard linear program solver to solve P
tk
3

in polynomial time, our optimal solutions are automatically

integers because the coefficient matrix of the constraints in

P
tk
3

is a ªtotally unimodular matrixº [43], the other decision

variables xtk, yt and wt are all feasible.

P
tk
4

: min Ctk
´Hpxtk, ztkq

s.t. (2a), (2b), (2c),ř
i z

tk
im ď ytmCm, @m,

xtk
ij Pt0, 1u, ztkim ě 0,@i,@m,@j.

We also define the following problem that we do not need

to solve but use in our performance analysis.

Next, we designed Algorithm 3 and Algorithm 4, two online

algorithms that balance the different parts of the original

problem P
t
0

split at different time scales. Firstly, we implement

Algorithm 4 at a smaller time scale, time slot k , then

utilize the output of Algorithm 4 at a larger time scale, time

frame t, to implement Algorithm 3. This hierarchical approach

ensures that the real-time adjustments made by Algorithm 4

are effectively integrated and scaled up through Algorithm 3

to address the broader aspects and constraints of the original

problem over longer periods. This design not only enhances

the adaptability and efficiency of our solution in dynamically

changing environments but also ensures a consistent and

cohesive strategy that aligns short-term decisions with long-

term objectives.

Algorithm 4 operates within each individual time frame t

and makes decisions at smaller time scales, each represented

by k. It begins by initializing variables and getting the first

solution from Algorithm 2. Then it iteratively updates this

solution within the time frame as follows: The algorithm first

solves a sub-problem P
tk
3

using the output from Algorithms 1

and 2. In each subsequent time slot k, it checks if the current

solutions are still feasible within the defined thresholds. If not

feasible, it reverts to the last feasible solutions and solves

P
tk
3

again to update the solutions. The algorithm progresses

Algorithm 3: Online Algorithm on Large timescale

1 Initialize t̂ “ 1, ry0, 0 ă β1 ď 1;

2 Get py1 by Algorithm 1, and set ry1 “ py1;

3 Given ry1, get trx1k,rz1k,@ku by Algorithm 4;
4 for t “ 2, 3, ..., T do

5 if C t̂
M pryt̂, ryt̂´1q ď β1

řt´1

τ“t̂
Cτ

´M prxt,rzt, rytq, or Dk,

P
3

tk infeasible given ryt´1 then

6 Get pyt by Algorithm 1, and set ryt “ pyt;

7 Given ryt, get trxtk,rztk,@ku by Algorithm 4;

8 if ryt ‰ ryt´1 then

9 Set t̂ “ t;
10 end
11 end

12 if t̂ ă t then

13 Set ryt “ ryt´1;

14 Given ryt, get trxtk,rztk,@ku by Algorithm 4;
15 end
16 end

Algorithm 4: Online Algorithm for Each Time Frame t

1 Initialize k̂ “ 1, rxt0 “ rxt´1K , 0 ă β2 ď 1;

2 Get pxt1 by Algorithm 2, and set rxt1 “ pxt1;

3 Given rxt1, get rzt1 by solving P
t1
3 ;

4 for k “ 2, 3, ...,K do

5 if Ctk̂
H prxtk̂, rxtk̂´1q ď β2

řk´1

τ“k̂
Ctτ

´Hprxtk,rztkq, or P3

tk

infeasible given rxtk´1 then

6 Get pxtk by Algorithm 2, and set rxtk “ pxtk;

7 Given rxtk, get rztk by solving P
tk
3 ;

8 if rxtk ‰ rxtk´1 then

9 Set k̂ “ k;
10 end
11 end

12 if k̂ ă k then

13 Set rxtk “ rxtk´1;

14 Given rxtk, get rztk by solving P
tk
3 ;

15 end
16 end

through the time frame until it finalizes the solution for that

time frame.

We denote the optimal solution to P
tk
3

as rztk. Based on

this, we first design Algorithm 4, an online algorithm which

balances Ctk
´H and Ctk

H dynamically in the small time scale.

