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AbstractÐThere has been significant interest in leveraging
limited look-ahead to achieve low competitive ratios for online
convex optimization (OCO). However, existing online algorithms
(such as Averaging Fixed Horizon Control (AFHC)) that can
leverage look-ahead to reduce the competitive ratios still produce
competitive ratios that grow unbounded as the coefficient ratio
(i.e., the maximum ratio of the switching-cost coefficient and
the service-cost coefficient) increases. On the other hand, the
regularization method can attain a competitive ratio that remains
bounded when the coefficient ratio is large, but it does not benefit
from look-ahead. In this paper, we propose a new algorithm,
called Regularization with Look-Ahead (RLA), that can get
the best of both AFHC and the regularization method, i.e., its
competitive ratio decreases with the look-ahead window size when
the coefficient ratio is small, and remains bounded when the
coefficient ratio is large. Moreover, we provide a matching lower
bound for the competitive ratios of all online algorithms with
look-ahead, which differs from the achievable competitive ratio
of RLA within a factor that only depends on the problem size.
Further, the competitive analysis of RLA involves a non-trivial
generalization of online primal-dual analysis to the case with
look-ahead.

Index TermsÐCompetitive analysis, look-ahead, online convex
optimization, regularization, switching costs.

I. INTRODUCTION

O
NLINE convex optimization (OCO) problem with

switching costs has many applications in the context

of networking [2]±[6], cloud or edge computing [7]±[12],

cyber-physical systems [13]±[16], machine learning [17]±[21]

and beyond [22]±[24]. Typically, a decision maker and the

adversary (or environment) interact sequentially over time. At

each time t, after receiving the current input, the decision

maker must make a decision. This decision incurs a service

cost (that is a function of the current decision) and a switching

cost (that depends on the difference between the current

decision and the previous decision). In competitive OCO, the

goal is to design online algorithms with low competitive ratios.

The competitive ratio is defined as, over all possible input

sequences, the worst-case ratio between the total cost of an

This work has been partially supported by the U.S. National Science
Foundation (through Grants CNS-2113893, CNS-2225950, CNS-2047719 and
CNS-2225949). A preliminary version of this work has appeared in IEEE
International Conference on Computer Communications (IEEE INFOCOM),
May 10-13, 2021 [1].

Ming Shi and Xiaojun Lin are with the Elmore Family School of Electrical
and Computer Engineering, Purdue University, West Lafayette, IN 47907,
USA (e-mail: sming@purdue.edu, linx@ecn.purdue.edu).

Lei Jiao is with the Department of Computer Science, University of Oregon,
Eugene, OR 97403, USA (e-mail: jiao@cs.uoregon.edu).

online algorithm and that of the optimal offline algorithm, who

knows the entire input sequence in advance [25, p. 3].

As a more concrete example (based on which we will

conduct a case study in Sec. VIII), the importance of online

decisions and switching costs can be seen in serverless com-

puting [26], [27]. In serverless computing, customers can dy-

namically invoke serverless functions on demand. Thus, from

the service provider’s point of view (who needs to manage,

i.e., start/stop, the actual instances executing these serverless

functions), the decision must be made in an online manner

without knowing the future demands. Further, whenever the

number of active instances is smaller than the requested

number, there will be a cold-start delay, which degrades

end-user experience and thus corresponds to switching costs.

Therefore, the online decisions of the service provider must

balance the service costs (of running the actual instances)

with the switching costs. Similar examples could also be

found in network functions virtualization (NFV) [5], online

geographical load balancing [2] and dynamic right-sizing in

data centers [3].

In the literature, many online algorithms with guaranteed

competitive ratios have been provided for OCO. For ex-

ample, [3], [13]±[15] provide online algorithms with con-

stant competitive ratios for some limited settings, e.g., 1-

dimensional OCO problems. However, for more general set-

tings and under no future information, the competitive ratios of

existing online algorithms [23], [28]±[30] depend on problem

parameters and can usually be quite large. This is not surpris-

ing because, when there is absolutely no future information, it

would be difficult to choose one online decision that is good

for all possible future inputs.

To overcome this difficulty, a recent line of work has

focused on how to utilize limited look-ahead information to

improve the competitive ratios of online algorithms [2], [9],

[31]±[33]. Here, look-ahead means that, at each time t, the

decision maker knows not only the current input, but also

the inputs of the immediately following K time-slots (i.e., a

look-ahead window of size K). Intuitively, as K increases, the

competitive ratios of online algorithms should become smaller.

The Averaging Fixed Horizon Control (AFHC) algorithm,

which was proposed in [2], achieves exactly that. Specifically,

assume that the service cost for each decision variable xn(t)
is linear, i.e., cn(t)xn(t), and the switching cost for xn(t) is

in the form of wn|xn(t)−xn(t−1)|, where cn(t) and wn are

the service-cost and switching-cost coefficients, respectively.

Then, the competitive ratio of AFHC is 1 + max
{n,t}

wn

cn(t)(K+1) .
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In the rest of this paper, we define the ªcoefficient ratioº rco

to be the maximum ratio of the switching-cost and service-

cost coefficients, i.e., rco ≜ max
{n,t}

wn

cn(t)
. Thus, for any fixed

coefficient ratio, the competitive ratio of AFHC decreases with

the look-ahead window size K.

However, what remains unsatisfactory is that the compet-

itive ratio of AFHC still grows with the coefficient ratio.

In other words, regardless of the size K of the look-ahead

window, as the coefficient ratio increases (e.g., some service-

cost coefficients cn(t) may be very close to 0), the competitive

ratio of AFHC will go to infinity. In a similar manner, the

competitive ratio of a related algorithm in [33] could also be

arbitrarily large when the coefficient ratio increases.

The above performance degradation when the coefficient

ratio is large leaves much to be desired. Indeed, even with

no look-ahead information, the regularization method [23]

can achieve a competitive ratio that is independent of the

coefficient ratio rco. Of course, the downside of the regu-

larization method of [23] is that it cannot leverage look-

ahead. Therefore, it would be much more desirable if we

can get the best of both worlds, i.e., achieve a competitive

ratio that both decreases with K when rco is small (similar

to AFHC), and remains bounded when rco is large (similar to

the regularization method). Our previous work [34] claimed

to achieve this by providing a
(

1 + 1
K

)

-competitive online

algorithm. Unfortunately, there appears to be an error in the

proof so that the claimed competitive ratio does not hold.

(Indeed, as we show in Sec. III in this paper, no algorithms

can achieve a competitive ratio that low.) To the best of our

knowledge, it remains an open question how to combine the

strengths of both AFHC and the regularization method.

In this paper, we present new results that answer this open

question. We first focus on a more restrictive setting, where the

service cost is linear in the decision variables and the feasible

decisions are chosen from a convex set formed by fractional

covering constraints (see (1) for the specific form). While we

begin with this model for simplicity and ease of exposition, it

still captures the key features of practical problems [12], [22],

[23], [25], [28], [29], [35], [36] (i.e., the allocated resources

must meet the incoming demand).

Under this simplified model, our first contribution is to

provide a lower bound on the competitive ratio for all online

algorithms. Specifically, we show that, there exists instances

such that the competitive ratio cannot be lower than 1 +
log2 N

2[1+ 1
rco

((K+1) log2 N+1)]
, where N is the total number of the

decision variables. To the best of our knowledge, this is the

first such lower bound in the literature for OCO problems

with look-ahead. This lower bound reveals several important

insights. First, it is larger than 1 + 1
K when rco is large,

indicating that the competitive results reported in [34] were

incorrect. Second, it reveals how the coefficient ratio rco affects

the fundamental limit that online decisions can benefit from

look-ahead. Specifically, if the size of the look-ahead window

K is much larger than the coefficient ratio rco, the lower bound

will be driven to 1 as K increases (similar to AFHC). On the

other hand, if the size of the look-ahead window is much

smaller than the coefficient ratio, the lower bound will not be

close to 1. However, unlike AFHC, even when rco approaches

infinity, the lower bound remains at 1+ 1
2 log2N . This suggests

that one may indeed design online algorithms that can get the

best of both AFHC and the regularization method.

Inspired by the lower bound, our second important contribu-

tion is to provide a new online algorithm, called Regularization

with Look-Ahead (RLA), whose competitive ratio matches

with the lower bound up to a factor that only depends on the

problem size N and is independent of the coefficient ratio

rco. Specifically, let η ≜ ln
(

N+ϵ
ϵ

)

, where ϵ is a positive

value chosen by RLA. We show that, when ⌈rco⌉ < K + 1,

the competitive ratio of RLA is 1 + 3η(1+ϵ)⌈rco⌉
K+1 , which

approaches 1 as the look-ahead window size K decreases.

When ⌈rco⌉ ≥ K + 1, the competitive ratio of RLA is

1 + 2η(1 + ϵ), which remains upper-bounded even when the

coefficient ratio rco increases to infinity. We can show that

the competitive ratio of RLA differs from the lower bound

by a factor max
{

36η(1 + ϵ),
4η(1+ϵ)[ 32+log2 N ]

log2 N

}

. To the best

of our knowledge, RLA is the first such online algorithm in

the literature that can get the best of both AFHC and the

regularization method, i.e., achieve a competitive ratio that

both decreases with K when the coefficient ratio is small, and

remains upper-bounded when the coefficient ratio is large.

Such an improved competitive ratio of RLA is achieved by

carefully modifying the objective function that RLA optimizes

in each episode of K + 1 time-slots (see Section IV). Note

that within each such episode, AFHC [2] directly optimizes the

total cost. However, as shown in the counter-example in [34],

simply optimizing the total cost may produce poor decisions

at the end of the episode, leading to poor competitive ratios.

