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Smoothed Online Resource Allocation in Multi-Tier
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Abstract— The problem of dynamic resource allocation for
service provisioning in multi-tier distributed clouds is particularly
challenging due to the coexistence of several factors: the need
for joint allocation of cloud and network resources, the need

for online decision-making under time-varying service demands
and resource prices, and the reconfiguration cost associated with
changing resource allocation decisions. We study this problem
from an online optimization perspective to address all these
challenges. We design an online algorithm that decouples the
original offline problem over time by constructing a series of
regularized subproblems, solvable at each corresponding time
slot using the output of the previous time slot. We prove
that, without prediction beyond the current time slot, our algo-
rithm achieves a parameterized competitive ratio for arbitrarily
dynamic workloads and resource prices. If prediction is available,
we demonstrate that existing prediction-based control algorithms
lack worst case performance guarantees for our problem, and we
design two novel predictive control algorithms that inherit the
theoretical guarantees of our online algorithm, while exhibiting
improved practical performance. We conduct evaluations in a
variety of settings based on real-world dynamic inputs and show
that, without prediction, our online algorithm achieves up to
nine times total cost reduction compared with the sequence of
greedy one-shot optimizations and at most three times the offline
optimum; with moderate predictions, our control algorithms can
achieve two times total cost reduction compared with existing
prediction-based algorithms.

Index Terms— Cloud networks, resource allocation, resource
reconfiguration, online optimization, regularization.

I. INTRODUCTION

C
LOUD resources are moving closer toward end users [6],

[22], [23], enabling major improvements in key service
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Fig. 1. The multi-tier cloud network model.

performance metrics such as latency (via service proximity),

reliability (via service redundancy), and privacy (via local

or regional data storage and processing). Small-scale highly

distributed edge clouds can be built at network operators’

existing points of presence or implemented separately at metro,

branch, and customer premises. Introducing the edge cloud

into the service path between end users and large commercial

clouds at the Internet core results in a multi-tier computing

infrastructure, as shown in Fig. 1. Exploiting this hierarchical

and distributed infrastructure for service provisioning entails

the joint allocation of cloud and network resources across tiers

and locations. The main challenges manifest as follows:

First, resource allocation and reconfiguration need to be

balanced. Resource allocation incurs operating cost, e.g., the

cost of using physical and virtual resources such as servers,

Virtual Machines (VMs), bandwidth, and energy. Resource

reconfiguration, which refers to changing resource allocation

decisions, incurs a different type of cost that can capture

service interruption [19], hardware wear and tear [12], system

instability [29], as well as resource lead time (e.g., booting and

initializing a VM and the services running on it) [15]. While

it is desirable to allocate just enough resources to process

the current workload to avoid over-provisioning and minimize

operating cost, it is also beneficial that resource allocation

decisions are smooth, without sharp changes over time to incur

excessive reconfiguration cost. Striking the right balance under

time-varying workloads and resource prices is not an easy task.

Further, dynamic resource allocation is particularly hard in

an online setting, where decisions need to be made on the fly

to achieve the long-term objective of optimizing allocation and

reconfiguration costs over time. In cases where prediction is

not possible, such as for workload flash crowds [5], a resource

allocation decision for the current time slot must be made

without knowing the workload and the resource price in the
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future. A decision for the current time slot will influence the

reconfiguration cost between the current time slot and the next

time slot; with zero knowledge about the next time slot, it is

thus challenging to make a good decision for the current time

slot. In cases where prediction about the workload and the

resource price in the near future is available [20], [26], the

issue becomes how to leverage such prediction to make better

decisions, compared to the decisions made without prediction.

Naively optimizing the cost over the current prediction window

could still result in suboptimal reconfiguration between the last

time slot of the current prediction window and the first time

slot of the next prediction window.

Finally, resource allocation decisions must accommodate

cloud and network resource heterogeneity across multiple tiers

and locations, while respecting capacity limits [16], [25] and

meeting Service Level Agreements (SLAs) [9], [17]. Unlike

gigantic upper-tier clouds where resources may be considered

“infinite", lower-tier clouds and networks often impose limited

capacities, and are diverse in resource prices. To process the

incoming workload from an edge cloud, only a particular

subset of the upper-tier clouds may satisfy the specified SLA

in terms of latency, security risk, reliability, etc. At different

upper-tier clouds, resources need to be allocated and recon-

figured to handle workloads from different edge clouds. Such

factors add additional complexities to the online optimization

problem.

Existing studies fall short in addressing the aforementioned

challenges. Most of them do not consider joint cloud and

network resource allocation in the multi-tier distributed cloud

infrastructure. In addition, they either ignore the reconfig-

uration cost [7], [8], [13], [27], or purely use prediction-

based approaches [11], [20], [28], [29], not known to provide

competitive guarantees when applied to the multi-tier scenario.

In this paper, we make the following contributions:

We build models that can capture a range of real-world

resource costs and formulate the smoothed online multi-tier

resource allocation problem. The allocation cost is modeled as

an affine function of the active cloud and network resources,

which can capture load-proportional usage costs and pay-as-

you-go business models. The reconfiguration cost is modeled

assuming the cost is only incurred when increasing the amount

of allocated resources from one time slot to the next, which can

capture, for instance, server and VM booting and lead time.

SLA is modeled by subsets, i.e., for each lower-tier cloud,

only a cloud in a specified subset of the upper-tier clouds

may satisfy the SLA requirement. We do not enforce how such

subsets are determined or what criterion is used. We also make

no assumption on workload and resource price dynamics.

Given that prediction is unavailable, we design an online

algorithm based on the technique of regularization [4], which

provides a solution with a parameterized competitive ratio

independent of workload and resource price dynamics. Funda-

mentally different from existing work, our approach decouples

the original problem over time by constructing a series of

subproblems where the optimal decision of a subproblem at

a given time slot depends on the workload and the resource

price at that time slot and the decision of the subproblem at the

previous time slot, and uses the sequence of decisions to this

series of subproblems as the solution to the original problem.

Our algorithm, when the workload increases, allocates just

enough resources to cover the current workload, and when

the workload decreases, takes a controlled exponential-decay

reduction in the amount of allocated resources to avoid exces-

sive reconfiguration cost upon a future workload increase. We

derive the optimality guarantee for our algorithm via rigorous

competitive analysis for two tiers of clouds, and generalize

such a guarantee to arbitrary N ! 2 tiers of clouds.

For the case in which prediction is available, we further

propose to incorporate regularization into standard prediction-

based control algorithms, FHC (Fixed Horizon Control) and

RHC (Receding Horizon Control) [12], [26], and design the

regularized versions of the two algorithms, RFHC (Regular-

ized Fixed Horizon Control) and RRHC (Regularized Reced-

ing Horizon Control). Via formal analysis, we first show that

FHC and RHC, when applied to our resource allocation prob-

lem, can have arbitrarily bad performance, and then show the

advantage of RFHC and RRHC, as they inherit the worst-case

performance guarantee of our prediction-free online algorithm,

while also providing improved practical performance.

We conduct numerical evaluations based on real-world data

traces. Using the 18 AT&T clouds in North America as tier-2

clouds and one tier-1 cloud per continental US state, and using

realistic dynamic electricity and estimated bandwidth prices,

we run the sequence of greedy one-shot optimizations, our

online algorithm, and the offline optimization to allocate and

reconfigure resources for the 2007 Wikipedia workload [21]

of 500 hours with regular dynamics and for the 1998 World

Cup workload [3] of 600 hours with large spikes, respec-

tively. Through a number of different settings, we exhibit that

our online algorithm performs consistently well in practice,

achieving up to 9× total cost reduction compared to the greedy

one-shot optimizations and at most 3× the offline optimum.

We also run the prediction-aware control algorithms and find

that, with very moderate predictions, RFHC and RRHC can

achieve 2× total cost reduction compared to FHC and RHC.

II. MODEL FORMULATION

A. Models and Notations

System: Clouds are geographically distributed and organized

in tiers, as shown in Fig. 1. Tier-1 clouds, indexed by j ∈ J ,

are edge clouds (e.g., at metro points of presence) located in

close proximity to the end users in each region. Tier-2 clouds,

indexed by i ∈ I, are larger clouds located at the Internet

core, which are typically public clouds or enterprise clouds

that host services offered to end users or customers. Note that

tier-1 clouds are on the path between users and tier-2 clouds,

i.e., to reach a tier-2 cloud, a user’s requests or flows must

go through the regional tier-1 cloud. All users in a region

are connected to their corresponding tier-1 cloud, and a tier-1

cloud can potentially connect to all the tier-2 clouds.

We model the cloud resources of tier-1 and tier-2

clouds, as well as the network resources between tier-1 and

tier-2 clouds. Tier-2 cloud i has capacity Ci, unit allocation

cost (i.e., the operating price or resource price) ait which

may be time-varying, and unit reconfiguration cost (i.e., the
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reconfiguration price) bi. Analogously, tier-1 cloud j has

capacity Cj , unit allocation cost ejt, and unit reconfiguration

cost fj . The network between tier-2 cloud i and tier-1 cloud

j has capacity Bij , unit allocation cost cijt, and unit recon-

figuration cost dij . In a time-slotted system, the allocation

cost pays for the amount of allocated resources at every time

slot, such as bandwidth and energy expense; in contrast, the

reconfiguration cost only pays for the increase of the amount

of resources across consecutive time slots to capture the fact

that, e.g., booting servers or VMs incurs considerable time

while shutting them down is fast.