Our main strategy is to delay rotating the locations of content

caches, i.e., to prevent frequent changes to access satellites,

until either the current cache locations cause P
tk
1

or P
tk
2

to

become unfeasible for request dispatching, or until the cu-

mulative non-replacement cost times a pre-specified constant

(i.e., β2) exceeds the latest replacement cost. There is also

a special case where when our ground station is out of the

communication range of the access satellite, it is necessary

to forcibly switch to another access satellite. This situation

is illustrated by Line 5 of the algorithm, where we denote

the time slot of changing content caching locations as k̂. If

ground station needs to change access satellite, we solve P
tk
2

to get the new locations (Line 6) and given such new locations,

Otherwise, if it turns out that we do not change the access

satellite (Line 12), and we keep the access mission at current

locations (Line 13) and given such locations, invoking get all

the other control decisions [45], [46].
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Then we take rxtk and rztk by Algorithm 4 as inputs for

Algorithm 3, an online algorithm which balances Ct
´M and

Ct
M dynamically in the large time scale t. This key idea

is to delay changing the service satellite group and avoid

unnecessary migration costs for service replicas.

To put it in one sentence, our algorithmic framework works

as follows to address the complex coupling of the optimization

variables x
tk, @k, @t and z

tk, @k, @t, which are for each time

slot k in each time frame t, and also y
t, @t, which are for each

time frame t: As time goes to the beginning of the time frame

t, we determine the value of y
t, denoted as ryt; then, given

such ryt, for each time slot k sequentially within the current

time frame t, we determine the values of xtk and z
tk, denoted

as rxtk and rztk, respectively. The key here is that our Algorithm

3 determines ryt through balancing its switching cost (i.e.,

Ct
M p¨, ¨q) and non-switching cost; and Algorithm 4 determines

rxtk through balancing its switching cost (i.e., Ctk
H p¨, ¨q) and

non-switching cost, and determines rztk given rxtk. These

ªbalancingº operations are controlled by the parameters β1

and β2, respectively, and such operations require ªinitialº or

ªtentativeº decisions for y
t and x

tk without considering any

switching cost, denoted as pyt and pxtk, respectively, which are

then provided by our Algorithms 1 and 2, respectively. This

is also how our four algorithms work jointly together in an

online manner.

In each time slot, Algorithm 4 performs a polynomial

number of operations to optimize satellite selection and

request dispatching. The complexity is OpK ¨ |I| ¨ |J |q.

At the beginning of each time frame, Algorithm 3 solves

a linear program to optimize service placement driven by

linear programming for R service replicas. The complexity

is OpR ¨ |J |q. Combined with empirical results showing

stable real-time performance under varying network sizes,

the polynomial-time complexity at both scales confirms the

framework’s practicality in dynamic LEO environments.

The hierarchical design ensures responsiveness to immediate

changes while maintaining long-term resource stability.

V. PERFORMANCE ANALYSIS

We recap existing notations and also introduce some new

notations as follows.

‚

␣
trxtk,rztk,@ku, ryt,@t

(
, denoting the solutions produced

by our proposed algorithms;

‚

␣
tx̄tk, z̄tk,@ku, ȳt,@t

(
, denoting the offline optimal so-

lutions to the problem P0;

‚ qyt, denoting the optimal solution to the problem P
t
1

for

the time frame t;

‚ qxtk, denoting the optimal solution to the problem P
tk
2

for

the time slot k of the time frame t;

‚ tx˚tk, z˚tk,@ku, denoting the optimal solutions to the

problem P
tk
4

at the time frame t, given ryt.

Also, note that rztk is the optimal solution to the problem P
tk
3

for the time slot k of the time frame t, given ryt and rxtk.

Theorem 1. Approximation Ratios. By Algorithms 1 and 2,

we have f tppytq ď θ1f
tpqytq, @t and gtkppxtkq ď θ2g

tkpqxtkq,

@k, @t, respectively, where θ1 “ ξ
ξ´1

and θ2 “ P
P´1

are

constants.

Proof. Let ∆P1 and ∆D1 denote the increment of the

objective function P t
1

and Dt
1
, respectively, ∆P1 “ ai˚ ,

∆D1 “ ´p∆R ` Lk˚∆δk˚ q, where ∆δk˚ “
δ
k˚

Lk
`

a
i˚

Lkξ
and

∆R “ ´pδk˚ ` ai˚ q stands for the increment in δk˚ and

R. Thus, we have ´p∆R`Lk˚∆δk˚ q “ ´Lkp
δ
k˚

Lk
`

a
i˚

Lkξ
q `

pδk˚ `ai˚ q “ ´δk˚ ´
a
i˚

ξ
`´δk˚ `ai˚ “ ξ´1

ξ
ai˚ “ ξ´1

ξ
∆P1.