Instead, RLA replaces the switching cost in the first time-

slot of each episode by two specially-chosen regularization

terms at the beginning and the end of the episode. These

two regularization terms avoid poor decisions at the boundary

between episodes, so that the switching costs will not be

excessively high. These regularization terms were inspired by

that of [23], but are different because we need to leverage

look-ahead. To the best of our knowledge, this way of adding

regularization terms for problems with look-ahead is also new.

The competitive ratio of RLA is shown via an online primal-

dual analysis [28]. However, there arise two new technical

difficulties. First, we need to verify that the online dual vari-

ables from different episodes are feasible for the offline dual

optimization problem. Second, we need to carefully bound the

gap between the online primal cost and the online dual cost

induced by the two regularization terms. We resolve these

difficulties by providing a new competitive analysis, which

extends the primal-dual analysis [28] to the case with look-

ahead. This analysis is also a key contribution of this paper

and of independent interest.

Furthermore, while the above results are stated for OCO

problems with fractional covering constraints, we show in

Sec. VII that these results can be extended to more general

demand-supply balance constraints and capacity constraints,

which are more useful for computing and networking appli-

cations.

Our work is also related to regret minimization for OCO
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problems with constraints [37], [38]. In particular, [37] shows

that one cannot simultaneously obtain sub-linear regret in

both the objective and the constraint violation. However, our

study of competitive OCO is different as the competitive ratio

focuses on the relative ratio to the cost of the best offline

dynamic decision, while [37], [38] focus on the absolute

difference from the cost of the best static decision. Thus, even

if sub-linear regret is not attainable, it is still possible to attain

a low competitive ratio.

Finally, our work is related to the convex body/function

chasing (CBC) problem [39]±[41]. Although their results can

be applied to our problem, their competitive ratios are looser

as they do not exploit the particular structure of our problem.

For example, the dependency of our competitive ratio on the

problem size is O (lnN), which is significantly smaller than

the O(N) dependency attained in [41]. Moreover, our results

show how the size K of the look-ahead window and the

coefficient ratio rco affect the competitive ratios, which are

not captured by existing work for CBC.

A preliminary version of the results was published in

IEEE INFOCOM 2021 [1]. This journal version substantially

enhances the conference version by (i) adding a case study on

serverless computing (in Sec. VIII), (ii) providing new results

on tightening the competitive ratio of our RLA algorithm when

K = 0 (in Sec. VI), and (iii) including key proofs of our main

results (in Sec. III and appendices).

II. PROBLEM FORMULATION

A. OCO with Switching Costs

The decision maker and the adversary (or environment)

interact in T time-slots. At each time t = 1, ..., T , first a

feasible convex set X(t) and service-cost coefficients C⃗(t) =
[cn(t), n = 1, ..., N ]T ∈ R

N×1
+ are revealed, where [·]T denotes

the transpose of a vector, R+ represents the set of non-

negative real numbers. For now, we restrict the set X(t) to be

a polyhedron formed by fractional covering constraints, i.e.,

∑

n∈Sm(t)

xn(t) ≥ 1, for all m = 1, ...,M(t), (1)

where Sm(t) is a subset of {1, 2, ..., N} and could change

over time. The number M(t) of such constraints at each

time t could also change over time. The fractional covering

constraints have been widely used to model many important

practical problems [22], [25], [35], [36], [42], [43]. Although

the right-hand-side of (1) must be 1, which simplifies our

exposition, such constraints capture the essential feature of

practical constraints that the amount of resource allocated must

be no smaller than the incoming demand. Further, note that

there is no upper-bound constraint on the decision variable

xn(t). In Sec. VII, we will extend our results to the case with

more general constraints.

After receiving the input X(t) and C⃗(t), the decision maker

must choose a decision X⃗(t) = [xn(t), n = 1, ..., N ]T ∈
R

N×1
+ from the convex set X(t). Then, it incurs a service cost

⟨C⃗(t), X⃗(t)⟩ for the current decision X⃗(t) and a switching

cost ⟨W⃗ , [X⃗(t)−X⃗(t−1)]+⟩ for the increment1 of X⃗(t) from

the last decision X⃗(t− 1), where W⃗ = [wn, n = 1, ..., N ]T ∈
R

N×1
+ is the switching-cost coefficient. We assume that the

coefficient ratio rco ≜ max{n,t}
wn

cn(t)
satisfies rco ≥ 1.

In an offline setting, at time t = 1, the current and all the

future inputs X(1 : T ) and C⃗(1 : T ) are known. Thus, the

optimal offline solution can be obtained by solving a standard

convex optimization problem as follows,

min
X⃗(1:T )

T
∑

t=1

{

C⃗T(t)X⃗(t) + W⃗ T
[

X⃗(t)− X⃗(t− 1)
]+
}

(2a)

sub. to: X⃗(t) ≥ 0, for all t ∈ [1, T ], (2b)
∑

n∈Sm(t)

xn(t) ≥ 1, for all m ∈ [1,M(t)], t ∈ [1, T ], (2c)

where [a, b] denotes the set {a, a + 1, ..., b}. As typically in

many OCO problems [2], [5], [10], [23], we assume X⃗(0) = 0.

For ease of exposition, we use X⃗(t1 : t2) to collect X⃗(t)
from time t = t1 to t2, i.e., X⃗(t1 : t2) ≜

{

X⃗(t), for all t ∈

[t1, t2]
}

. Define C⃗(t1 : t2) and X(t1 : t2) similarly.

B. Look-Ahead Model and Performance Metric

A recent line of work has focused on how to use look-

ahead to improve competitive online algorithms [2], [9], [32],

[33], [44]. Let the look-ahead window size be K ≥ 1. Then, at

each time t, the decision maker not only knows the exact input

(X(t), C⃗(t)), but also knows the near-term future (X(t + 1 :
t + K), C⃗(t + 1 : t + K)). Note that at time t the decision

maker still does not know the future inputs beyond time t+K.

For an online algorithm π, let X⃗π(t) be the decision at

time t. Then, its cost from time t = t1 to t2 is given as

follows,

Costπ(t1 : t2) ≜

t2
∑

t=t1

C⃗T(t)X⃗π(t)

+

t2
∑

t=t1

W⃗ T
[

X⃗π(t)− X⃗π(t− 1)
]+

. (3)

Let X⃗OPT(1:T ) be the optimal offline solution to the optimiza-

tion problem (2), whose total cost is CostOPT(1 : T ). Different

from the offline setting, in an online setting, the decision maker

only knows the current input (X(t), C⃗(t)) and the look-ahead

information (X(t + 1 : t +K), C⃗(t + 1 : t +K)). Moreover,

the decision X⃗(t) made at each time is irrevocable. Then, the

competitive ratio of the online algorithm π is defined as,

CRπ
≜ max
{

all possible (X(1:T ),C⃗(1:T ))
}

Costπ(1 : T )

CostOPT(1 : T )
, (4)

i.e., the worst-case ratio of its total cost to that of the optimal

offline solution, over all possible inputs.

1Note that, as shown in [29], our results assuming this type of the switching
cost also imply a competitive ratio for the case when the switching cost

penalizes the absolute difference |X⃗(t)− X⃗(t− 1)| [5], [14].
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Fig. 1: Compare the lower bound of the competitive ratio

(CRLB) and the competitive ratios of AFHC (CRAFHC), the

regularization method (CRREG) and RLA (CRRLA).

III. A LOWER BOUND

Although OCO with look-ahead has been extensively stud-

ied, e.g., in [2], [9], [44], most existing results in the literature

focus on achievable competitive ratios, but do not provide

lower bounds on the competitive ratio. Such lower bounds

are important because they can reveal the fundamental limit

that one can hope to reach with online decisions. Note that the

lower bounds in [28] and [44] are for different settings (ℓ2-

norm switching costs and online packing problems). Further,

they do not consider look-ahead. Next, we provide a new

lower bound for our OCO formulation, which reveals how

the relationship between the coefficient ratio rco and the size

K of the look-ahead window will affect the competitive ratio.

(Note that Theorem 1 holds not only for K ≥ 1, but also

for K = 0, i.e., the case without look-ahead, which we will

discuss in Sec. VI.)

Theorem 1. Consider the OCO problem in Sec. II-A. With a

look-ahead window of size K ≥ 0, the competitive ratio of

any online algorithm is lower-bounded by

CRLB = 1 +
log2N

2
[

1 + 1
rco

((K + 1) log2N + 1)
] . (5)

Theorem 1 reveals important insights on how the com-

petitive ratio is impacted by the look-ahead window size K
relative to the coefficient ratio rco.

(i) The lower bound CRLB in (5) is always increasing in

rco and decreasing in K. Further, we have

CRLB ≤ 1 +
rco

2(K + 1)
. (6)

Note that the right-hand-side is close to the competitive ratio

of AFHC [2].

(ii) When the look-ahead window size K is large, in

particular when K + 1 > rco, CRLB will not be far away

from (6) and the competitive ratio of AFHC. Indeed, we have

CRLB > 1 +
log2N

6 1
rco

(K + 1) log2N
= 1 +

rco

6(K + 1)
, (7)

where the first inequality is because (K + 1) log2N ≥ 1 and
1
rco

(K+1) log2N ≥ 1. This behavior is illustrated by the two

solid curves in Fig. 1 (for two coefficient ratios rco,1 < rco,2),

which decrease to 1 as K increases beyond rco,1 and rco,2.

Notice that this is also the range where AFHC [2] will produce

a low competitive ratio (see the dashed curves in Fig. 1). In

contrast, the competitive ratio of the regularization method

(REG) of [23] does not decrease with K (see the dotted line

in Fig. 1).