Workload: We target web services workload and alike, and

use λjt to denote the aggregated workload, e.g., in terms

of the number of requests, received at edge cloud j at time

slot t. User requests are first processed at the local edge cloud

and then at one of the clouds at the upper tier that host the

target service. The workloads at different edge clouds can be

different, and change over time. We make no assumption on

workload dynamics and statistical distributions, and allow the

workload of each edge cloud to vary arbitrarily and inde-

pendently. We model a time-slotted system where each time

slot t ∈ {1, 2, 3, . . . , T} corresponds to a resource allocation

decision at all clouds and inter-cloud networks across tiers.

SLA: We model the SLA requirements as the selections of

clouds at the upper tier. For each tier-1 cloud j, there exists

a subset of tier-2 clouds, denoted as Ij , that satisfy the SLA

requirement, meaning that the latency, security risk, reliability,

and so on as in the SLA specification can be satisfied if user

requests received at cloud j are routed to any cloud in Ij .

Correspondingly, Ji refers to the subset of tier-1 clouds for

which the tier-2 cloud i can satisfy the SLA. Taking Fig. 1

as an example, we have Ji2 = {j1, j2}, Ij1 = {i1, i2},

Ij2 = {i2, i3}. In case of a system with more than two tiers

of clouds, an edge cloud receives the requests and sends them

to a cloud at the top tier eventually for processing. Multiple

paths may exist to satisfy the SLA and also to reach one of the

clouds at the top tier via different clouds in the intermediate

tiers.

B. Problem Formulation

Let xijt denote the amount of resources allocated at cloud i
to process the incoming workload from cloud j at time t,
yijt the amount of resources allocated at the network between

clouds i and j to transport the workload from cloud j to cloud i
at time t, and zijt the amount of resources allocated at cloud j
to process the workload that is sent to cloud i for further

processing at time t. The total cost of a two-tier cloud network

can be computed in terms of the following three components:

F1 =
∑

t

∑

j

∑

i∈Ij

ejtzijt+
∑

t

∑

j

fj

⎡

⎣
∑

i∈Ij

zijt−

∑

i∈Ij

zijt−1

⎤

⎦
+

,

F12 =
∑

t

∑

j

∑

i∈Ij

cijtyijt +
∑

t

∑

j

∑

i∈Ij

dij [yijt − yijt−1]
+
,

F2 =
∑

t

∑

i

∑

j∈Ji

aitxijt+
∑

t

∑

i

bi

⎡
⎣

∑

j∈Ji

xijt−
∑

j∈Ji

xijt−1

⎤
⎦

+

.

We formulate the dynamic resource allocation problem as

follows, where we have
∑

i

∑
j∈Ji

xij =
∑

j

∑
i∈Ij

xij and

[x]+ " max{x, 0}, ∀x:

min F1 + F12 + F2

s.t.
∑

i∈Ij

min{xijt, yijt, zijt} ! λjt, ∀j, ∀t, (1a)

∑
j∈Ji

xijt # Ci, ∀ , ∀t, (1b)

yijt # Bij , ∀i ∈ Ij , ∀j, ∀t, (1c)∑
i∈Ij

zijt # Cj , ∀ , ∀t, (1d)

xijt ! 0, yijt ! 0, zijt ! 0, ∀i ∈ Ij , ∀j, ∀t. (1e)

The problem is minimizing the total cost of cloud and network

resources allocation and reconfiguration over time, while allo-

cating sufficient resources along the service path, as in (1a),

and satisfying capacity constraints, as in (1b), (1c), and (1d).

By introducing the axillary variable sijt, we can rewrite the

problem as follows:

min F1 + F12 + F2

s.t. xijt ! sijt, ∀i ∈ Ij , ∀j, ∀t, (2a)

yijt ! sijt, ∀i ∈ Ij , ∀j, ∀t, (2b)

zijt ! sijt, ∀i ∈ Ij , ∀j, ∀t, (2c)∑
i∈Ij

sijt ! λjt, ∀j, ∀t, (2d)

sijt ! 0, ∀i ∈ Ij , ∀j, ∀t, (2e)

(1b), (1c), (1d).

For the problem to be feasible, the following inequalities must

be satisfied: Cj ! λjt, ∀j, ∀t;
∑

i∈Ij
Bij ! λjt, ∀j, ∀t;∑

i Ci !
∑

j λjt, ∀t. These three inequalities correspond to

constraints (1d), (1c), and (1b), respectively.

Due to the highly analogous structure of F2 and F1, we

remove F1 and its corresponding constraints (2c) and (1d)

from our problem for the ease of presentation. All the tech-

niques that we develop in this paper are naturally applicable

to the problem that has F1, (2c) and (1d). In the rest of the

paper, we focus on the following problem that we name P1:

min F12 + F2

s.t. (2a), (2b), (2d), (2e), (1b), (1c).

Remarks: The affine models for allocation costs and the

models based on the function [·]+ for reconfiguration costs

seem simple yet are powerful to capture the costs incurred

by a variety of different cloud resources. Allocation costs

can capture VM and server usage, electricity usage, carbon

emission, bandwidth usage, etc., all possibly with dynamic

prices. Reconfiguration costs can capture hardware wear-and-

tear, resource lead time, network link establishment, etc. The

SLA models based on subsets are also flexible in the concrete

underlying criterion, which can be delay, security risk, etc.

The case of two tiers of clouds, as captured by P1, is the

smallest problem instance that has all the necessary elements

in the multi-tier setting, including the costs inside each cloud,

the costs between clouds across tiers, and the SLA constraints

between clouds. Note the two key features of our problem: (1)
besides the workload, operating prices are dynamic and can
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Fig. 2. Key idea.

be unbounded; (2) resource allocations are within capacity

limits, and at every time slot, the sum of the resources from

a specified set of clouds and networks sufficiently “cover” the

corresponding workload.

III. ONLINE ALGORITHM AND COMPETITIVENESS

A. Key Idea

The competitive ratio is often used to quantify the quality

of the solution produced by an online algorithm. To make

decisions for a series of time slots, an online algorithm, to

which the input is revealed incrementally, makes a decision

for each time slot on the fly; an offline algorithm, to which

the entire input is assumed to be revealed all at once, makes

decisions for all time slots at a time. The competitive ratio

of an online algorithm refers to the ratio of the over-time

cost incurred by the online decisions over that incurred by the

offline optimal decisions, maximized over all possible inputs.

The major difficulty in solving problem P1 in an online

manner lies in the reconfiguration cost that couples every

two consecutive time slots. A resource allocation decision at

a time slot can influence the reconfiguration cost associated

with changing the decision from this current time slot to the

next time slot—without knowing the workload and resource

price and thus the decision at the next time slot, it is hard to

make a good decision for the current time slot. To conquer

such difficulty, we decouple the original problem P1 by

exploiting the regularization technique to construct a series

of subproblems {P
(1)
2

,P
(2)
2

, . . . ,P
(t)
2

, . . . ,P
(T)
2

} solvable at

each corresponding time slot, which allows making a decision

for the current time slot with bounded proximity to the offline

optimum only based on the decision of the previous time slot

and the workload and resource price at the current time slot.

Denoting by (x∗
t , y

∗
t ) the optimal solution to P

(t)
2

, we use

the sequence {x∗
1, y

∗
1 , x∗

2, y
∗
2 , . . . , x∗

t , y
∗
t , . . . , x∗

T , y∗
T } as the

solution to P1 (while Lemma 1 in the next section will show

this sequence is feasible for P1).

Our key idea for algorithm design and competitive analysis

is illustrated in Fig. 2. We proceed via the following steps:

• Step 1: Construct P
(t)
2

whose optimal solution (x∗
t , y

∗
t )

is feasible for P1 at t;
• Step 2: Construct P3 by relaxing P1, and derive P4, the

Lagrange dual problem of P3;

• Step 3: Construct the mapping π which maps (x∗
t , y

∗
t ) to

a solution feasible for P4 at t;
• Step 4: Prove P1({x∗

t , y
∗
t |∀t}) # rP4({π(x∗

t , y
∗
t )|∀t}).

Let Pi(x) denote the objective function value of problem i

evaluated at x and let OPT (·) denote the offline optimal

objective function value. Step 1 provides the algorithm’s deci-

sion at t. From Steps 2 and 3, it follows P4({π(x∗
t , y

∗
t )|∀t}) #

OPT (P3) # OPT (P1) due to weak duality and relaxation,

respectively. From Step 4, it follows P1({x∗
t , y

∗
t |∀t}) #

rOPT (P1), where r is the competitive ratio.

B. Algorithm Design

Our online algorithm solves P
(t)
2

, ∀t ∈ {1, . . . , T}, taking

the optimal solution to P
(t−1)
2

and the workload at t as input

(note that the optimal solution to P
(0)
2

is set to zero). We

construct the following formulation as P
(t)
2

:

min Ft =
∑

i

∑
j∈Ji

aitxijt +
∑

j

∑
i∈Ij

cijtyijt

+
∑

i

bi

ηi

⎛

⎝

⎛

⎝
∑

j∈Ji

xijt + ε

⎞

⎠ ln

∑
j∈Ji

xijt + ε
∑

j∈Ji
x∗

ijt−1 + ε

−

∑

j∈Ji

xijt

⎞
⎠

+
∑

j

∑
i∈Ij

dij

η′
ij

(
(yijt+ε′) ln

yijt+ε′

y∗
ijt−1+ε′

−yijt

)

s.t. xijt ! sijt, ∀i ∈ Ij , ∀j, (3a)

yijt ! sijt, ∀i ∈ Ij , ∀j, (3b)∑
i∈Ij

sijt ! λjt, ∀j, (3c)

∑
k∈I
k ̸=i

∑
j∈Jk

xkjt !
∑

j
λjt − Ci, ∀i, (3d)

∑
k∈Ij

k ̸=i

ykjt ! λjt − Bij , ∀i ∈ Ij , ∀j, (3e)

sijt ! 0, ∀i ∈ Ij , ∀j, (3f)

where (x∗
ijt−1, y

∗
ijt−1), satisfying x∗

ij0 = y∗
ij0 = 0, is the opti-

mal solution to P
(t−1)
2

, and ε, ε′, ηi, η′
ij are the parameters:

ε > 0, ε′ > 0, ηi = ln

(
1 +

Ci

ε

)
, η′

ij = ln

(
1 +

Bij

ε′

)
.