Due to PK
1

“
ř

kpP k
1

´ P k´1

1
q “ ξ

ξ´1

ř
kpDk

1
´ Dk´1

1
q “

ξ
ξ´1

pDK
1

´D0

1
q ď ξ

ξ´1
DK

1
, according to the nature of the orig-

inal duality, when two Linear programming are dual to each

other, any objective value of the Linear programming seeking

the maximum value will not be greater than any objective

value of the Linear programming seeking the minimum value,

so PK
1

ď ξ
ξ´1

DK
1

ď ξ
ξ´1

P k˚

1
, P k˚

1
refers to the optimal

objective function value of the primal problem P1, we obtain

θ1 “ ξ
ξ´1

.

Let ∆P2 and ∆D2 denote the increment of the objec-

tive function P tk
2

and Dtk
2

, respectively, ∆P2 “ di˚jλj ,

∆D2 “ ´pµj˚ ` Qi˚∆ni˚ q, where ∆ni˚ “
n
i˚

Qi
`

d
i˚j

λj

QiP

stands for the increment in ni˚ . We have ∆D2 “ ´pµj˚ `

Qi˚ni˚ q “ ´µj˚ ´ Qi˚ p
n
i˚

Qi
`

d
i˚j

λj

QiP
q “ ni˚ ` di˚jλj ´

Qi˚ p
n
i˚

Qi
`

d
i˚j

λj

QiP
“ p1 ´ 1

P
qdi˚jλj “ P´1

P
∆P2. Due

to P J
2

“
ř

jpP j
2

´ P
j´1

2
q “ P

P´1

ř
jpDj

2
´ D

j´1

2
q “

P
P´1

pDJ
2

´ D0

2
q ď P

P´1
DJ

2
ď P

P´1
P˚

2
, P k˚

2
refers to the

optimal objective function value of the primal problem P2,

we obtain θ2 “ P
P´1

Theorem 2. Competitive Ratio. The The social cost achieved

via Algorithm 3 is at most α times the offline optimal social

cost. β1 and β2 are the parameters introduced in Algorithm 3

and Algorithm 4.

Proof. First, due to Algorithm 3 and Algorithm 4, we have
ř

t C
tprxt,rzt, rytq

“
ř

t

´
Ct

´M prxt,rzt, rytq ` Ct
M pryt, ryt´1q

¯

ď
`
1 ` β1q

ř
t C

t
´M prxt,rzt, rytq. (11a)

We explain (10a). Consider the set of the time frames

recorded by the variable t̂ when executing Algorithm 3. Let us

denote those time frames as tt̂1, t̂2, ...u. Consider any p ě 1.

For the consecutive time frames tt̂p, t̂p ` 1, ..., t̂p`1 ´ 1u, we

either have

C
t̂p
M pryt̂p , ryt̂p´1q ď β1 ¨

řt̂p`1´1

t“t̂p
Ct

´M prxt,rzt, rytq

Second, note that, analogously, due to Algorithm 4, for each

k, we have

řK
k“1

´
Ctk

´Hprxtk,rztkq ` Ctk
H prxtk, rxtk´1q

¯

ď
`
1 ` β2q

ř
k C

tk
´Hprxtk,rztkq. (12a)

Third, based on (10a) and (12a), now we can denote α “
p1`β1q

`
1`β2q, from the previous text, we know that β1 and

β2 are both positive real numbers, and then have
ř

t C
tprxt,rzt, rytq

9



ďp1 ` β1q
ř

t C
t
´M prxt,rzt, rytq

ďp1 ` β1q
ř

t

`
p1 ` β2q

ř
k C

tk
´Hprxt,rztq `

ř
i a

t
iryti

˘

ďp1 ` β1qp1 ` β2q
ř

t

`ř
k C

tk
´Hprxt,rztq `

ř
i a

t
iryti

˘

ďp1 ` β1qp1 ` β2q
ř

t

`ř
k C

tk
´Hpx̄t, z̄tq `

ř
i a

t
iȳ

t
i

˘

ďp1 ` β1qp1 ` β2q
ř

t C
t
´M px̄t, z̄t, ȳtq

ďα
ř

t C
tpx̄t, z̄t, ȳtq.