(iii) When the look-ahead window size K is small, e.g.,

when K + 1 ≤ rco, (5) could be quite far away from (6)

and the competitive ratio of AFHC. Specifically, for small K,

the competitive ratio of AFHC increases to infinity when the

coefficient ratio increases, which can be seen in Fig. 1 by

comparing the two dashed curves at small K. In contrast,

the lower bound CRLB and the competitive ratio of the

regularization method CRREG are upper-bounded by a function

of the problem size N . Indeed, even when rco increases to

infinity, the lower bound in (5) still satisfies that

CRLB ≤ 1 +
1

2
log2N, (8)

which suggests room for improvement for AFHC. Please see

below for the proof of Theorem 1.

Proof of Theorem 1: Lower bound instance: We first

present the problem instance leading to the lower bound in (5).

Let cn(t) = c > 0 and wn = w > 0 for all n and t. Moreover,

let the total number of decision variables be N = 2α, where

α is a positive integer. Consider a total of T = (K +1)α+1
time-slots, which is divided into α+ 1 episodes. Specifically,

each of the first α episodes contains K +1 consecutive time-

slots, while the last episode contains the last time-slot.

Our key idea of the proof is to let the adversary reveal

new inputs based on the decisions of the online algorithm,

so that the online algorithm has to switch at least once in

each episode. Specifically, there is only M(t) = 1 constraint

with S1(t) for every episode. In the first episode, i.e., for any

t ∈ [1,K+1], the constraint is
∑N

n=1 xn(t) ≥ 1, i.e., S1(t) =
[1, N ].

The constraint in the second episode is based on the decision

X⃗π(1). (Note that the online algorithm must choose X⃗π(1)
without knowing the constraint in the second episode.) (i)

If
∑N/2

n=1 x
π
n(1) ≤

∑N
n=N/2+1 x

π
n(1), the adversary chooses

S1(t) = [1, N2 ], and the constraint becomes
∑N/2

n=1 xn(t) ≥ 1
in the second episode, i.e., for all t ∈ [K + 2, 2K + 2]. (ii)

Otherwise, the adversary chooses S1(t) = [N2 + 1, N ], and

the constraint becomes
∑N

n=N/2+1 xn(t) ≥ 1 in the second

episode. Intuitively, assuming that the online algorithm π does

not over-provision in the first time-slot (i.e.,
∑N

n=1 x
π
n(1) =

1), we must have
∑

n∈S1(t)
xπn(1) ≤ 1/2 for S1(t) chosen in

the second episode. This choice of S1(t) then forces the online

algorithm π to increase xπn(t) for n ∈ S1(t) during the second

episode (in order to meet the new constraint), and therefore

the online algorithm has to incur a large switching cost as we

will show below.

In a similar way, the constraint in the i-th episode (2 ≤ i ≤
α + 1) will always be on the half of the previous constraint

set, for which the decision variables at the beginning of the

(i − 1)-th episode add up to a smaller sum. Following these



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, JANUARY 2024 5

steps, at the last time t = (K+1)α+1, the constraint set will

reduce to a singleton S1(t) = {ñ} for some ñ ∈ {1, ..., N}.
Total cost of the optimal offline solution: The offline

solution can simply choose, for all time-slots, xOFF
n (1 : T ) = 1

for n = ñ, and xOFF
n (1 : T ) = 0 for n ̸= ñ. It only incurs a

switching cost of w at time t = 1. Thus, the optimal offline

cost is upper-bounded as follows,

CostOPT(1 : T ) ≤ w + c ((K + 1)α+ 1) . (9)

Total cost of any online algorithm π: First, at each time

t ∈ [1, T ], to satisfy the constraint, at least a service cost of c
is incurred. Next, we show that the total switching cost of any

online algorithm π is at least 1
2wα+w. To see this, consider

any decision variable xn that last saw a constraint in episode

in ≤ α, whose first time-slot is t′(in) ≜ (K +1)(in− 1)+ 1.

It must be because the decision variable xn is one of those

that are in the constraint in episode in, but are excluded

from the constraint in episode in + 1. Let S′(in) be the set

of all such decision variables in episode in. Because (i) in

episode in the constraint must be met, and (ii) the adversary

chooses the half of the decision variables whose sum are

smaller to form the constraint in episode in + 1, we must

have
∑

n∈S′(in)
xπn(t

′(in)) ≥
1
2 . Across α episodes, there are

α such sets S′(in), which are non-overlapping. Finally, in the

last time-slot, the decision xπñ(T ) ≥ 1. Together, we have
∑N

n=1 x
π
n(t

′(in)) ≥
α
2+1. Finally, note that the total switching

cost associated with xn(·) is at least wnxn(t
′(in)). Therefore,

the total cost of any online algorithm π is lower-bounded as

follows,

Costπ(1 : T ) ≥ c((K + 1)α+ 1) + w +
αw

2
. (10)

The result then follows by dividing the right-hand-side of

(10) by the right-hand-side of (9).

IV. REGULARIZATION WITH LOOK-AHEAD (RLA)

Inspired by Fig. 1, a nature question is then: can we

develop an online algorithm that gets the best of both AFHC

and the regularization method? In this section, we present a

new online algorithm, called Regularization with Look-Ahead

(RLA), which achieves exactly that, i.e., a competitive ratio

that not only remains upper-bounded when rco is large, but

also decreases with K when rco is small.

Specifically, let τ be an integer from 0 to K. RLA runs K+1
versions of a subroutine, called Regularization-Fixed Horizon

Control (R-FHC), indexed by τ . We denote the τ -th version of

R-FHC by R-FHC(τ). R-FHC(τ) divides the time horizon into

episodes. Each episode starts from time t(τ) to t(τ)+K, where

t(τ) = τ +(K+1)u and u = −1, 0, ...,
⌈

T
K+1

⌉

. Recall that at

time t(τ), the inputs
(

X(t(τ) : t(τ) +K), C⃗(t(τ) : t(τ) +K)
)

at the current time and in the look-ahead window have

been revealed. R-FHC(τ) then computes the solution to the

following problem,

min
X⃗(t(τ):t(τ)+K)

{

t(τ)+K
∑

s=t(τ)

N
∑

n=1

cn(s)xn(s) (11a)

+

N
∑

n=1

wn

η
xn(t

(τ)) ln

(

1 + ϵ
N

xR-FHC(τ)

n (t(τ) − 1) + ϵ
N

)

(11b)

+

t(τ)+K
∑

s=t(τ)+1

N
∑

n=1

wn [xn(s)− xn(s− 1)]
+

(11c)

+

N
∑

n=1

wn

η

[

(

xn(t
(τ) +K) +

ϵ

N

)

· ln

(

xn(t
(τ) +K) + ϵ

N

1 + ϵ
N

)

− xn(t
(τ) +K)

]}

(11d)

sub. to:
∑

n∈Sm(s)

xn(s) ≥ 1, for all m ∈ [1,M(s)],

s ∈ [t(τ), t(τ) +K], (11e)

xn(s) ≥ 0, for all n ∈ [1, N ], s ∈ [t(τ), t(τ) +K],
(11f)

where η = ln
(

N+ϵ
ϵ

)

, ϵ > 0 and the decision xR-FHC(τ)

n (t(τ) −
1) were given by the solution of the previous episode of

R-FHC(τ) from time t(τ) −K − 1 to t(τ) − 1.

According to (11), in each episode from time t(τ) to

t(τ) + K, RLA does not simply optimize the corresponding

service costs and switching costs, but instead adds additional

regularization terms similar to [23]. Next, we explain the intu-

ition behind these regularization terms. Note that since there is

no look-ahead in [23], it suffices to use a single regularization

term that is based directly on the current decision xn(t) and

the last decision xn(t− 1), i.e.,

wn

η

[

xn(t) +
ϵ

N

]

ln

(

xn(t) +
ϵ
N

xn(t− 1) + ϵ
N

)

− xn(t) + xn(t− 1).

(12)

Using this regularization term for every time t produces the

online dual variables equal to θn(t+ 1) = wn

η ln
(

1+ ϵ
N

xn(t)+
ϵ
N

)

,

which is crucial for the online primal-dual proof in [23].

Unfortunately, for RLA we cannot use a term like (12) at

every time. The reason is that, when there is look ahead (i.e.,

K > 0), the decisions inside the look-ahead window of size K
should be as close to the offline optimal solution as possible.

Using the term (12) at those time-slots distorts the objective

function too much that it will lead to sub-optimal decisions.

Due to this reason, we cannot use (12) directly in our algorithm

for K > 0. Instead, in our RLA algorithm, we can think of

each look-ahead window as a single super-time-slot. Naturally,

the regularization term should only involve decisions around

time t and time t+K, but its impact to other time-slots inside

the look-ahead window should be as little as possible. This

motivates us to construct our regularization term as the sum

of two terms: the part related to the decision xn(t+K) at the

end of the look-ahead window (which is similar to the role

of xn(t) in (12)) and the part related to the previous decision

xn(t−1). Moreover, in order to still guarantee dual feasibility,

we need the dual variables θn(t) at these two boundaries of

each look-ahead window to be of a similar form as in [23].

Thus, we replace the switching cost in the first time-slot t(τ) of

the current episode by the regularization term (11b), and adds
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Algorithm 1 Regularization with Look-Ahead (RLA)

Parameters: ϵ > 0 and η = ln
(

N+ϵ
ϵ

)

.

for t = −K + 1 : T do

Step 1: τ ← t mod (K + 1) and t(τ) ← t.