When formulating the objective of P
(t)
2

, we “regularize” the

reconfiguration cost by replacing the function [·]+ (recall

[x]+ = max{x, 0}) with a logarithmic function. Furthermore,

we reformulate constraints (2a), (2d) and (1b) in P1, intro-

ducing (3d) in P
(t)
2

, and analogously for (2b), (2d) and (1c)

in P1, we introduce (3e) in P
(t)
2

.

We state the following lemma to show the feasibility of the

sequence {x∗
1, y

∗
1 ,x∗

2, y
∗
2 ,. . . ,x∗

t , y
∗
t ,. . . ,x∗

T , y∗
T } for P1:

Lemma 1: (x∗
t , y

∗
t ) is feasible for P1 at t.

Proof: We prove this lemma by showing that (x∗
t , y

∗
t ), the

optimal solution to P
(t)
2

, satisfies P1’s constraints (2a), (2b),

(2d), (2e), (1b) and (1c) at t. Note that x∗
t and y∗

t , for the ease

of presentation, actually refer to x∗
ijt and y∗

ijt, ∀i ∈ Ij , ∀j.

Note that when xijt ! x∗
ijt−1, ∀i ∈ Ij , ∀j,

∂Ft

∂xijt

= ait +
bi

ηi

ln

∑
j∈Ji

xijt + ε
∑

j∈Ji
x∗

ijt−1 + ε
! 0,

and when yijt ! y∗
ijt−1, ∀i ∈ Ij , ∀j,

∂Ft

∂yijt

= cijt +
dij

η′
ij

ln
yijt + ε′

y∗
ijt−1 + ε′

! 0.
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That is, Ft increases monotonically for xijt ! x∗
ijt−1 and

yijt ! y∗
ijt−1, and drops when xijt is reduced to x∗

ijt from a

value that is larger than x∗
ijt, and yijt is reduced to y∗

ijt from

a value that is larger than y∗
ijt. With

∑
j∈Ji

x∗
ij0 = 0 # Ci

and y∗
ij0 = 0 # Bij , the value of Ft decreases when xij1

is reduced until
∑

j∈Ji
xij1 = Ci holds, and yij1 is reduced

until yij1 = Bij holds, i.e., we will have
∑

j∈Ji
x∗

ij1 # Ci and

y∗
ij1 # Bij , as required by (1b) and (1c) at t = 1. Analogously,

∀t ! 2, (1b) and (1c) hold. $

C. Geometric Interpretation

To understand how the optimal decisions for P
(t)
2

, ∀t dictate

the resource allocation decisions, we consider the following

simplified version of our smoothed online resource allocation

problem at a single data center. Note that this problem, where

the covering constraints degenerate into a very simple version

as in (4a), is only for the ease of the geometric interpretation;

the power of our algorithm is in fact better reflected when used

to address the multi-tier multi-cloud problem where there exist

complicated covering constraints.

min
∑

t
atxt +

∑
t
b[xt − xt−1]

+ (4)

s.t. xt ! λt, ∀t, (4a)

xt # C, ∀t. (4b)

Replacing b[xt − xt−1]
+, we have

atxt +
b

η

(
(xt + ε) ln

xt + ε

x∗
t−1 + ε

− xt

)
(5)

where η = ln(1+C/ε). The problem is further decoupled over

time slots. At each time slot t ! 1, we minimize (5) subject

to (4a) and (4b) at the corresponding time slot, with x∗
0 = 0.

By setting the derivative of (5) to zero, we get its constraint-

free minimizer x̃t as

x̃t =

(
1 +

C

ε

)−
at
b

(x∗
t−1 + ε) − ε # x∗

t−1. (6)

With constraints (4a) and (4b), we know that at t, if λt > x̃t,

then x∗
t = λt; if λt # x̃t, then x∗

t = x̃t.

Let us consider w + 1 consecutive time slots t, t + 1, …,

t + w with the workload λt < λt+1 < . . . < λt+w :

• In the case of λt > x̃t, we have x∗
t+w′ =

λt+w′ , ∀w′, where 1 # w′ # w. This is because

λt > x̃t gives x∗
t = λt, which further gives

λt+1 > λt = x∗
t ! x̃t+1. Then, λt+1 > x̃t+1 gives

x∗
t+1 = λt+1. This procedure can continue for any w′,

where 1 < w′ # w. Hence, in this case, the resource

allocation follows the workload.

• In the case of λt # x̃t, by applying the recursion in (6)

iteratively, we have

x∗
t+w′ = x̃t+w′ =

(
1 +

C

ε

)− 1
b

w′

t′=1
at+t′

(x̃t + ε) − ε,

if λt+w′ # x̃t+w′ , ∀w′, where 1 # w′ # w. In this case,

if at does not vary with t, the resource allocation follows

the exponential decay curve; if at varies but is bounded

by some constant, the resource allocation is also bounded

by the corresponding exponential decay curve.

Our online algorithm always tries to allocate resources

following an exponential decay curve (or a curve bounded by

the exponential decay as explained above) for an arbitrarily

time-varying workload. At any time slot, the actual amount of

allocated resources depends on which is larger: the “expected”

amount of resources calculated according to the current expo-

nential decay or the actual workload at the current time slot.

If the former is larger, then it allocates the exponential decay

calculated resources; if the latter is larger, then it allocates

just enough resources for the workload. Note that in the latter

case, the decay curve changes correspondingly. At the next

time slot, our algorithm will calculate the “expected” amount

of resources following the new decay curve, and compare it

with the actual workload at the next time slot.

D. Competitive Analysis

Theorem 1: Our online algorithm produces a solution to

P1 with a competitive ratio of r = 1 + |I| (C(ε) + B(ε′)) ,

where C(ε) = max
i∈I

{
(Ci + ε) ln

(
1 + Ci

ε

)}
and B(ε′) =

max
i∈Ij ,j∈J

{
(Bij + ε′) ln

(
1 +

Bij

ε′

)}
.

Remarks: The competitive ratio of our algorithm depends

on the capacities of the system and may seem large; however,

we believe it is a reasonably good ratio, due to the following

reasons. Firstly, note that the way we model the problem,

e.g., the workload never exceeds the capacity, always allows

us to normalize the inputs, including both the workload and

the capacities, so that solving a normalized problem can

have a much smaller competitive ratio. The decisions made

by solving the normalized problem can also be translated

back into the actual amount of resources. Secondly, there

may be an interesting connection between our problem and a

variant of the ski-rental problem [14], where, in our case, the

corresponding “rental” price is time-varying and unbounded,

rather than a constant as in the classic version. Although

the algorithmic idea of accumulating the rental cost to match

the purchase cost in the classic ski-rental problem may still

be applicable here, it can be shown that the best possible

competitive ratio (for any deterministic online algorithm) for

our variant of the ski-rental problem is large, related to the

resource price which can be unbounded in our case, which

further hints that the best possible competitive ratio for our

problem can also be large. We leave finding the exact best

possible competitive ratio for our problem to the future work.

The rest of this section, following the steps described in

Section III-A, analyzes why and how we get such a competi-

tive ratio, which also serves as the proof to the above theorem.

Step 1 has been addressed in Section III-B, so we start with

Step 2 and break every step into two substeps for clarity.

Step 2.1: By deriving (7d) from (2a), (2d) and (1b), and

deriving (7e) from (2b), (2d) and (1c), we relax P1 to P3:

min
∑

t

∑
i

∑
j∈Ji

aitxijt +
∑

t

∑
i
bivit

+
∑

t

∑
j

∑
i∈Ij

cijtyijt +
∑

t

∑
j

∑
i∈Ij

dijwijt

s.t. vit !
∑

j∈Ji

xijt −

∑
j∈Ji

xijt−1, ∀i, ∀t, (7a)

wijt ! yijt − yijt−1, ∀i ∈ Ij , ∀j, ∀t, (7b)



JIAO et al.: SMOOTHED ONLINE RESOURCE ALLOCATION IN MULTI-TIER DISTRIBUTED CLOUD NETWORKS 2561

vit ! 0, wijt ! 0, ∀i, ∀j, ∀t, (7c)
∑

k∈I
k ̸=i

∑
j∈Jk

xkjt !
[∑

j
λjt − Ci

]+

, ∀i, ∀t,

(7d)∑
k∈Ij

k ̸=i

ykjt ! [λjt − Bij ]
+

, ∀i ∈ Ij , ∀j, ∀t, (7e)

(2a), (2b), (2d), (2e),

where vit and wijt are auxiliary variables. Note xijt ! 0,

yijt ! 0 due to (2a), (2b), (2e), and thus we can apply [·]
+

to

the right-hand sides of (7d) and (7e).