Theorem 3. NP-Hard. The total cost minimization problem

P0 is NP-hard.

Proof. To prove the NP-hardness of our problem P0, we can

reduce an existing NP-hard problem ªp-medianº to P0. In the

following, we recap our problem P0, formulate the p-median

problem, and exhibit the reduction process. We have already

analyzed the gap between the obtained approximate solution

and the theoretical optimum, and we also explain that as below.

We have already listed the formulation of P0 in Section III.B.

1. Formulation of the p-median problem:

min
ř
i

ř
j

cijxij

s.t.
ř

ixij “ 1,@j, (14a)ř
iyi “ p, (14b)

xij ď yi,@i,@j, (14c)

xij , yi P t0, 1u,@i,@j.

2. Reduction: We set T “ 1 and K “ 1 while neglecting

the switching cost terms, i.e., we consider a time horizon of a

single time frame which contains a single time slot. We also

set Itk
j “ I, @j and J tk

i “ J , @i. That is, P0 becomes

min
ř
i

ř
j

dijλjxij `
ř
i

ř
m

limzim `
ř
i

aiyi

s.t.
ř

i xij “ 1,@j, (15a)ř
j xij ď Qi,@i, (15b)ř
m zim ě

ř
j λjxij ,@i, (15c)ř

i zim ď ymCm,@m, (15d)ř
i yi “ R, (15e)

xij , yi Pt0, 1u, zim ě0, @i,@m,@j.

In this P0, we further set

dij “ cij ,@i,@j,

λj “ 1,@j,

ai “ 0,@i,

Qi “ |J |,@i,

Cm “ |J |,@m,

R “ p,

lim “
ř

i

ř
jcij ` 1 pfor i ‰ mq and 0 pfor i “ mq,@m.

P0’s objective becoming p-median’s objective: Note that

the objective function of P0 is now the same as the objective

function of p-median, except that the former contains the extra

term
ř

i,m limzim. Yet, for every m, the coefficient li,m is set

to 0 if i “ m and set to a large constant (i.e.,
ř

i

ř
j cij ` 1,

or any larger constant) if i ‰ m. This indeed means that, in

the optimum of P0, for every m, zim is 0 for i ‰ m and could

take any non-negative value for i “ m; this further means that,

in this case, the optimal objective value of P0 is exactly the

same as that of p-median.

P0’s constraints becoming p-median’s constraints: Note

that (15a) is actually (14a), and (15e) is actually (14b). With

Qi “ |J |, (15b) always holds and can be ignored. Next, we

show how (15c) and (15d) jointly lead to (14c). Following

the above analysis of
ř

i,m limzim, the left-hand side of (15c)

becomes zii and the right-hand side of it becomes
ř

j xij ,

i.e., (15c) becomes zii ě
ř

j xij ; similarly, (15d) becomes

zii ď yi|J |. Connecting them, we have
ř

j xij ď yi|J |, which

is equivalent to xij ď yi, i.e., (14c). That is, in this case, the

constraints of P0 are exactly the same as those of p-median.

Gap: The gap between P0’s objective value incurred by the

approximate solution from our proposed algorithms and P0’s

own optimal objective value is analyzed and mathematically

proved in Theorem 2. In Theorem 2, we have proved a

parameterized-constant competitive ratio to characterize the

multiplicative gap, defined as the ratio of the optimization

objective’s value incurred by the online decisions over that

incurred by the offline optimal decisions. While the approxi-

mation ratio is often used in the offline setting, the competitive

ratio is the online version of the approximation ratio in the

online setting (where ªonlineº vs. ªofflineº will be discussed

in our response to the next comment). The competitive ratio

holds for all inputs, and is thus stable in this sense. A constant

competitive ratio implies that the multiplicative gap does not

grow as the length of the time horizon (e.g., the total number

of the time frames) grows, even though it may still depend on

other parameters. In our case, the competitive ratio depends on

the control parameters β1 and β2 introduced in our Algorithms

3 and 4.

VI. EXPERIMENTAL EVALUATIONS

In this section, we present the experimental evaluations

conducted to assess the performance and effectiveness of the

proposed system.