Step 2: Solve (11) to get X⃗R-FHC(τ)

(t(τ) : t(τ) +K). (If

t(τ) ≤ 0, remove (11b). If t(τ) ≥ T −K, remove (11d).)

Step 3:

if 1 ≤ t ≤ T then

X⃗RLA(t) =
1

K + 1

K
∑

τ=0

X⃗R-FHC(τ)

(t). (13)

end if

end for

another regularization term (11d) for the decision variables in

the last time-slot t(τ) +K of the current episode.

Similar to [23], the regularization term (11d) makes the

objective function strictly convex in xn(t
(τ) + K), and thus

discourages it from taking extreme values. More specifically,

without (11d), it is possible that the decision in the last time-

slot goes down to zero if the associated service-cost coefficient

is high or if there is no constraint. However, if the next input

at time t(τ) + K + 1 requires the next decision to be high,

the algorithm will incur a high switching cost. In contrast,

(11d) is decreasing and strictly convex in xn(t
(τ) + K), so

it discourages the decision in the last time-slot t(τ) + K
to be too low. When combined with the regularization term

(11b), they together ensure that the switching cost at the

boundary between two episodes is not too high (see details in

our analysis in Sec. V). Thus, unlike AFHC, the competitive

ratio of RLA can be upper-bounded even if rco is large.

Readers familiar with [23] will recognize that, when the size

of the look-ahead window K = 0, these two regularization

terms combined reduce to the original regularization term

in [23]. However, our formulation of the regularization terms

for K ≥ 1 is new and has not been reported in the literature.

Finally, at each time t ∈ [1, T ], RLA takes the average of

X⃗R-FHC(τ)

(t) for all τ as the final decision X⃗RLA(t) at time

t. As K increases, since R-FHC(τ) optimizes the real service

costs and switching costs in the middle of each episode, more

and more decision variables are close to optimal. Thus, by tak-

ing the average of all versions of R-FHC(τ), the performance

of RLA should improve with K. The details of RLA are given

in Algorithm 1. Note that for any version of R-FHC(τ) whose

first episode starts at time t(τ) ≤ 0, (11b) can be removed.

Similarly, for any version of R-FHC(τ) whose last episode

ends at time t(τ) +K ≥ T , (11d) can be removed.

V. COMPETITIVE ANALYSIS

Theorem 2 below provides the theoretical competitive ratio

of RLA. Recall that η = ln
(

N+ϵ
ϵ

)

and rco ≥ 1.

Theorem 2. Consider the OCO problem introduced in

Sec. II-A. With a look-ahead window of size K ≥ 1, the

competitive ratio of RLA is upper-bounded as follows,

CRRLA ≤ 1 +
3η(1 + ϵ) ⌈rco⌉

K + 1
, if ⌈rco⌉ < K + 1; (14a)

CRRLA ≤ 1 + 2η(1 + ϵ), if ⌈rco⌉ ≥ K + 1. (14b)

It is easy to see that the competitive ratio of RLA in (14)

matches the lower bound (5) within a factor that only depends

on the problem size N (see the two dash-dot curves in Fig. 1).

Specifically, (i) when rco ≤ ⌈rco⌉ ≤ K + 1, both (14a) and

(14b) differ from (7) (and thus (5)) by at most 36η(1 + ϵ).
Note that CRRLA decreases to 1 as K increases. (ii) When

rco ≥ K + 1, we can show that the lower bound (5) is larger

than 1+ log2 N

2[ 32+log2 N]
. Thus, the gap between (14b) and (5) is at

most
4η(1+ϵ)[ 32+log2 N ]

log2 N . Further, when rco ≥ (K + 1) log2N ,

the gap between (14b) and (5) is at most
10η(1+ϵ)
log2 N , which is

upper-bounded by a constant 10(1+ ϵ) ln( 2+ϵ
ϵ ) for all N ≥ 2.

Note that in all cases (even when rco increases to infinity),

CRRLA is upper-bounded. Therefore, RLA gets the best of

both AFHC and the regularization method. To the best of our

knowledge, RLA is the first algorithm in the literature that can

utilize look-ahead to attain a competitive ratio that matches the

lower bound (5).

The rest of this section is devoted to the proof of Theorem 2.

We first give the high-level idea, starting from a typical online

primal-dual analysis [28]. For the offline problem (2), by

introducing an auxiliary variable yn(t) for the switching term

[xn(t)− xn(t− 1)]+, together with a new constraint

yn(t) ≥ xn(t)− xn(t− 1), for all n ∈ [1, N ], (15)

we can get an equivalent formulation of the offline optimiza-

tion problem (2). Then, let β⃗(t) = [βm(t),m = 1, ...,M(t)]T

and θ⃗(t) = [θn(t), n = 1, ..., N ]T be the Lagrange multipliers

for constraints (2c) and (15), respectively. We have the offline

dual optimization problem as follows,

max
{β⃗(1:T ),θ⃗(1:T )}

T
∑

t=1

M(t)
∑

m=1

βm(t) (16a)

sub. to: cn(t)−
∑

m:n∈Sm(t)

βm(t) + θn(t)− θn(t+ 1) ≥ 0,

for all n ∈ [1, N ], t ∈ [1, T ], (16b)

wn − θn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ], (16c)

βm(t) ≥ 0, for all m ∈ [1,M(t)], t ∈ [1, T ], (16d)

θn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ]. (16e)

Let βOPT
m (t) and θOPT

n (t) be the optimal solution to (16). Then,

the optimal offline dual cost is,

DOPT(1 : T ) ≜

T
∑

t=1

M(t)
∑

m=1

βOPT
m (t). (17)

Let DRLA(1 : T ) be the total dual cost of RLA. Then, we can

prove the competitive performance of RLA by establishing the

following inequalities,

CostRLA(1 : T )
(a)

≤ CR ·DRLA(1 : T )
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(b)

≤ CR ·DOPT(1 : T )
(c)

≤ CR · CostOPT(1 : T ). (18)

In (18), step (c) simply follows from standard duality [45,

p. 225]. Step (b) is established by showing that RLA produces

a set of online dual variables that are also feasible for

the offline dual optimization problem (16). Since (16) is a

maximization problem, step (b) then holds. Finally, step (a)
is related to the regularization terms (11b) and (11d) added to

the objective function of R-FHC, which leads to a gap between

CostRLA(1:T ) and DRLA(1:T ). This gap needs to be carefully

bounded to establish (a). Below, we will address (b) and (a).

Step-1 (Checking the dual feasibility): We now focus on

one version τ of R-FHC. For simplicity, in the rest of this

section, we use (τ) instead of R-FHC(τ) in the superscript,

e.g., use X⃗(τ)(t) to denote X⃗R-FHC(τ)

(t). We now show that

the decisions produced by all episodes of R-FHC(τ) generate

a feasible set of dual variables for (16). Focus on one episode

from time t(τ) to t(τ) + K. As in (16), we introduce the

variable yn(t) and the constraint (15) to (11). We can then

form the dual problem of the equivalent form of (11). As in

(16), we let β
(τ)
m (t) and θ

(τ)
n (t) be the corresponding online

dual solution of (11). However, note that the objective function

of (11) does not contain the switching cost of the first time-

slot t(τ). Therefore, we are still missing the dual variables

θ
(τ)
n (t(τ)). To remediate this, for all n ∈ [1, N ], we let

θ(τ)n (t(τ)) ≜
wn

η
ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

. (19)

Lemma 1 below shows that we have constructed a feasible

dual solution for the offline dual optimization problem (16).

Lemma 1. The β⃗(τ)(1 : T ) and θ⃗(τ)(1 : T ) constructed

above from (19) and the online dual solution of R-FHC(τ)

are feasible for the offline dual optimization problem (16).

Lemma 1 can be proved by verifying that the Karush-Kuhn-

Tucker (KKT) conditions [45, p. 243] of (11) satisfies the dual

constraints (16b)-(16e). (16c) to (16e) are easy to verify, so

is (16b) for t = t(τ) + 1 to t(τ) +K − 1, because the KKT

conditions for (11) in those time-slots are exactly the same

as that of (16). Thus, it only remains to verify (16b) at time

t = t(τ) and t = t(τ) + K. At time t(τ), by examining the

KKT conditions for (11), we have,

cn(t
(τ))−

∑

m:n∈Sm(t(τ))

β(τ)
m (t(τ))

+
wn

η
ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

− θ(τ)n (t(τ) + 1) ≥ 0.

Using (19), (16b) at time t = t(τ) is verified. We can verify

(16b) at time t(τ)+K similarly. Lemma 1 then follows. Please

see Appendix A for the proof of Lemma 1.

Step-2 (Quantifying the gap between the online primal

cost and the online dual cost): As before, we focus on one

episode (from time t(τ) to t(τ) +K) of version τ of R-FHC.

We define the primal cost Cost(τ)(t(τ) : t(τ) + K) as in (3)

and the online dual cost

D(τ)(t(τ) : t(τ) +K) ≜
t(τ)+K
∑

t=t(τ)

M(t)
∑

m=1

β(τ)
m (t). (20)

However, note that (11) contains additional terms (11b) and

(11d) in the primal objective function. Thus, there will be some

gap between Cost(τ)(t(τ) : t(τ)+K) and D(τ)(t(τ) : t(τ)+K).
Lemma 2 below captures this gap. Define the tail-terms as

Ω(τ)
n (t(τ)) ≜ wn

[

x(τ)n (t(τ))− x(τ)n (t(τ) − 1)
]+

, (21)

ϕ(τ)n (t(τ)) ≜ −
wn

η
x(τ)n (t(τ)) ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

,

(22)

ψ(τ)
n (t(τ)) ≜

wn

η
x(τ)n (t(τ) +K) ln

(

1 + ϵ
N

x
(τ)
n (t(τ) +K) + ϵ

N

)

.