Step 2.2: We derive the Lagrange dual problem of P3. Let

αit, βijt, δit, θijt be the dual variables associated with (7a),

(7b), (7d) and (7e), respectively; let ρijt, φijt, γjt be the dual

variables associated with (2a), (2b) and (2d), respectively. We

have the dual problem P4:

max D =
∑

t

∑
j
λjtγjt +

∑
t

∑
i

[∑
j
λjt − Ci

]+

δit

+
∑

t

∑
j

∑
i∈Ij

[λjt − Bij ]
+

θijt (8)

s.t. ait + αit − αit+1 − ρijt −

∑
k∈I
k ̸=i

δkt = 0,

∀i ∈ Ij , ∀j, ∀t, (8a)

cijt + βijt − βijt+1 − φijt −
∑

k∈Ij

k ̸=i

θkjt = 0,

∀i ∈ Ij , ∀j, ∀t, (8b)

ρijt + φijt − γjt ! 0, ∀i ∈ Ij , ∀j, ∀t, (8c)

bi − αit ! 0, ∀i, ∀t, (8d)

dj − βjt ! 0, ∀j, ∀t, (8e)

αit ! 0, δit ! 0, γjt ! 0, ∀i,∀j, ∀t;

βijt ! 0, θijt ! 0, ρijt ! 0, φijt ! 0,

∀i ∈ Ij , ∀j, ∀t. (8f)

Step 3.1: We write the following KKT conditions that

characterize the optimal solution x∗
ijt, y∗

ijt of P
(t)
2

, where ρ′ijt,

φ′
ijt, γ′

jt are the dual variables associated with (3a), (3b), (3c),

respectively, δ′it, θ′ijt are the dual variables associated with

(3d), (3e), respectively, and pijt is the dual variable for (3f).

Note xijt ! 0, yijt ! 0 due to (3a), (3b) and (3f), and thus

we can apply [·]
+

in (9g) and (9h).

ait +
bi

ηi

ln

∑
j∈Ji

x∗
ijt + ε

∑
j∈Ji

x∗
ijt−1 + ε

− ρ′ijt −

∑
k∈I
k ̸=i

δ′kt = 0,

∀i ∈ Ij , ∀j, (9a)

cijt +
dij

η′
ij

ln
y∗

ijt + ε′

y∗
ijt−1 + ε′

− φ′
ijt −

∑
k∈Ij

k ̸=i

θ′kjt = 0,

∀i ∈ Ij , ∀j, (9b)

ρ′ijt + φ′
ijt − γ′

jt − pijt = 0, ∀i ∈ Ij , ∀j, (9c)

ρ′ijt(s
∗
ijt − x∗

ijt) = 0, ∀i ∈ Ij , ∀j, (9d)

φ′
ijt(s

∗
ijt − y∗

ijt) = 0, ∀i ∈ Ij , ∀j, (9e)

γ′
jt

(
λjt −

∑
i∈Ij

s∗ijt

)
= 0, ∀j, (9f)

δ′it

([∑
j
λjt − Ci

]+

−
∑

k∈I
k ̸=i

∑
j∈Jk

x∗
kjt

)
= 0, ∀i,

(9g)

θ′ijt

(
[λjt − Bij ]

+
−

∑
k∈Ij

k ̸=i

y∗
kjt

)
= 0, ∀i ∈ Ij , ∀j,

(9h)

pijts
∗
ijt = 0, ∀i ∈ Ij , ∀j, (9i)

ρ′ijt ! 0, φ′
ijt ! 0, θ′ijt ! 0, pijt ! 0, ∀i ∈ Ij , ∀j;

γ′
jt ! 0, δ′it ! 0, ∀j, ∀i. (9j)

Step 3.2: We map x∗
ijt, y∗

ijt and the dual variables in the

KKT conditions to a solution that is feasible for P4 at t:

αit =
bi

ηi

ln
Ci + ε∑

j∈Ji
x∗

ijt−1 + ε
, βijt =

dij

η′
ij

ln
Bij + ε′

y∗
ijt−1 + ε′

,

ρijt = ρ′ijt, φijt = φ′
ijt, γjt = γ′

jt, δit = δ′it, θijt = θ′ijt.

To see the feasibility, let us take constraint (8a) as an example.

Putting them into the left-hand side of (8a), we get

ait + αit − αit+1 − ρijt −

∑
k∈I
k ̸=i

δkt

= ait+
bi

ηi

ln
Ci+ε∑

j∈Ji
x∗

ijt−1+ε
−

bi

ηi

ln
Ci + ε∑

j∈Ji
x∗

ijt + ε

− ρ′ijt −
∑

k∈I
k ̸=i

δ′kt

= 0.

The above holds due to (9a). Analogously, (8b) holds due

to (9b); (8c) holds due to (9c) and (9j); (8d), (8e) hold due

to x∗
ijt ! 0, y∗

ijt ! 0, as in (3a), (3b), (3f). In (8f), αit ! 0,

βijt ! 0 hold due to
∑

j∈Ji
x∗

ijt # Ci, y∗
ijt # Bij , ∀t, as in

Lemma 1; the others hold due to (9j).

Step 4: In this step, we demonstrate that, using the sequence

of {x∗
1, y

∗
1 ,x∗

2, y
∗
2 ,. . . ,x∗

t , y
∗
t ,. . . ,x∗

T , y∗
T } as the solution to P1,

its objective function value is bounded by a constant (i.e., the

competitive ratio) times the objective function value of P4

evaluated with the constructed solutions αit, βijt, ρijt, φijt,

γjt, δit, θijt, ∀t. To this end, we bound the allocation cost and

the reconfiguration cost in P1’s objective, respectively.

Step 4.1: First, we bound the allocation cost.

∑
t

∑
j

∑
i∈Ij

aitx
∗
ijt +

∑
t

∑
j

∑
i∈Ij

cijty
∗
ijt (10)

=
∑

t

∑

j

∑

i∈Ij

x∗
ijt

(
ρijt −

bi

ηi

ln

∑
j∈Ji

x∗
ijt + ε

∑
j∈Ji

x∗
ijt−1 + ε

+
∑

k∈I
k ̸=i

δkt

)

+
∑

t

∑

j

∑

i∈Ij

y∗
ijt

(
φijt −

dij

η′
ij

ln
y∗

ijt + ε′

y∗
ijt−1 + ε′

+
∑

k∈Ij

k ̸=i

θkjt

)
(10a)

=
∑

t

∑
j

∑
i∈Ij

x∗
ijtρijt+

∑
t

∑
j

∑
i∈Ij

y∗
ijtφijt+∆

−

∑
t

∑
j

∑
i∈Ij

x∗
ijt

bi

ηi

ln

∑
j∈Ji

x∗
ijt + ε

∑
j∈Ji

x∗
ijt−1 + ε

−

∑
t

∑
j

∑
i∈Ij

y∗
ijt

dij

η′
ij

ln
y∗

ijt + ε′

y∗
ijt−1 + ε′

(10b)
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#
∑

t

∑
j

∑
i∈Ij

s∗ijt(ρijt + φijt) + ∆ (10c)

=
∑

t

∑
j

∑
i∈Ij

s∗ijtγjt + ∆ (10d)

= D (10e)

(10a) follows from (9a) and (9b). (10b) follows from (9g)

and (9h), where

∆ =
∑

t

∑
i
[
∑

j
λjt−Ci]

+
δit

+
∑

t

∑
j

∑
i∈Ij

[λjt−Bij ]
+
θijt.

(10c) follows from (9d), (9e), and the following two

inequalities:
∑

t

∑
j

∑
i∈Ij

x∗
ijt

bi

ηi
ln j∈Ji

x∗

ijt+ε

j∈Ji
x∗

ijt−1+ε
! 0 and

∑
t

∑
j

∑
i∈Ij

y∗
ijt

dj

η′

ij

ln
y∗

ijt+ε′

y∗

ijt−1+ε′ ! 0. (10d) follows from

(9c) and (9i). (10e) follows from (9f) and (8). As an example,

in the following we show that the latter of the above two

inequalities holds, and the former can be shown analogously.

Note that proving the latter inequality is equivalent to proving

that the sum of (11a) and (11e) is no less than zero:

∑
t
(y∗

ijt + ε′) ln
y∗

ijt + ε′

y∗
ijt−1 + ε′

(11a)

!
(∑

t
(y∗

ijt + ε′)
)

ln

∑
t (y∗

ijt + ε′)
∑

t (y∗
ijt−1 + ε′)

(11b)

!
∑

t
(y∗

ijt + ε′) −
∑

t
(y∗

ijt−1 + ε′) (11c)

= y∗
ijT − y∗

ij0 (11d)

−

∑
t
ε′ ln

y∗
ijt + ε′

y∗
ijt−1 + ε′

(11e)

= (y∗
ij0 + ε′) ln

y∗
ij0 + ε′

y∗
ijT + ε′

(11f)

! y∗
ij0 − y∗

ijT (11g)

(11b) follows from (12b) as below. (11c) and (11g)

follow from (12a) as below. (11f) follows due to y∗
ij0 = 0.

(12a) and (12b) are two facts that we exploit.

m − n # m ln
m

n
, ∀m, n > 0, (12a)

(
∑

i
mi) ln

∑
i mi∑
i ni

#
∑

i
mi ln

mi

ni

, ∀m, n > 0. (12b)

Step 4.2: Afterwards, we bound the reconfiguration cost. We

have the following two definitions for the index sets, ∀t ! 1:

I+
t " {i|

∑
j∈Ji

x∗
ijt >

∑
j∈Ji

x∗
ijt−1, ∀i ∈ I},

(13a)

{Ij × J }+
t " {(i, j)|y∗

ijt > y∗
ijt−1, ∀i ∈ Ij , ∀j ∈ J }.