A. Experimental Settings

Edge System: We simulate a Walker-Delta constellation

with an orbital height of 1000km and an inclination of 53

degrees through Satellite Tool Kit (STK) platform [47], [48],

along with the deployment of 20 ground stations in China,

each satellite has a communication coverage with a 30˝ cone

half angle and different satellites have overlapped coverage.

Coverage at a location varies over time as satellites move in

and out of view [49]. We set the total length of the time range

to 10 consecutive time frames, each with 12 time slots, and

obtain content requests for each time slot [50].

Content Requests: We export the position and connection

relationship data of the ground station and satellite simulated

in STK to form all Itk
j and J tk

i at the current moment. We

set the cost of each hosting service replica as within the range

of r0.2, 1s. We use the geographical distance to estimate the

network delay between the two edges and the delay between

ground stations and satellites. We note that we can associate
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proper non-negative weights to these different types of costs

to indicate how the importance of each type of cost can impact

the results.

Algorithms for Comparison: We implement the following

algorithms for comparison: (1) Proposed refers to our proposed

online algorithms; (2) Offline Optimum, this method considers

the long-term issue as an offline issue, with all inputs identical

to the online algorithm but known in advance; (3) Greedy

seeks the current optimal solution in each corresponding time

slot without considering the global optimal solution, and does

not postpone ground station changing access satellite across

time slots; (4) Random selects access satellites and service

satellites considering any cost-related optimization. (5) Single-

Timescale, solving on a single time scale as a comparative

algorithm for our dual time scales. (6) An advanced Markov

decision process Approach for User Allocation in Edge Com-

puting called MDP [51], the core idea of this method is to

describe the interaction between the server and the edge nodes

in the form of evolutionary games.

B. Experimental Results

Fig. 4 depicts the impact of satellite size on set Itk
j , i.e. the

number of satellites flying over one of the ground stations at k

of t. It can be observed that smaller constellations fail to ensure

a satellite presence in every time slot for connectivity. This is

attributed to the sparse distribution of satellites determined by

the constellation size [6]. To avoid situations where ground

stations cannot choose to access satellites, it is advisable to

opt for larger-scale constellations whenever possible, that is,

a large constellation ensures that at least one satellite in each

time slot can be connected to a ground station.

Fig. 5 depicts the total cost under different constellation

sizes. Based on Fig.4, we can find that when pM,Nq is

p16, 12q and p12, 8q, ground stations may sometimes stop

working due to missing access to satellites, therefore the total

total cost under small-scale constellations are much lower than

those under large-scale constellations. On the contrary, as long

as the ground station can be ensured to be within the communi-

cation coverage range of at least one satellite in each time slot,

the total cost gap between different large-scale constellations

will not be very significant. The additional portion arises from

the migration costs incurred in the service transfer within the

more extensive constellation, we can see that our proposed

method performs better than Single-Timescale and MDP.

Fig. 6 depicts the total cost of different algorithms per time

slot.Due to the transition process of the satellite i from becom-

ing an access satellite to performing access handover (trans-

ferring the access role to the next satellite), a certain number

of time slots are required. During this period, the connections

established by the ground stations are stable. However, when

the handover occurs, the cost increases significantly due to

the associated handover penalty and the migration cost of

tasks from the partially serviced satellite. Consequently, there

is a noticeable elevation in cost. The simulation in Systems

Tool Kit maintains a fixed starting time and initial topology.

Therefore, when running different algorithms, the handover

occurs at the same time point. Our approach outperforms

Random and Greedy by reducing 5% „ 50% total cost and is

also close to the offline optimum. Fig. 5 and Fig. 6 showing

that our approach achieves near-optimal performance with

low computational overhead, and validates the scalability of

our approach in terms of its running time under different

network sizes. These results collectively demonstrate that

our algorithms converge quickly, scale well with increasing

network sizes, and achieve near-optimal performance with low

computational overhead.

Fig. 7 depicts the influence of changes in the service cost

weight per satellite on the total cost across different numbers

of service satellites. In this scenario, we ensure that the

service capacity of satellites can meet all task requirements.