(23)

Lemma 2. For each version τ of R-FHC, we have,

Cost(τ)(t(τ) : t(τ) +K) ≤ D(τ)(t(τ) : t(τ) +K)

+

N
∑

n=1

Ω(τ)
n (t(τ)) +

N
∑

n=1

ϕ(τ)n (t(τ)) +

N
∑

n=1

ψ(τ)
n (t(τ)). (24)

Lemma 2 captures the gap between the online pri-

mal cost and the online dual cost of each version τ of

R-FHC. In (24), the first tail-term Ω
(τ)
n (t(τ)) is because

R-FHC(τ) does not optimize over the real switching cost

wn

[

xn(t
(τ))− xn(t

(τ) − 1)
]+

in the first time-slot. The sec-

ond and third tail-terms, ϕ
(τ)
n (t(τ)) and ψ

(τ)
n (t(τ)), are because

of the regularization terms (11b) and (11d) added to the primal

objective function in the first time-slot and the last time-slot.

Lemma 2 can be shown via the duality theorem [45, p.225].

Please see Appendix B for the proof of Lemma 2.

Recall that, to establish step (a) in (18), the main difficulty

is to bound the gap due to the tail-terms in Lemma 2. We

resolve this difficulty by designing two important steps as

follows. The ideas we propose in these two steps are novel

and critical for online primal-dual analysis. This non-trivial

generalization of online primal-dual analysis to the case with

look-ahead is of independent interest.

Step 2-1 (Bounding the tail-terms): Next, we show in

Lemma 3 that, with a factor that will appear in the final com-

petitive ratio, the tail-terms (21)-(23) from the same version τ
of R-FHC are actually bounded by a carefully-chosen portion

of the online dual costs. We let ∆ = min{K, ⌈rco⌉ − 1}.

Lemma 3. For each version τ of R-FHC, the following holds,

(i)

⌈ T
K+1⌉
∑

u=0

∑

t(τ)=τ+(K+1)u

N
∑

n=1

Ω(τ)
n (t(τ)) ≤ η(1 + ϵ)

×

⌈ T
K+1⌉
∑

u=0

∑

t(τ)=τ+(K+1)u

D(τ)(t(τ) : t(τ) +∆), (25)
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(ii)

⌈ T
K+1⌉
∑

u=−1

∑

t(τ)=τ+(K+1)u

N
∑

n=1

[

ϕ(τ)n (t(τ)) + ψ(τ)
n (t(τ))

]

≤ η(1+ϵ)

⌈ T
K+1⌉
∑

u=−1

∑

t
(τ)=τ

+(K+1)u

D(τ)(t(τ)+K−∆ : t(τ)+K), (26)

where D(τ)(t) = 0 for all t ≤ 0 and t > T .

To interpret (25), the tail-term Ω
(τ)
n (t(τ)) are bounded by

the right-hand-side of (25), which corresponds to a partial sum

of online dual costs over sub-intervals of length ∆+ 1 at the

beginning of each episode. (Note that when ⌈rco⌉ is large, ∆ =
K and thus this sub-interval will contain the whole episode.)

Expression (26) has a similar interpretation, while the partial

sum is over sub-intervals at the end of each episode. Due to

page limits, we only provide a sketch of proof of Lemma 3

below. Please see our technical report [46] for the complete

proof.

Sketch of Proof of Lemma 3: We focus on the proof of (25),

and (26) follows along a similar line. Consider any t(τ) and

n such that Ω
(τ)
n (t(τ)) > 0, i.e., x

(τ)
n (t(τ)) > x

(τ)
n (t(τ) − 1).

First, since a − b ≤ a ln
(

a
b

)

for all a, b > 0 and xn(t) ≤ 1,

we can show that each Ω
(τ)
n (t(τ))/η is upper-bounded by

wn

η
[x(τ)n (t(τ)) +

ϵ

N
] ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

. (27)

Let β̂
(τ)
n (t) =

∑

m:n∈Sm(t) β
(τ)
m (t). Consider any t′ > t(τ)

such that x
(τ)
n (t) > 0 for all t ∈ [t(τ), t′]. Using KKT

conditions of (11), we can show that (27) is equal to

t′
∑

t=t(τ)

[x(τ)n (t) +
ϵ

N
]β̂(τ)

n (t) + [x(τ)n (t′) +
ϵ

N
]θ(τ)n (t′ + 1)

−
t′
∑

t=t(τ)

cn(t)[x
(τ)
n (t) +

ϵ

N
]−

t′
∑

t=t(τ)+1

wny
(τ)
n (t). (28)

Next, we show that

Ω
(τ)
n (t(τ))

η
≤ (28) ≤

t(τ)+∆
∑

t=t(τ)

[x(τ)n (t) +
ϵ

N
]β̂(τ)

n (t) (29)

by considering the following two cases. (i) If there exists a

time-slot t < t(τ) + ∆, such that x
(τ)
n (t + 1) < x

(τ)
n (t),

we take t′ as the first such t after t(τ). Then, we must

have θ
(τ)
n (t′ + 1) = 0 (from complementary slackness)

and (29) follows. (ii) If no such time-slot t exists, we let

t′ = t(τ) +∆. There are two sub-cases. (ii-a) If ⌈rco⌉ − 1 <
K, then we consider the last three terms in (28). Since

x
(τ)
n (t′) −

∑t′

t=t(τ)+1 y
(τ)
n (t) = x

(τ)
n (t(τ)) (because x

(τ)
n (t)

does not decrease before time t′) and θ
(τ)
n (t′ + 1) ≤ wn,

the second and fourth term in (28) can be upper-bounded by

wn[x
(τ)
n (t(τ)) + ϵ

N ]. Then, since x
(τ)
n (t) ≥ x

(τ)
n (t(τ)) for all

t ∈ [t(τ), t′] and
∑t′

t=t(τ) cn(t) ≥
wn

rco
(∆ + 1) ≥ wn, the last

three terms in (28) are upper-bounded by 0, and (29) then

follows. (ii-b) If ⌈rco⌉ − 1 ≥ K, we can show that

Ω
(τ)
n (t(τ))

η
≤
wn

η
[x(τ)n (t(τ)) +

ϵ

N
] ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

−
wn

η
[x(τ)n (t(τ)) +

ϵ

N
] ln

(

1 + ϵ
N

x
(τ)
n (t(τ)) + ϵ

N

)

. (30)

(29) can then be verified similarly by combining (28) and (30).

Finally, (25) follows by taking the sum of (29) over all n
and all episodes, and applying complementary slackness (i.e.,
N
∑

n=1
x
(τ)
n (t)

∑

m:n∈Sm(t) β
(τ)
m (t) =

M(t)
∑

m=1
β
(τ)
m (t)).

Step 2-2 (Bounding the portions of the online dual costs):

Lemma 4 below connects the online dual cost on the right-

hand-side of (25) and (26) to the optimal offline dual cost,

which follows from standard duality [45, p. 225]. Please see

our technical report [46] for the complete proof of Lemma 4.

Lemma 4. In any interval from time t = t0 to t1, we have

D(τ)(t0 : t1) ≤ D
OPT(t0 : t1)−

N
∑

n=1

θOPT
n (t0)x

OPT
n (t0 − 1)

+

N
∑

n=1

θOPT
n (t1 + 1)xOPT

n (t1) +

N
∑

n=1

θ(τ)n (t0)x
OPT
n (t0 − 1)

−
N
∑

n=1

θ(τ)n (t1 + 1)xOPT
n (t1), (31)

where xOPT
n (t) and θOPT

n (t) are optimal offline primal and

dual solutions, respectively, and x
(τ)
n (t) and θ

(τ)
n (t) are online

primal and dual solutions, respectively.

We can now prove Theorem 2.

Proof of Theorem 2: The total cost of RLA can be calculated

as in (3), where the decision X⃗RLA(t) is calculated as in (13).

Then, applying Jensen’s Inequality, we have that

CostRLA(1 : T ) ≤
1

K + 1

K
∑

τ=0

Cost(τ)(1 : T ). (32)

Then, applying Lemma 2 to (32), we have that the total cost

CostRLA(1 : T ) of RLA is upper-bounded by

1

K + 1

K
∑

τ=0

⌈ T
K+1⌉
∑

u=−1

∑

t(τ)=τ+(K+1)u

{

D(τ)(t(τ) : t(τ) +K)

+
N
∑

n=1

Ω(τ)
n (t(τ)) +

N
∑

n=1

ϕ(τ)n (t(τ)) +
N
∑

n=1

ψ(τ)
n (t(τ))

}

. (33)

According to Lemma 1, the online dual costs in (33) add up

to 1
K+1

K
∑

τ=0
D(τ)(1 : T ) ≤ DOPT(1 : T ). It only remains to

bound the three tail-terms in (33). We divide into two cases,

i.e., ⌈rco⌉ < K + 1 and ⌈rco⌉ ≥ K + 1.
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i. When ⌈rco⌉ < K+1, we have ∆ = ⌈rco⌉− 1. According

to Lemma 3, the sum of the tail-terms in (33) can be upper-

bounded by

K
∑

τ=0

⌈ T
K+1⌉
∑

u=−1

∑

t(τ)=τ+(K+1)u

{

D(τ)(t(τ) : t(τ) + ⌈rco⌉ − 1)

+D(τ)(t(τ) +K − ⌈rco⌉+ 1 : t(τ) +K)

}

· η(1 + ϵ). (34)