(13b)

We bound the first part of the reconfiguration cost:
∑

t

∑
i∈I

bi

[∑
j∈Ji

x∗
ijt −

∑
j∈Ji

x∗
ijt−1

]+

(14)

=
∑

t

∑
i∈I+

t

bi

(∑
j∈Ji

x∗
ijt −

∑
j∈Ji

x∗
ijt−1

)
(14a)

#
∑

t

∑
i∈I+

t

bi

(∑
j∈Ji

x∗
ijt + ε

)
ln

∑
j∈Ji

x∗
ijt + ε

∑
j∈Ji

x∗
ijt−1 + ε

(14b)

# maxi{(Ci + ε)ηi}
∑

t

∑
i∈I+

t

bi

ηi

ln

∑
j∈Ji

x∗
ijt + ε

∑
j∈Ji

x∗
ijt−1 + ε

(14c)

# C(ε)
∑

t

∑
i∈I+

t

x∗

ijt>0

(
ρijt +

∑
k∈I
k ̸=i

δkt

)
(14d)

# C(ε)
∑

t

⎛
⎜⎜⎝

∑
i∈I+

t

x∗

ijt>0
ρijt>0

(γjt + pijt − φijt) + |I|
∑

i
δit

⎞
⎟⎟⎠

(14e)

# C(ε)|I|
∑

t
(γjt +

∑
i
δit) (14f)

# C(ε)|I|D (14g)

(14a) follows from (13a). (14b) follows from (12a). (14c)

follows, due to
∑

j∈Ji
x∗

ijt # Ci. (14d) follows from (9a).

Note that in (14d), for any given i ∈ I+
t , we can choose to

use any ρijt, j ∈ Ji; however, we choose the particular ρijt

that has the corresponding x∗
ijt > 0. Such a j always exists,

because i ∈ I+
t indicates

∑
j∈Ji

x∗
ijt >

∑
j∈Ji

x∗
ijt−1 ! 0

and thus there exists at least one j ∈ Ji such that x∗
ijt > 0

holds. We continue to (14e) only for those i where ρijt > 0;

if ρijt = 0, ∀i ∈ I+
t , we can directly reach (14g) from (14d).

(14e) follows from (9c). (14f) follows, because of pijt = 0.

Applying x∗
ijt > 0, ρijt > 0 to (9d), we have s∗ijt > 0;

applying s∗ijt > 0 to (9i), we have pijt = 0. (14g) follows,

because of (8), γjt > 0 and λjt ! 1. γjt > 0 is due to (9c),

ρijt > 0 and pijt = 0; λjt ! 1 holds because λjt is an integer,

and λjt > 0 due to (9f), γjt > 0 and s∗ijt > 0. We also require

Ci to be an integer. Note that if
∑

j λjt − Ci # 0, then we

will have no (7d) and no dual variable δit, and so (8) changes

accordingly and (14) # (14g) still holds.

We bound the second part of the reconfiguration cost:∑
t

∑
j∈J

∑
i∈Ij

dij [y
∗
ijt − y∗

ijt−1]
+

(15)

=
∑

t

∑
(i,j)∈{Ij×J}+

t

dij(y
∗
ijt − y∗

ijt−1) (15a)

#
∑

t

∑
(i,j)∈{Ij×J}+

t

dij(y
∗
ijt + ε′) ln

y∗
ijt + ε

y∗
ijt−1 + ε′

(15b)

# maxi,j{(Bij + ε′)η′
ij}

∑
t

∑
(i,j)∈{Ij×J}+

t

dij

η′
ij

× ln
y∗

ijt + ε

y∗
ijt−1 + ε′

(15c)

# B(ε′)
∑

t

∑
(i,j)∈{Ij×J}+

t

(
φijt +

∑
k∈Ij

k ̸=i

θkjt

)

(15d)

# B(ε′)
∑

t

⎛
⎜⎜⎜⎝

∑

(i,j)∈{Ij×J}+
t

φijt>0

(γjt + pijt − ρijt)

+ |I|
∑

j

∑

i∈Ij

θijt

⎞
⎟⎟⎟⎠ (15e)
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# B(ε′)|I|
∑

t
(
∑

j
γjt +

∑
j

∑
i∈Ij

θijt) (15f)

# B(ε′)|I|D (15g)

(15a) follows from (13b). (15b) follows from (12a). (15c)

follows, due to y∗
ijt # Bij . (15d) follows from (9b). We

continue to (15e) only for those (i, j) such that φijt > 0;

if φijt = 0, ∀(i, j) ∈ {Ij ×J}+
t , we can directly reach (15g)

from (15d). (15e) follows from (9c). (15f) follows, because of

pijt = 0. Applying y∗
ijt > y∗

ijt−1 ! 0, φijt > 0 to (9e), we

have s∗ijt > 0; applying s∗ijt > 0 to (9i), we have pijt = 0.

Finally, reaching (15g) is analogous to reaching (14g).

E. Generalization

Our models, online algorithm, and competitive analysis can

be generalized to arbitrary N ! 2 tiers of clouds [10]. Due

to the page limit, we put the theorem on the competitive ratio

for N -tier clouds and its proof sketch in a supplementary file

which is published accompanying this paper.

IV. ONLINE ALGORITHMS USING PREDICTIONS

In this section, we introduce existing standard control algo-

rithms that use predictions, prove their lack of worst-case

performance guarantees for our problem, and afterwards we

explore the regularization technique to design novel online

algorithms that leverage predictions to further enhance the per-

formance of our prediction-oblivious online algorithm, while

providing worst-case performance guarantees.

A. Standard Control Algorithms

Notations: Throughout this section, we use xt to generally

denote a feasible solution to P1 at t. For instance, xt

refers to (xijt, yijt, zijt) in the two-tier cloud scenario.

We use P1(xm−1; xm . . . xm+n) to denote the objective

function value of P1 evaluated with the solution

{xm, xm+1, . . . , xm+n} over the time slots {m, m +
1, . . . , m + n}, given the solution xm−1 at the time slot

m − 1. We use P1
(xm−1;m...m+n;) to denote the problem of

minimizing P1 over the time slots {m, m + 1, . . . , m + n}
given the solution xm−1 at the time slot m − 1, and use

P1
(xm−1;m...m+n;xm+n) to denote the problem of minimizing

P1 over the same time slots, given xm−1 at the time slot m−1
and xm+n at the time slot m + n. Based on these definitions,

we have P1

∆
= P1

(x0;1...T ;) = P1
(x0;1...T+1;xT+1), where

x0 = xT+1 = 0.

Standard Algorithms: The two standard online control algo-

rithms that use predictions are FHC (Fixed Horizon Control)

and RHC (Receding Horizon Control). Assuming that at any

t ! 1 we have the exact prediction of all the operating prices

and the workloads for the w time slots {t, t+1, . . . , t+w−1},

where w ! 1 is the length of the prediction window, the two

control algorithms are described as follows. In particular, when

w = 1, both FHC and RHC fall back to the sequence of one-

shot optimizations which we also call greedy control.

• FHC: At the time slot t, where t = 1, w + 1, 2w +
1, . . ., we solve P1

(xt−1;t...t+w−1;) and apply the solution

{xt, . . . , xt+w−1} to the time slots {t, . . . , t + w − 1}.

• RHC: At the time slot t, where t = 1, 2, 3, . . .,
we solve P1

(xt−1;t...t+w−1;) and acquire the solution

{xt, . . . , xt+w−1}, but only apply xt to the time slot t.

B. Limitation of Standard Algorithms

We demonstrate that FHC and RHC, when used to solve

our problem, can have arbitrarily bad performance. We first

characterize the shape of the geometric curve of the offline

optimal resource allocation for a simple workload (Lemma 2),

and then prove that, for this workload, the total cost over time

incurred by greedy control (Theorem 2) as well as by FHC

and RHC (Theorem 3) can be arbitrarily larger than the offline

optimum. We consider a simplified problem as in (4), (4a)

and (4b), where at > 0, 0 < λt # C, ∀t and b > 0, for the

ease of presentation.

Lemma 2: Given a workload {λt} which strictly decreases

monotonically from t0 to t2 and strictly increases monotoni-

cally from t2 to t4, and given at > 0, ∀t and b > 0, it is always

possible to find an offline optimal resource allocation which

follows the workload from t0 to t1, stays constant from t1 to

t3, and follows the workload from t3 to t4, with t1 and t3 as

two proper time slots satisfying t0 # t1 # t2 # t3 # t4.

Specifically, if
∑t2+1

t=t2−1 at # b, with t2 − 1 ! t1 and

t2 + 1 # t4, then t1 and t3 satisfy t0 # t1 < t2 < t3 # t4.

Proof: To prove this lemma, we show that, for any

given feasible resource allocation, {λ∗
t }, where λ∗

t ! λt,

∀t ∈ [t0, t4], there always exists another feasible resource allo-

cation {λ̃∗
t }, which has the curve of the shape described in the

lemma and has the total cost of allocation and reconfiguration

no larger than that of the given feasible resource allocation.

The offline optimal solution is also a feasible solution, and thus

there always exists a corresponding optimal solution with the

shape described in the lemma and the same total cost.

Firstly, we identify the locations of t1 and t3. To that end,

we find tmin, where λ∗
t ! λ∗

tmin
, ∀t ∈ [t0, t4]. A line segment

staying at λ∗
tmin

can be drawn:

• If λ∗
tmin

! min{λt0 , λt4} and λt0 > λt4 , it intersects λt

and the vertical line of t = t4. In this case, t0 # t1 <
t2 < t3 = t4, shown in Fig. 3a.

• If λ∗
tmin

! min{λt0 , λt4} and λt0 # λt4 , it intersects λt

and the vertical line of t = t0. In this case, t0 = t1 <
t2 < t3 # t4, shown in Fig. 3b.