As the total number of specified service satellites in the entire

system increases, the incurred task migration delay and hosting

costs also rise, thereby impacting the overall total cost. This

dynamic may arise due to the escalation in the complexity

of internal communication and resource scheduling within

the system as the number of service satellites grows. With

the augmentation of service satellites, there is an increase

in the frequency of task migration and hosting operations,

consequently leading to elevated resource consumption and

communication overhead. In this context, the rise in total cost

reflects a relative decline in system performance under the

burden of increased service workload

Fig. 8 illustrates the impact of the control parameter β2 as

in Algorithm 2 on the total cost, in this case, we give β1

in Algorithm 1 as 0.25. When the weight of the handover

penalty is provided, increasing β2 makes it easier to meet

the control requirement in Algorithm 2. Although a larger

value of β2 may delay the handover of satellite access as

much as possible, it not only faces increased costs due to

frequent downloading of copies from other satellites, but

also leads to excessive time slot delay, which can cause the

ground station to deviate from the coverage range of the

currently connected satellites, and then force satellite handover

to generate handover penalties. Similarly, when the parameter

β2 Given the timing, a higher handover penalty weight may

delay the necessary content download, leading to an increase

in the cumulative non replacement cost, thus increasing the

total cost. Similarly, Fig. 9 illustrates the impact of the control

parameter β1 as in Algorithm 1 on the total cost. We compared

the two graphs and found that the change in β2 has a greater

impact on total costs than β1. Algorithm 1 operates at the

time frame scale, and Algorithm 2 performs computations at

the time slot scale. Since a time frame encompasses multiple

time slots, the impact of β2 in Algorithm 2 on total costs

is slightly larger than the impact of β1 in Algorithm 1. This

difference in impact arises from the fact that the decisions

made in each time slot accumulate over the entire time frame,

and β2 affects the total costs within each time slot, leading to

a more significant overall impact.

Fig. 10 illustrates the correlation between the total number

of service satellites R in the system and the service capacity

Ci weight per individual service satellite. This is crucial as

our system must ensure that, in each time slot, it respects the

service capacity to avoid situations where service satellites

cannot meet the demand for task assignments. For instance,
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Fig. 12: Algorithms running time

if the specified total number of service satellites is too low

and their service capacity is insufficient, some task demands

may remain unallocated to service satellites in the current time

slot. Consequently, we observe relatively low total costs in

such scenarios because those task demands neither consume

resources nor are handled by the system. On the other hand,

when the system capacity is large enough to handle all task

demands, with an increase in the weight of Ci, total costs

decrease. This is because a single service satellite can accom-

modate as many task demands as possible, thereby alleviating

the migration costs associated with the dispersed transmission

of some task demands.

Fig. 11 indicates that our approach effectively achieves

a remarkably low approximation ratio. Specifically, for any

individual time slot, the approximation ratio is less than

2, considering constellations with sizes (16, 24) and (20,

30). Additionally, the constellation with parameters (16, 24),

characterized by a smaller scale, exhibits an even smaller

approximation ratio, approximately below 1.7. Furthermore,

the stability of the approximation ratio in larger constellations

is not as robust as in smaller constellations.

Fig. 12 respectively show the time spent on execution time

of our proposed online algorithms. Although collecting various

satellite data from STK took a lot of time, fortunately, data

acquisition and our algorithm are two independent processes

that do not affect the performance of our algorithm. Because

the size of the constellation has almost no impact on the

algorithm we propose, while ensuring that ground stations

have access to satellites at each time slot, we choose to

compare the running time of the algorithm with different

numbers of ground stations. As the length of the entire time

horizon in terms of the total number of time slots increases,

the total execution time of our approach grows moderately.

VII. CONCLUSION

In this paper, we address the dynamic resource manage-

ment challenges in LEO satellite edge computing by propos-

ing a novel two-timescale optimization framework. We first
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formulate the social cost minimization problem as a non-

convex mixed-integer program spanning the time horizon,

considering joint optimization of satellite access selection, user

request dispatching, and service replica placement. To solve

this problem efficiently, we design polynomial-time online

algorithms including a hierarchical framework (Algorithms

3-4) that coordinates long-term service migration decisions

with short-term resource allocation, supported by primal-

dual based subproblem solvers (Algorithms 1-2) for service

placement and access selection. The exceptional performance

of our technique in practice has been validated by conducting

comprehensive evaluations, and by carefully demonstrating

many theoretical features and guarantees.
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