Applying Lemma 4 to (34), we can replace D(τ) by DOPT,

with additional tail-terms as shown in (31). When we sum

these tail-terms over τ and t(τ), note that the sum of the tail-

terms−
N
∑

n=1
θOPT
n (t0)x

OPT
n (t0−1) and

N
∑

n=1
θOPT
n (t1+1)xOPT

n (t1)

get cancelled across all versions and episodes, and thus

can be upper-bounded by 0. The tail-term −
N
∑

n=1
θ
(τ)
n (t1 +

1)xOPT
n (t1) is upper-bounded by 0. Moreover, since the tail-

term θ
(τ)
n (t0)x

OPT
n (t0 − 1) ≤ wnx

OPT
n (t0 − 1), the sum of

the tail-terms
N
∑

n=1
θ
(τ)
n (t0)x

OPT
n (t0 − 1) over all versions and

episodes can be upper-bounded by max
{n,t}

wn

cn(t)
· CostOPT(1 :

T ) ≤ ⌈rco⌉CostOPT(1 : T ). Together, the total cost of RLA is

upper-bounded as follows,

CostRLA(1 : T ) ≤ DOPT(1 : T ) +
η(1 + ϵ)

K + 1

·
{

2 ⌈rco⌉D
OPT(1 : T ) + ⌈rco⌉CostOPT(1 : T )

}

≤

{

1 +
3η(1 + ϵ) ⌈rco⌉

K + 1

}

CostOPT(1 : T ). (35)

This shows (14a).

ii. When ⌈rco⌉ ≥ K + 1, we have ∆ = K. Similar to the

first case, by applying Lemma 3 and Lemma 4, we can show

that the total cost of RLA is upper-bounded as follows,

CostRLA(1 : T ) ≤ DOPT(1 : T ) +
η(1 + ϵ)

K + 1

·

K
∑

τ=0

⌈ T
K+1⌉
∑

u=−1

∑

t(τ)=τ+(K+1)u

2D(τ)(t(τ) : t(τ) +K)

≤ {1 + 2η(1 + ϵ)}CostOPT(1 : T ). (36)

(14b) then follows.

VI. TIGHTENING THE COMPETITIVE RATIO WHEN K = 0

Readers may notice that the gap between the competitive

ratio of RLA in (14) and the lower bound in (5) grows with

η, which is of the order of Θ(lnN) when the problem size is

large. It would be of interest to see whether this dependency on

N can be eliminated. In this section, we show that when K =
0, i.e., without look-ahead, this gap can be further tightened

to a small constant factor that is independent of not only the

coefficient ratio rco, but also the problem size N . Note that

as a side product of this result, we also tighten the known

competitive ratio of the regularization method [23] and provide

a new matching lower bound on the competitive ratio without

look-ahead. We leave for future work whether such tightening

of the gap can be attained for K ≥ 1.

First, according to Theorem 1, the lower bound of the

competitive ratio when K = 0 is

CRLB
K=0 = 1 +

log2N

2
[

1 + 1
rco

(log2N + 1)
] . (37)

(37) suggests that, when K = 0, the competitive ratio should

remain upper-bounded for any value of the coefficient ratio

rco and the problem size N . In particular, for any value of the

problem size N , the lower bound (37) remains upper-bounded

as follows,

CRLB
K=0 ≤ 1 +

1

2
rco, for all N ≥ 2. (38)

In contrast, the competitive ratio 1 + ln(1 + N
ϵ )(1 + ϵ) of

the regularization method obtained in [23] could increase to

infinity as N increases. This significant gap thus motivates

us to further study whether the competitive ratio of the

regularization method can also be improved.

Indeed in Theorem 3 below, we show that the competitive

ratio of RLA in the case without look-ahead (i.e., K = 0)

also remains upper-bounded for any value of N . Recall that

η = ln
(

N+ϵ
ϵ

)

and ϵ > 0 are parameters of RLA.

Theorem 3. Consider the OCO problem introduced in

Sec. II-A. When there is no look-ahead, i.e., K = 0, the

competitive ratio of RLA is upper-bounded as follows,

CRRLA
K=0 ≤ 1 +

η(1 + ϵ)

1 + η
rco

. (39)

Note that for any value of the problem size N , the compet-

itive ratio of RLA in (39) keeps upper-bounded as follows,

CRRLA
K=0 ≤ 1 + rco(1 + ϵ), for all N ≥ 2. (40)

Comparing (38) and (40), we can see that the competitive ratio

of RLA in (39) matches the lower bound (37) within a small

constant factor that is independent of not only the coefficient

ratio rco, but also the problem size N . To the best of our

knowledge, this is the first such result in the literature for

OCO problems. Note that when K = 0, our RLA algorithm

reduces back to the regularization method in [23]. Therefore,

as a side product, we have also tightened the competitive ratio

of the regularization method to match the lower bound in (37).

Next, we provide a sketch of proof of Theorem 3 below.

Please see our technical report [46] for the complete proof.

Sketch of Proof of Theorem 3: First of all, by letting K = 0
in our proofs of Lemma 1 and Lemma 2 in the appendices,

it is not difficult to show that Lemma 1 and Lemma 2 hold

for K = 0. That is, (i) the online dual solution of RLA when

K = 0 is feasible for the offline dual optimization problem

(16), and (ii) the primal online cost at each time can be upper-

bounded as in (24) with K = 0.

Moreover, when K = 0, the sum of the tail-terms ϕRLA
n (t)

and ψRLA
n (t) in (24) can be upper-bounded as follows,

T
∑

t=1

N
∑

n=1

{

ϕRLA
n (t) + ψRLA

n (t)
}
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=

T
∑

t=1

N
∑

n=1

−
wn

η
xRLA
n (t) ln

(

xRLA
n (t) + ϵ

N

xRLA
n (t− 1) + ϵ

N

)

=

T
∑

t=1

N
∑

n=1

−
wn

η

[

xRLA
n (t) +

ϵ

N

]

ln

(

xRLA
n (t) + ϵ

N

xRLA
n (t− 1) + ϵ

N

)

+
T
∑

t=1

N
∑

n=1

wn

η

ϵ

N
ln

(

xRLA
n (t) + ϵ

N

xRLA
n (t− 1) + ϵ

N

)

,

where the first equality is according to the definition of the

tail-terms in (22) and (23). Next, because of a ln(ab ) ≥ a− b
for any a, b > 0 and the telescoping sum, we have

T
∑

t=1

N
∑

n=1

{

ϕRLA
n (t) + ψRLA

n (t)
}

≤

N
∑

n=1

wn

η

{

−xRLA
n (T ) +

ϵ

N
ln

(

xRLA
n (T ) + ϵ

N
ϵ
N

)}

.

Then, because −a + ϵ
N ln

(

a+ ϵ
N

ϵ
N

)

≤ 0 for any a ≥ 0 and

ϵ > 0, we have

T
∑

t=1

N
∑

n=1

{

ϕRLA
n (t) + ψRLA

n (t)
}

≤ 0. (41)

Finally, to prove (39), we only need to upper-bound the sum

of the remaining tail-term ΩRLA
n (t) as follows,

T
∑

t=1

N
∑

n=1

ΩRLA
n (t) ≤

η(1 + ϵ)

1 + η
rco

DRLA(1 : T ). (42)

When xRLA
n (t) ≤ xRLA

n (t − 1), ΩRLA
n (t) ≤ 0. Then, (42) is

obviously true. Thus in the following, we only need to focus

on the case when xRLA
n (t) > xRLA

n (t− 1), which implies that

ΩRLA
n (t) = wn

[

xRLA
n (t)− xRLA

n (t− 1)
]

. We consider the fol-

lowing two sub-cases. Sub-case 1: if
∑

m:n∈Sm(t) β
RLA
m (t) ≤

cn(t) +
wn

η , we have

wn

[

xRLA
n (t)− xRLA

n (t− 1)
]

≤ wn

(

xRLA
n (t) +

ϵ

N

) η

wn





∑

m:n∈Sm(t)

βRLA
m (t)− cn(t)





≤
(

xRLA
n (t) +

ϵ

N

)

∑

m:n∈Sm(t)

βRLA
m (t)η

(

1−
cn(t)

cn(t) +
wn

η

)

=
η

1 + ηcn(t)
wn

(

xRLA
n (t) +

ϵ

N

)

∑

m:n∈Sm(t)

βRLA
m (t), (43)

where the first inequality is because a− b ≤ a ln
(

a
b

)

for any

a, b > 0 and the optimality condition of the KKT conditions

(see (58b) with K = 0), and the second inequality is because

of the condition
∑

m:n∈Sm(t) β
RLA
m (t) ≤ cn(t) +

wn

η of this

case. Sub-case 2: if
∑

m:n∈Sm(t) β
RLA
m (t) > cn(t) +

wn

η , we

have

wn

[

xRLA
n (t)− xRLA

n (t− 1)
]

= wn

(

xRLA
n (t) +

ϵ

N

)



1− e
− η

wn

(

∑

m:n∈Sm(t)

βRLA
m (t)−cn(t)

)





≤ wn

(

xRLA
n (t) +

ϵ

N

)

∑

m:n∈Sm(t)

βRLA
m (t)

cn(t) +
wn

η

=
η

1 + ηcn(t)
wn

(

xRLA
n (t) +

ϵ

N

)

∑

m:n∈Sm(t)

βRLA
m (t), (44)

where the first equality is according to the optimality condition

of the KKT conditions (see (58b) with K = 0), and the

first inequality is because 1 − e−x ≤ 1 for any x ≥ 0
and the condition

∑

m:n∈Sm(t) β
RLA
m (t) > cn(t) +

wn

η of this

case. Finally, by taking the sum of (43) and (44) over all n
and t, according to the complementary slackness of the KKT

conditions (see (56a) with K = 0), we will have (42). This

concludes the proof.