• If λt2 < λ∗
tmin

< min{λt0 , λt4}, it intersects λt. In this

case, t0 < t1 < t2 < t3 < t4, shown in Fig. 3c.

Note that the line segment can also degrade to a point1:

• If λ∗
tmin

= λt2 , it intersects λt. In this case, t0 < t1 =
t2 = t3 < t4, shown in Fig. 3d. Later in the proof, we

show we could find another t1 and t3 with t1 < t2 < t3.

Secondly, we show that for all cases above we can con-

struct {λ̃∗
t } whose total cost of allocation and reconfiguration

1More strictly, a “point” in a time-slotted system should be a horizontal
line segment with the length of a time slot. In this sense, in our problem, the
line segment degrades to a point if λ∗

tmin
< min{λt2−1, λt2+1}; similarly,

later in the third step of our proof, we have t1, t3 with t1 < t2 < t3 if
the workload satisfies max{λt1 , λt3} ! min{λt1−1, λt3+1}. Our current
proof can be adjusted to address such details if necessary, while we find it
easier to present our proof without these details.
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Fig. 3. Workload and resource allocation. (a) t0 ! t1 < t2 < t3 = t4 .
(b) t0 = t1 < t2 < t3 ! t4. (c) t0 < t1 < t2 < t3 < t4. (d) t0 < t1 =

t2 = t3 < t4 and t0 < t1 < t2 < t3 < t4 .

is no larger than that of {λ∗
t }. We construct {λ̃∗

t } as follows:

λ̃∗
t = λt, ∀t ∈ [t0, t1]; λ̃∗

t = λ∗
tmin

, ∀t ∈ [t1, t3]; λ̃∗
t = λt,

∀t ∈ [t3, t4]. Note that here we permit t1 to be equal to t3.

Consider the allocation cost:

COST Alloc

{λ∗
t }

=
∑t1

t=t0
atλt+λ∗

tmin

∑t3

t=t1
at+

∑t4

t=t3
atλt,

COST Alloc
{λ∗

t }
=

∑t1

t=t0
atλ

∗
t +

∑t3

t=t1
atλ

∗
t +

∑t4

t=t3
atλ

∗
t .

We can see COST Alloc

{λ∗

t }
# COST Alloc

{λ∗

t }
, because of λt # λ∗

t ,

∀t ∈ [t0, t1] ∪ [t3, t4] and λ∗
tmin

# λ∗
t , ∀t ∈ [t1, t3]. Consider

the reconfiguration cost:

COST Reconfig

{λ∗
t }

=
∑t4

t=t0
b[λ̃∗

t − λ̃∗
t−1]

+

= b(λt4 − λ∗
tmin

)

= b(λt4 − λ∗
t4−1) + b

∑t4−1

t=tmin+1
(λ∗

t − λ∗
t−1),

COST Reconfig

{λ∗

t }

=
∑t4

t=t0
b[λ∗

t − λ∗
t−1]

+

!
∑t4

t=tmin+1
b[λ∗

t − λ∗
t−1]

+

= b[λ∗
t4
− λ∗

t4−1]
+ + b

∑t4−1

t=tmin+1
[λ∗

t − λ∗
t−1]

+.

We can also see COST Reconfig

{λ∗
t }

# COST Reconfig

{λ∗

t }
. This is

because λt4 # λ∗
t4

leads to λt4 − λ∗
t4−1 # [λ∗

t4
− λ∗

t4−1]
+;

besides, we have λ∗
t − λ∗

t−1 # [λ∗
t − λ∗

t−1]
+, ∀t ∈ [t0, t4].

Thirdly, we investigate a special case:
∑t2+1

t=t2−1 at # b. We

have proved in the above that for arbitrary at > 0, ∀t and

b > 0 the total cost of {λ̃∗
t }, as constructed above (i.e., either

t1 < t2 < t3 in the first three cases or t1 = t2 = t3 in the last

case), is no larger than that of {λ∗
t }. Now, we show that even

in the last case, if it is the special case as described here, there

still exists {λ̃∗
t }, and t1, t3 with t1 < t2 < t3, which has the

total cost no larger than that of {λ∗
t }. In order to show this,

we need to construct {λ̃∗
t } in a different way.

Given λ∗
tmin

= λt2 , we have

∑t4

t=t0
atλt #COST Alloc

{λ∗

t }
; b(λt4−λt2) # COST Reconfig

{λ∗
t }

.

(16)

If
∑t2+1

t=t2−1 at # b, then there always exist t1, t3 with t1 <
t2 < t3 (e.g., at least t1 can be t2 − 1 and t3 can be t2 + 1),

which satisfy
∑t3

t=t1
at # b. Besides, we have λt ! λt2 , ∀t.

Consequently, we have

λ̃∗
t1

∑t3

t=t1
at + b(λt4 − λ̃∗

t1
) # λt2

∑t3

t=t1
at + b(λt4−λt2)

#
∑t3

t=t1
atλt + b(λt4 − λt2),

where λ̃∗
t1

= max{λt1 , λt3}. Adding
∑t1

t=t0
atλt+

∑t4
t=t3

atλt

to both sides of the inequality results in
∑t1

t=t0
atλt + λ̃∗

t1

∑t3

t=t1
at +

∑t4

t=t3
atλt + b(λt4 − λ̃∗

t1
)

#
∑t4

t=t0
atλt + b(λt4 − λt2)

# COST Alloc
{λ∗

t }
+ COST Reconfig

{λ∗

t }
. (17a)

(17a) follows from (16). The left-hand side of the inequal-

ity above also tells us how to construct {λ̃∗
t }: λ̃∗

t = λt,

∀t ∈ [t0, t1]; λ̃∗
t = λ̃∗

t1
, ∀t ∈ [t1, t3]; λ̃∗

t = λt, ∀t ∈ [t3, t4]. $
Theorem 2: The worst-case cost of greedy control can be

arbitrarily larger than the corresponding offline optimum.

Proof: To prove this theorem, let us consider the work-

load in Lemma 2. The solution produced by greedy control

(i.e., the sequence of one-shot optimizations) is always fol-

lowing the workload. Thus, the cost of greedy control is

COSTgreedy =
∑t4

t=t0
atλt +

∑t4

t=t0
b[λt − λt−1]

+

=
∑t4

t=t0
atλt + b(λt4 − λt2),

and the offline optimum is, following Lemma 2,

COSTopt =

t1∑

t=t0

atλt + λ̃∗
t1

t3∑

t=t1

at+

t4∑

t=t3

atλt+b(λt4 − λ̃∗
t3

),

assuming λ̃∗
t0−1 = 0. Now we have

COSTgreedy

COSTopt

=

∑t4
t=t0

atλt + b(λt4 − λt2)∑t4
t=t0

atλ̃
∗
t + b(λt4 − λ̃∗

t3
)

=
1 + b̃(λt4 − λt2)

κ + b̃(λt4 − λ̃∗
t3

)
,

where b̃ = b
t4
t=t0

atλt

and κ =
t4
t=t0

atλ∗

t

t4
t=t0

atλt

. When b̃ & 1,

we have
COSTgreedy

COSTopt
≈

b(λt4−λt2 )

b(λt4−λ∗
t3

)
, from which it follows

that the ratio can be arbitrary large if the λt4 − λ̃∗
t3

is

arbitrary small. From Lemma 2, it follows that λt4 − λ̃∗
t3

is a

decreasing function of the value b̃. In particular, for b̃ → +∞,

λt4 − λ̃∗
t3

→ 0. $
Theorem 3: Given that the length of the prediction window

is smaller than the length of the workload, the worst-case
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cost of FHC and RHC can be arbitrarily larger than the

corresponding offline optimum.

Proof: Consider the workload in Lemma 2. Additionally,

let us consider the case of max{t0, t4 − 2w} < t2 < t4 − w,

where w is the length of the prediction window.

FHC divides the entire workload into noninterlaced predic-

tion windows, and the resource allocation follows the workload

in every prediction window as the workload is monotonic, until

it enters the prediction window that contains t2, and afterwards

it enters the last prediction window and follows the workload

as it is monotonic again. Assuming the prediction window that

contains t2 is from t′2 to t′′2 , where t′′2 < t4 because t2 < t4−w,

we have COSTFHC !
∑t4

t=t′′2
atλt +b(λt4−λt′′2

) > 0, while,

again, from Lemma 2, it follows that λt4 − λ̃∗
t3

is a decreasing

function of the value b̃, and in particular, COSTopt → 0 for

at → 0. Thus, COST FHC/COST opt → +∞.

RHC allocates resource at every time slot using the pre-

dicted information in the current prediction window that starts

from the current time slot. However, note that no matter how

RHC allocates resource before t2 + w, from t2 + w until the

end of the workload RHC always follows the workload. Anal-

ogous to the above analysis, COSTRHC !
∑t4

t=t2+w atλt +
b(λt4 − λt2+w) > 0. When at → 0, COSTopt → 0, and

COST RHC/COST opt → +∞. $

C. Regularized Control Algorithms

We propose to incorporate regularization to FHC and RHC,

and design two novel control algorithms RFHC (Regularized

Fixed Horizon Control) and RRHC (Regularized Receding

Horizon Control) correspondingly. RFHC and RRHC are

upper-bounded by our online algorithm that uses no prediction,

and thus inherit its competitive ratio.

• RFHC: At the time slot t, where t = 1, w + 1, 2w +
1, . . ., we solve {P2

(t), …, P2
(t+w−1)} and obtain

the solution {x∗
t , . . . , x

∗
t+w−1}. Then, we keep x∗

t+w−1,

solve P1
(xt−1;t...t+w−1;x∗

t+w−1), and apply the solu-

tion {x̃t, . . . , x̃t+w−2, x
∗
t+w−1} to time slots {t, . . . ,

t + w − 1}.

• RRHC: At the time slot t, where t = 1, 2, 3, . . .,
we solve {P2

(t), …, P2
(t+w−1)}, and if P2

(t),

…, P2
(t+w−2) have been solved previously, we only

solve P2
(t+w−1) at the current time slot. We get

the solution {x∗
t , . . . , x

∗
t+w−1}. We keep x∗

t+w−1,

solve P1
(xt−1;t...t+w−1;x∗

t+w−1), obtain the solution

{x̃t, . . . , x̃t+w−2, x
∗
t+w−1}, and only apply x̃t to the time

slot t.

RFHC and RRHC are guaranteed to produce a solution

whose cost over time is no larger than our online algorithm

that does not use prediction. To exhibit it formally, we firstly

show Lemma 3, based on which, we then prove Theorem 4.

Lemma 3: Given a feasible solution {x1, . . . , xT } to P1

and integers τ , κ, where 1 # τ < κ # T , we have this

inequality hold: P1(x0; x1, . . . , xτ−1, x̃τ , x̃τ+1, . . . , x̃κ−1,
xκ, . . . , xT ) # P1(x0; x1 . . . xT ), where {x̃τ , x̃τ+1, . . . ,
x̃κ−1, xκ} minimizes the problem P1

(xτ−1;τ ...κ;xκ).

Proof: Because {x̃τ , x̃τ+1, . . . , x̃κ−1, xκ} optimally

solves P1
(xτ−1;τ ...κ;xκ), we have this: P1(xτ−1; x̃τ , . . . ,

x̃κ−1, xκ) # P1(xτ−1; xτ . . . xκ). Further, we complete the

proof by adding P1(x0; x1 . . . xτ−1) + P1(xκ; xκ+1 . . . xT )
to both sides of this inequality. $

Theorem 4: COSTRFHC # COST{P2
(t),∀t},

COSTRRHC # COST{P2
(t),∀t}.

Proof: COST{P2
(t),∀t} = P1(x0; x

∗
1 . . . x∗

T ). By choos-

ing the solution {x∗
1, . . . , x

∗
T } as the feasible solution, we

iteratively apply Lemma 3 to prove this theorem.

For RFHC, by setting τ = (n − 1)w + 1, κ = nw,

n = 1, 2, . . ., we have P1(x0; x̃1, . . . , x̃w−1, x
∗
w, x̃w+1, . . . ,

x̃2w−1, x
∗
2w, . . .) # P1(x0; x

∗
1 . . . x∗

T ), i.e., we have the first

part of the theorem.

For RRHC, we use x̃
(n)
t , n # t < n + w − 1 to

denote the solution value for the time slot t by solving

the problem P1
(x

(n−1)
n−1 ;n...n+w−1;x∗

n+w−1), where x
(0)
0

∆
= x0.

We set τ = n, κ = n + w − 1, n = 1, 2, . . ., and we

can get a series of inequalities as follows. When τ = 1,

κ = w, we have P1(x0; x̃
(1)
1 , . . . , x̃

(1)
w−1, x

∗
w, . . . , x∗

T ) #
P1(x0; x

∗
1 . . . x∗

T ); when τ = 2, κ = w + 1, we

have P1(x0; x̃
(1)
1 , x̃

(2)
2 , . . . , x̃

(2)
w , x∗

w+1, . . . , x
∗
T ) #

P1(x0; x̃
(1)
1 , . . . , x̃

(1)
w−1, x

∗
w, . . . , x∗

T ); when τ = 3, κ = w +2,

we have P1(x0; x̃
(1)
1 , x̃

(2)
2 , x̃

(3)
3 , . . . , x̃

(3)
w+1, x

∗
w+2, . . . , x

∗
T ) #

P1(x0; x̃
(1)
1 , x̃

(2)
2 , . . . , x̃

(2)
w , x∗

w+1, . . . , x
∗
T ); and so on. Note

that the right-hand side of the inequality when τ = n + 1 is

always the same as the left-hand side of the inequality when

τ = n. Through the chain of all inequalities we eventually

have P1(x0; x̃
(1)
1 , x̃

(2)
2 , x̃

(3)
3 , . . . , x̃

(T )
T ) # P1(x0; x

∗
1 . . . x∗

T ),
i.e., we prove the second part of the theorem. $

V. NUMERICAL EVALUATIONS

We evaluate our algorithms using real-world data traces.

Having proved the worst-case guarantees, we investigate the

performances of our online and control algorithms in realistic

scenarios and compare them with existing approaches.

A. Inputs

Clouds I, J and SLA Ij , Ji: We use the 18 AT&T

North American data center locations [2] as the locations of

tier-2 clouds, and the locations of the 48 continental state

capitals as the locations of tier-1 clouds. Having the location

of each cloud, we use the geographic distance to define the

SLAs [9], [17]: for a tier-1 cloud, we assume that the k tier-2

clouds that are geographically closest to this tier-1 cloud can

satisfy the SLA requirement. For different tier-1 clouds, these

k closest tier-2 clouds can be different.

Workload λjt: We select two types of real-world workloads,

one with regular dynamics and the other with more bursts,

for our evaluations. We use the workload of Wikipedia in

October 2007 [21] and the workload of the HTTP servers

from April to July 1998 during the World Cup’98 period [3],

as in Fig. 4a and 4b, respectively. While the original workload

files record the URL requests at a second granularity, we

aggregate the number of requests by hour and treat one hour as

one time slot. There are 500 hours for Wikipedia. There are

2089 hours for the original World Cup workload; however,
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Fig. 4. The time-varying workload. (a) Wikipedia. (b) World Cup.

TABLE I

ELECTRICITY PRICE STATISTICS [17]

in our evaluations we only adopt the most bursty 600 hours,

starting at the 901st hour and ending at the 1500th hour. We

replicate the workload across all tier-1 clouds to simulate the

workload of each cloud.

Operating Price ait, cijt: We use energy and WAN band-

width prices respectively, which are reported among the most

significant operating expenses for data centers. In the whole-

sale electricity markets in US, prices vary temporally and

spatially. The hourly real-time electricity prices of different

states, administered by different RTOs (Regional Transmission

Organizations), follow Gaussian distributions with different

means and standard deviations [17]. In our case, across all

18 tier-2 cloud locations, for those where there is an hourly

real-time electricity market, we synthesize the dynamic price

for each hour following the Gaussian distribution with the

mean and the standard deviation of the corresponding mar-

ket, as shown in Table I; for those without an hourly real-

time electricity market, we assume the price is fixed and

equals the mean price of its geographically closest real-time

market [18].

Cloud WAN bandwidth price is estimated based on network

capacity [16], [25]. We estimate the price of a given network

capacity by the tiered pricing scheme of Amazon EC2 [1],

TABLE II

BANDWIDTH PRICE [1]

summarized as Table II. Bandwidth price does not vary much

with time in a short term, and is thus considered a constant.

Cloud and Network Capacities Ci, Bij : Cloud capacity and

network capacity are estimated based on workload [13], [16].

We assume the cloud capacity is provisioned so that the peak

workload consumes 80% of it. If every tier-1 cloud uses its

closest tier-2 cloud to satisfy the SLA, then the capacity of a

tier-2 cloud is set to 1.25 times its peak workload which is the

sum of the peak workloads of those tier-1 clouds that use this

tier-2 cloud as their closest cloud; if every tier-1 cloud uses

its k closest tier-2 clouds to satisfy the SLA, then we evenly

split the peak workload of every tier-1 cloud across its tier-2

clouds, and thus the capacity of a tier-2 cloud is set by the

same approach as above while replacing 1.25 with 1.25/k. We

set the capacity of the network between a tier-1 and a tier-2

cloud to the capacity of the incident tier-2 cloud.

Algorithms: For prediction-free algorithms, we compare the

following: (1) the sequence of one-shot optimizations, which

solves the one-shot slice of P1 at every time slot; (2) our

proposed online algorithm, which solves P
(t)
2

at every time

slot; (3) the online algorithm that we call LCP-M, which, at

every time slot, solves both P
(x0;1...t;)
1 and a related problem

with the reconfiguration cost reverse in time and then applies

the lazy capacity principle to every variable in our problem,

following the design of the LCP(0) algorithm [12]; (4) the

offline optimum, which solves P1 with accurate knowledge

of the operating price and the workload in the entire future.

For predictive algorithms, we compare FHC with RFHC,

and RHC with RRHC, when predictions about the operating

price ait, ∀i and the workload λjt, ∀j are available. We

evaluate both accurate and inaccurate predictions.

B. Control Knobs

Reconfiguration Price bi, dij : We vary bi, dij to reveal a

spectrum of how different reconfiguration prices may influence

the results. Instead of estimating an absolute value of the

reconfiguration price, we use a relative weight over the oper-

ating price. For instance, a weight of 10 means the absolute

reconfiguration price is an order of magnitude larger than the

absolute operating price in value. In our evaluations, we always

set bi = dij , ∀i, j. We denote this value simply as b in our

figures and vary it as 10, 102, 103 and 104, respectively.

Other Parameters ε, ε′, k, w: We set ε = ε′, where ε, ε′ > 0
are parameters of our online algorithm, and vary ε from 10−3

to 103 in a logarithmic scale so that we see how it may affect

the results and how to tune its value to achieve the largest

benefit. k, the number of the closest clouds chosen by every

tier-1 cloud, is set as 1, 2, 3, and 4 to show how the variation

of SLA may affect the results. w, the length of the prediction
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Fig. 5. Cost for different reconfiguration prices. (a) Wikipedia.
(b) World Cup.

window, is set as 2, 4, 6, 8, and 10 to evaluate how the amount

of future information may affect the results.