Remark 1. Notice that when K ≥ 1, (41) and (42) may not

hold. This is exactly where the difficulty lies to tighten the

competitive ratio of RLA when K ≥ 1. However, according to

our numerical results in Sec. VIII-C, we conjecture that the

competitive ratio of RLA when K ≥ 1 is also upper-bounded

for any value of N . Thus, we believe the true competitive ratio

of RLA when K ≥ 1 may also match the lower bound (5) by

a constant factor independent of not only rco and K, but also

N . This requires a new competitive analysis method, which

we leave for future work.

VII. GENERALIZATION

The fractional covering constraint in (1) corresponds to

a demand am(t) that is either 1 (when the constraint is

present) or 0 (when the constraint is not present). Further,

the coefficients on the left-hand-side of (1) must always be

1. Both assumptions are restrictive in practice. In this section,

we will extend our results to the more general case, where the

decision variables must meet constraints of the type,
∑

n∈Sm(t)

bmn(t)xn(t) ≥ am(t), for all m ∈ [1,M(t)], (45)

where bmn(t) and am(t) can be any positive integers as

in [12], [23], [47]. Moreover, we allow capacity constraints

that each decision variable must be upper-bounded, i.e.,

xn(t) ≤ X
cap
n , for all n ∈ [1, N ], (46)

where Xcap
n are positive integers. (We do not consider con-

straints such that the sum of some decision variables needs to

be upper-bounded, which will be a subject for future work.)

For this type of OCO problem, with minor modifications,

the Regularization with Look-Ahead (RLA) algorithm still

works. Specifically, we only need to change 1 + ϵ
N term in

the two regularization terms (11b) and (11d) to Xcap
n + ϵ

N ,

and change η to be ηn ≜ ln
(

Xcap
n + ϵ

N
ϵ
N

)

for each n. Thus, at

each time t(τ) ∈ [−K + 1, T ], R-FHC(τ) now calculates the

solution to the following problem,

min
X⃗(t(τ):t(τ)+K)

{

t(τ)+K
∑

t=t(τ)

N
∑

n=1

cn(t)xn(t)

+

N
∑

n=1

wn

ηn
xn(t

(τ)) ln

(

Xcap
n + ϵ

N

xR-FHC(τ)

n (t(τ) − 1) + ϵ
N

)
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+

t(τ)+K
∑

t=t(τ)+1

N
∑

n=1

wn [xn(t)− xn(t− 1)]
+

+

N
∑

n=1

wn

ηn

[

(

xn(t
(τ) +K) +

ϵ

N

)

· ln

(

xn(t
(τ) +K) + ϵ

N

Xcap
n + ϵ

N

)

− xn(t
(τ) +K)

]}

(47a)

sub. to: (11f), (45), (46), for all t ∈ [t(τ), t(τ) +K]. (47b)

In the analysis, we similarly change θ
(τ)
n (t(τ)) in (19) to

wn

ηn
ln

(

Xcap
n + ϵ

N

x
(τ)
n (t(τ)−1)+ ϵ

N

)

, which ensures that the online dual

variables satisfy the dual constraints. The rest of the analysis

then follows the same line, by changing 1+ ϵ
N to Xcap

n + ϵ
N and

by using the knapsack cover (KC) inequalities [48]. Finally,

in Theorem 4, we provide the competitive ratio of RLA for

this case. Please see our technical report [46] for the complete

proof of Theorem 4.

Theorem 4. Given a look-ahead window of size K ≥ 1,

for the OCO problem with constraints (45) and (46), the

competitive ratio of Regularization with Look-Ahead (RLA)

is, (with η ≜ max
n

ηn and B̄ ≜ max
{m,n,t}

bmn(t))

CRRLA =

{

1 + 3η(1+ϵB̄)⌈rco⌉
K+1 , if ⌈rco⌉ < K + 1;

1 + 2η(1 + ϵB̄), if ⌈rco⌉ ≥ K + 1.
(48)

VIII. NUMERICAL RESULTS

In this section, we demonstrate our theoretic results using

numerical experiments. We will mainly focus on the more

general OCO problem formulation in Sec. VII with general

demand-supply balance constraints (45). Please see our IEEE

INFOCOM 2021 paper [1] for numerical results for the less-

general OCO problem introduced in Sec. II with fractional

covering constraints (1). We choose ϵ = 1 for both Regulariza-

tion with Look-Ahead (RLA) that we propose in Sec. VII and

the regularization method (REG) that was proposed in [23].

First, we show the impact of the coefficient ratio rco and the

look-ahead window size K on the empirical competitive ratios

(ECRs) of RLA, AFHC [2] and REG [23]. Second, we show

the impact of the problem size N on the gap between the ECR

of RLA and the lower bound (5).

A. The Simulation Setting for Serverless Computing

Background: We perform a case study on serverless com-

puting [26], [27]. Serverless computing, e.g., Microsoft Azure

Serverless Computing and Amazon Lambda, has been a promi-

nent way for customers to deploy applications without the

need of worrying about the management of the infrastructure.

With serverless computing, customers can dynamically invoke

serverless functions on demand, but the service provider has to

manage (i.e., starting/stopping) the actual instances executing

these functions. Specifically, suppose that there are N func-

tions. At each time t, the customer requests the number an(t)
of instances needed for function n. Thus, the number xn(t) of

active instances of function n must be no smaller than an(t),

which corresponds to the demand-supply constraint (45). Let

xn(t − 1) denote the number of instances that are already

active. If an(t) > xn(t − 1), a cold-start delay [26], [27]

will be incurred to start new instances, which corresponds to

the switching cost wn. To avoid such cold-start delay, some

instances may be kept active by the service provider even when

the demand an(t) goes down, which then incurs higher service

costs. Thus, the service provider can use the online algorithms

in this paper to balance the service cost and the switching cost.

To allow more flexibility in dynamically managing active

instances, one possibility is to use the concept of composite

functions [49]. A composite function corresponds to an in-

stance that loads the code of multiple functions in memory, and

therefore can easily shift the processing across these functions

(e.g., by adjusting CPU allocation) without significant switch-

ing costs. As an example, let us consider a composite function

n12 for the non-composite functions n1 and n2. Recall that

without composite function n12, the number of instances needs

to satisfy, for all time t,

xn1(t) ≥ an1(t) and xn2(t) ≥ an2(t).

Thus, if an1
(t) increases, but an2

(t) decreases by the same

amount, a switching cost on xn1(t) may be incurred. In

contrast, with composite function n12, these demand-supply

balance constraints become, for all time t,

xn1(t) + xn12(t) ≥ an1(t), xn2(t) + xn12(t) ≥ an2(t),

and xn1(t) + xn2(t) + xn12(t) ≥ an1(t) + an2(t).

Then, in the same scenario where an1
(t) increases and an2

(t)
decreases by the same amount, the use of xn12

(t) of composite

functions may eliminate the need of changing xn1
(t) or

xn2(t). Our goal is therefore to evaluate the performance of

our proposed online algorithm for serverless computing with

and without composite functions.

Simulation setups: For our simulation, we use the Mi-

crosoft’s Azure serverless-function traces [26]. Each datum

in the trace represents the number of invocations of a function

in one minute. There are T = 1440 time-slots, i.e., 1440
minutes for a one-day trace. We discard those functions whose

invocation numbers are very small (e.g., 0) or do not change

for most time-slots, since they do not contribute much to

the performance comparison of the online decisions. We then

randomly pick 20 non-composite serverless functions whose

variances of the invocation numbers are not too small, e.g.,

larger than 100. Then, we randomly divide them into 10
pairs. We assign a composite function to each pair of non-

composite functions. Therefore, there are 30 functions in total,

i.e., N = 30.

Further, we generate the cost coefficient as follows. The

service-cost coefficient cn(t) of each non-composite function

is randomly generated in the range [1, 2], which represents the

resource (e.g., CPU and memory) costs [26]. Then, for each

pair of non-composite functions n1 and n2, the service-cost

coefficient cn12(t) of the composite function is set to be

cn12
(t) =max {cn1

(t), cn2
(t)}

+ 0.1 · [cn1
(t) + cn2

(t)−max {cn1
(t), cn2

(t)}] .
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Fig. 2: Compare the ECRs of RLA, AFHC and REG.
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Fig. 3: The value of using the composite function.
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Fig. 4: Impact of N .

In this way, the service cost of the composite function is

higher than both of the two non-composite functions, which

models the inherent overhead due to the use of composite

functions. To simulate different values of the coefficient ratio

rco, the switching-cost coefficient wn of each non-composite

function n is randomly generated in the range [0.9rco, rco],
which models the performance loss due to cold-start [26].

Then, for each pair of non-composite functions n1 and n2,

the switching-cost coefficient of the composite function is set

to be wn12 = max{wn1 , wn2}. That is, the cold-start cost of

the composite function is equal to the larger cold-start cost of

the two non-composite functions.