Prediction Error: To test the robustness of our predic-

tive algorithms under noisy predictions, we inject zero-mean

Gaussian noise into ait and λjt, while setting the standard

deviation of such noise as a percentage (i.e., the prediction

error) of the mean of the corresponding ait and λjt over time.

We vary the prediction error up to 15%.

C. Results Without Prediction

Fig. 5 visualizes the normalized total cost over time when

the cloud and network resources are allocated and reconfig-

ured by the sequence of one-shot optimizations, our online

algorithm, and the offline optimal approach for the Wikipedia

workload and the World Cup workload, respectively. In this

figure we set ε = 10−2, k = 1 and vary the reconfiguration

price. It is natural that if the reconfiguration price is low one-

shot optimizations perform quite close to the offline optimum.

For a low reconfiguration price, our online algorithm pre-

serves the same performance as one-shot optimizations. As the

reconfiguration price increases, one-shot optimizations, which

essentially neglect the reconfiguration cost, have much larger

total cost than the offline optimum, while our online algorithm

achieves a total cost just moderately larger than the offline

optimum. Note the jumps (marked red) in the vertical axes that

show the comparison on the lower end of the scale and also

capture the larger values. This figure indicates our algorithm

behaves consistently well for the two types of workloads.

Fig. 6 shows how the “actual” competitive ratio, i.e., the

ratio of the total cost incurred by our online algorithm over

that incurred by the offline optimal solution in practice, varies

Fig. 6. Actual competitive ratio. (a) Wikipedia. (b) World Cup.

Fig. 7. Cost for different SLAs.

with the algorithmic parameter ε for the two workloads. In this

figure, we set k = 1. First and overall, this ratio is reasonably

good for both workloads, as it is always below 3. Second,

this ratio does not always increase with the reconfiguration

price, e.g., the reconfiguration price of 104 has smaller ratios

than 103. This is because the offline optimum in the former

case is larger than in the latter (cf. Fig. 5). Third, the curve of

the actual competitive ratio has a valley. Note that our worst-

case theoretical competitive ratio always decreases as ε grows,

but this figure implies that, in practice, a lower ε may achieve

a lower actual competitive ratio.

Fig. 7 investigates the performance of the algorithms for the

Wikipedia workload for different SLAs. In this figure we set

ε = 10−2, and the reconfiguration price is 103. When every

tier-1 cloud uses more tier-2 clouds to satisfy the SLA, there

is also more room for optimization. The trend is that the total

cost achieved by our online algorithm gets closer to the offline

optimum as the SLA involves more tier-2 clouds. Note that

we also show LCP-M in this figure. The reason that it does
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Fig. 8. Cost under accurate predictions.

Fig. 9. Cost under inaccurate predictions.

not behave as well as our online algorithm may be partially

ascribed to that the lazy capacity principle, as originally

derived for the single-cloud case, may not properly hold for

the multi-cloud or the multi-tier-cloud case. See Section VI

for more discussion.

D. Results Under Accurate and Inaccurate Predictions

Fig. 8 compares the normalized total cost over time of

different algorithms with different prediction window lengths

for the Wikipedia workload, when accurate predictions are

available. In this figure we set b = 103, ε = 10−3, and k = 1.

Our online algorithm does not use prediction and is thus drawn

as a horizontal line. We observe that, as we proved previously,

both regularized control algorithms RFHC and RRHC, with

the help of prediction, are always better than our online algo-

rithm; however, prediction is not able to help standard control

algorithms FHC and RHC to beat our online algorithm and

regularized control algorithms. The reason, as we explained

before, can be ascribed to the fact that the prediction window

length is smaller than the length of the ramp down phase

of the workload. In fact, in our Wikipedia workload, about

40% of all the ramp down phases have a length larger than

10 time slots. Even using a prediction window of 10 time

slots, as what we do in this figure, these ramp down phases

still cause FHC and RHC to follow the workload and weaken

their performance. This figure thus verifies that, when we only

have limited predicted information compared with the ramp

down phase of the workload, using such information in our

regularized control algorithms results in better performance

than using it in standard control algorithms.

Figs. 9 and 10 focus on the normalized total cost over time

of the predictive algorithms with different prediction window

Fig. 10. Influence of prediction error.

lengths and different prediction error rates for the Wikipedia

workload, when the predictions about the operating price and

the workload are available but inaccurate. In this figure we

set b, ε, and k the same as in Fig. 8. Fig. 9 takes the 15%

prediction error rate as an example, and confirms that RFHC

and RRHC are still much better than FHC and RHC, although

all algorithms have worse performance than in Fig. 8, due to

the noise in the predictions. We have actually observed this

phenomenon consistently for all the other prediction error rates

under our tests. Fig. 10 varies the prediction error rate using

a prediction window of 2 time slots. RFHC and RRHC are

quite robust to prediction errors, because they grow negligibly

in the total cost as the prediction error increases; in contrast,

FHC and RHC grow much faster, about 40% and 20% more, in

the total cost as the prediction error goes up to 15%. Compared

to Fig. 8, one interesting thing to note is that, when the length

of the prediction window is small, RFHC and RRHC under

noisy predictions are even worse than our online algorithm

using no prediction.

VI. RELATED WORK

Reconfiguration-Oblivious Resource Allocation:Hao etal. [7]

designed an online optimization algorithm to allocate VMs at

distributed clouds for revenue maximization while satisfying

the dynamic demands for VMs and a diversity of resource con-

straints. Hu et al. [8] made online decisions of buying cloud

contracts of different prices, resource rates, and durations to

accommodate the unpredictably varying demand, based on a

multi-dimensional version of a classic parking permit problem.

Liu et al. [13] optimized the energy cost and the end-to-end

user delay over time with consideration of energy price and

network delay diversity by allocating capacities across data

centers via distributed algorithms. Zhang et al. [27] treated

the cloud provider as the auctioneer who leased resources

and users as bidders who bade for VMs of different types,

and designed an online, randomized combinatorial auction to

maximize the economical efficiency upon bid arrivals.

Reconfiguration-Aware Resource Allocation: Lin et al. [11],

[12] might be the first to study the dynamic resource allocation

in the cloud context with smoothing the reconfiguration cost as

part of the objective, and proposed the Lazy Capacity Provi-

sioning (LCP) online algorithm for the single-cloud case [12]

and the Averaging Fixed Horizon Control (AFHC) algorithm

for the multi-cloud case [11]. Zhang et al. [29] investigated a
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similar problem in the geo-distributed scenario where server

number changes incurred the reconfiguration cost and applied

model predictive control to reduce system dynamics. Zhang

et al. [28] developed the randomized fixed horizon control

to route big data from sources to selected data centers for

aggregative processing and Wu et al. [24] exploited Lyapunov

optimization to distribute social media to clouds to meet the

dynamic demands, where in both cases the reconfiguration

cost was caused by data movement across locations. Lu et al.

[14] connected the dynamic server provisioning problem to

the classic ski-rental problem and proposed both online and

predictive algorithms with competitive guarantees.

We highlight the reasons why existing research falls insuf-

ficient for our problem and how our work makes a difference.

The first category of existing work does not consider the

reconfiguration cost, i.e., switching from one decision to

another is assumed free. It is often difficult to directly adapt

such reconfiguration-oblivious approaches to accounting for

reconfigurations while still providing performance guarantees,

which also motivates us to rethink the problem and develop

new algorithms from a different angle. The second category

of existing work accounts for the reconfiguration cost, but is

unable to address all the challenges that we have addressed

in this paper. For example, LCP [12] is reported to be unable

to be generalized to the multi-cloud case with a guaranteed

competitive ratio, and AFHC [11], while applicable to multiple

clouds, may always require predictions. As another example,

the ski-rental-based online algorithm [14] may be applicable

to our case, but its break-even algorithmic idea may lead to an

unbounded competitive ratio as the resource price in our case

translates into an arbitrarily time-varying “rental” price, unlike

the constant rental price in the classic ski-rental problem; the

indivisible and continuous amount of resources in our problem

may also be an obstacle, as the connection to the ski-rental

problem requires the resources to be discrete in the first place.

Besides, even when previous work is applicable, as in the case

of the prediction-based control algorithms FHC and RHC, they

lack worst-case performance guarantees for our problem as

proved in this paper. Our work fundamentally differs from all

existing work in that it targets the scenario of multiple tiers of

multiple clouds, and it takes a regularization-based approach to

design a prediction-free online algorithm and two prediction-

aware control algorithms, all with competitive guarantees.

VII. CONCLUSION

The problem of jointly allocating and reconfiguring cloud

and network resources in an online setting is increasingly

important as the cloud computing paradigm shifts to a

multi-tier hierarchical structure. In this paper, we take a

regularization-based method to design dynamic algorithms

for the scenarios with and without available prediction,

respectively. We overcome the challenge stemming from

reconfiguration-induced, coupled decisions by constructing

a series of subproblems, each of which is solvable at the

corresponding time slot by only taking the solution of the

previous time slot and the workload and resource price of

the current time slot as inputs. We prove that this algorithm

produces a solution with a parameterized competitive ratio

for arbitrarily dynamic workloads and operating prices. We

also design novel control algorithms that leverage predictions,

while providing the theoretical performance guarantee for

the worst case. We prove the lack of such a guarantee for

existing control algorithms. Evaluations based on real-world

data confirm that our algorithms perform well in practice and

are superior to existing algorithms.
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