B. The Impact of rco and K on the ECRs

The numerical results are shown in Fig. 2 and Fig. 3. First,

in Fig. 2a, we fix rco = 50 and vary K from 1 to 100. We can

see that, as the look-ahead window size K increases, the ECRs

of RLA and AFHC decrease quickly to a value close to 1 and

become much smaller than the ECR of REG. Second, note

that the relation between the switching cost wn and the cold-

start time could be affected by various practical factors, e.g.,

the platform provider and how much the customers dislike the

cold-start delay. As a result, the coefficient ratio rco could vary

significantly across different scenarios. Therefore, in Fig. 2b,

we fix K = 10 and vary rco from 5 to 500. We can see that, as

the coefficient ratio rco increases, the ECR of AFHC increases

to be very large. In contrast, the ECRs of RLA and REG

remain at a low value. Fig. 2a and Fig. 2b confirm our analytic

results that the competitive ratio of RLA not only decreases

with K when rco is small, but also remains upper-bounded for

any large value of rco. Moreover, to show the value of using

the composite function, we compare in Fig. 3 the total costs

of RLA for the case with and without composite functions,

labeled as ªRLA-compositeº and ªRLA-no-comº, respectively.

we can see that when using the composite functions, the total

costs of serverless computing are indeed lower than the case

when no composite function is used.

C. The Impact of N on the ECRs

Recall that in Sec. VI, we tighten the competitive ratio

(39) of RLA when K = 0, so that the gap from the

lower bound (37) remains upper-bounded for any value of

problem size N . However, when K ≥ 1, due to the analytical

difficulty that we mentioned in Remark 1, the gap between

the proved competitive ratio (14) of RLA and the lower bound

(5) increases with Θ(log2N). Interestingly, according to our

simulation results in Fig. 4, we find that the gap between the

empirical competitive ratios (ECRs) of RLA and the lower

bound (5) remains upper-bounded for any value of N . In

the simulation, we use three different traces: the lower-bound

trace we designed in Sec. III, an i.i.d. random trace and

the Microsoft’s Azure Virtual-Machine (VM) trace [50]. In

Fig. 4, we show the gaps between the ECRs of RLA and

the lower bound (5) for different values of the problem size

N . Specifically, we evaluate the gap by dividing the ECRs

of RLA by the lower bound (5). To show the impact of N ,

we change N from 4 to 128 so that log2N increases linearly

from 2 to 6. Remember that the theoretical competitive ratio

of RLA in (14) depends on the relation between K and rco.

To simulate the case when ⌈rco⌉ < K + 1, we let rco = 5
and K = 20 (please see Fig. 4a). To simulate the case when

⌈rco⌉ ≥ K+1, we let rco = 20 and K = 5 (please see Fig. 4b).

Fig. 4 shows that the gap does not increase much when log2N
increases. Thus, we conjecture that the true competitive ratio of

RLA may remain upper-bounded for any value of the problem

size N .

IX. CONCLUSION AND FUTURE WORK

In this paper, we study competitive online convex optimiza-

tion (OCO) with look-ahead. We develop a new online algo-

rithm RLA that can utilize look-ahead to achieve a competitive

ratio that not only remains bounded when the coefficient ratio

is large, but also decreases with the size of the look-ahead

window when the coefficient ratio is small. In this way, the

new online algorithm gets the best of both AFHC [2] and the

regularization method [23]. To prove the competitive ratio of

RLA, we extend the online primal-dual method analysis [28]

to the case with look-ahead, which is of independent interest.

We also provide a lower bound of the competitive ratio, which

matches with the competitive ratio of RLA up to a factor that
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only depends on the problem size N . Finally, we generalize

RLA to OCO problems with more general constraints.

There are several directions of future work. First, from the

experiment results for K ≥ 1, we observe that the empirical

competitive ratio of RLA is only a constant factor (independent

of the problem size N ) away from the lower bound. Thus, we

will study ways to tighten the competitive ratio of RLA when

K ≥ 1. Second, we have not allowed constraints of the form

that the sum of some decision variables is upper-bounded.

Third, it would be interesting to study whether regularization

helps for online maximization problems with packing con-

straints and study the case with convex service costs. We note

that the regularization method in [23] has not been extended to

maximization problems or convex service costs either. Thus, it

would be of interest to study such extensions. Fourth, it may

also be of interest to study how regularization may help to

improve the regret, instead of the competitive ratio.
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APPENDIX A

PROOF OF LEMMA 1

Proof. To prove Lemma 1, we need to prove, together with

the dual variables θ⃗(τ)(t(τ)) constructed in (19), the online

dual variables β⃗(τ)(t) and θ⃗(τ)(t) from each version τ of

R-FHC satisfy the constraints (16b)-(16e). We consider one

episode from time t(τ) to t(τ)+K. The proof is similar in all

other episodes. (Please see our technical report [46] for the

complete proof.)

First, according to the KKT conditions of (11), we have the

following inequalities,

cn(t
(τ))−

∑

m:n∈Sm(t)

β(τ)
m (t(τ))

+
wn

η
ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

− θ(τ)n (t(τ) + 1) ≥ 0,

for all n ∈ [1, N ], (49)

cn(t)−
∑

m:n∈Sm(t)

β(τ)
m (t) + θ(τ)n (t)− θ(τ)n (t+ 1) ≥ 0,

for all n ∈ [1, N ], t ∈ [t(τ) + 1, t(τ) +K − 1], (50)

cn(t
(τ) +K)−

∑

m:n∈Sm(t)

β(τ)
m (t(τ) +K) + θ(τ)n (t(τ) +K)

−
wn

η
ln

(

1 + ϵ
N

x
(τ)
n (t(τ) +K) + ϵ

N

)

≥ 0,

for all n ∈ [1, N ], (51)

wn − θ
(τ)
n (t) ≥ 0,

for all n ∈ [1, N ], t ∈ [t(τ) + 1, t(τ) +K], (52)

β(τ)
m (t) ≥ 0, for all m ∈ [1, Sm(t)], t ∈ [t(τ), t(τ) +K],

(53)

θ(τ)n (t) ≥ 0, for all n ∈ [1, N ], t ∈ [t(τ) + 1, t(τ) +K].
(54)

Thus, constraint (16b) from time t(τ) + 1 to t(τ) + K − 1,

constraint (16c) from time t(τ) + 1 to t(τ) + K, constraint

(16d) from time t(τ) to t(τ) + K, and constraint (16e) from

time t(τ) + 1 to t(τ) +K are satisfied.

Moreover, according to (19), we know θ
(τ)
n (t(τ)) =

wn

η ln

(

1+ ϵ
N

x
(τ)
n (t(τ)−1)+ ϵ

N

)

and θ
(τ)
n (t(τ) + K + 1) =

wn

η ln

(

1+ ϵ
N

x
(τ)
n (t(τ)+K)+ ϵ

N

)

. Thus, according to (49) and (51),

we have that constraint (16b) at time t(τ) and t(τ) + K,

constraint (16c) at time t(τ), and constraint (16e) at time t(τ)

are satisfied.

Hence, together with the dual variables θ⃗(τ)(t(τ)) con-

structed in (19), the online dual variables β⃗(τ)(t) and θ⃗(τ)(t)
from each version τ of R-FHC satisfy the constraints (16b)-

(16e). Lemma 1 then follows.

APPENDIX B

SKETCH OF PROOF OF LEMMA 2

Due to page limits, we only provide a sketch of proof of

Lemma 2 in this section. Please see our technical report [46]

for the complete proof.

Proof. First, for each version τ of R-FHC, the total cost from

time t(τ) to t(τ) +K is equal to

Cost(τ)(t(τ) : t(τ) +K)

=

t(τ)+K
∑

t=t(τ)

N
∑

n=1

cn(t)x
(τ)
n (t) +

t(τ)+K
∑

t=t(τ)+1

N
∑

n=1

wny
(τ)
n (t)

+

N
∑

n=1

wn

[

x(τ)n (t(τ))− x(τ)n (t(τ) − 1)
]+

. (55)

Then, notice that the complementary slackness and the opti-

mality condition of the KKT conditions of (11) implies that

t(τ)+K
∑

t=t(τ)

M(t)
∑

m=1

β(τ)
m (t)



1−
∑

n∈Sm(t)

x(τ)n (t)



 = 0, (56a)

t(τ)+K
∑

t=t(τ)+1

N
∑

n=1

θ(τ)n (t)
[

x(τ)n (t)− x(τ)n (t− 1)− y(τ)n (t)
]

= 0.

(56b)

By taking the sum of the right-hand-side of (55) and the left-

hand-side of the two equations in (56), together with (19), we

have that the total cost is equal to

Cost(τ)(t(τ) : t(τ) +K)

=

t(τ)+K
∑

t=t(τ)

M(t)
∑

m=1

β(τ)
m (t) +

t(τ)+K
∑

t=t(τ)

N
∑

n=1

x(τ)n (t)

[

cn(t)

−
∑

m:n∈Sm(t)

β(τ)
m (t) + θ(τ)n (t)− θ(τ)n (t+ 1)

]

+

t(τ)+K
∑

t=t(τ)+1

N
∑

n=1

y(τ)n (t)
[

wn − θ
(τ)
n (t)

]
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+

N
∑

n=1

wn

[

x(τ)n (t(τ))− x(τ)n (t(τ) − 1)
]+

−

N
∑

n=1

wn

η
x(τ)n (t(τ)) ln

(

1 + ϵ
N

x
(τ)
n (t(τ) − 1) + ϵ

N

)

+
N
∑

n=1

wn

η
x(τ)n (t(τ) +K) ln

(

1 + ϵ
N

x
(τ)
n (t(τ) +K) + ϵ

N

)

.

(57)

Finally, notice that the complementary slackness and the

optimality condition of the KKT conditions of (11) implies

that

t(τ)+K
∑

t=t(τ)+1

N
∑

n=1

y(τ)n (t)
[

wn − θ
(τ)
n (t)

]

= 0, (58a)

t(τ)+K
∑

t=t(τ)

N
∑

n=1

x(τ)n (t)

[

cn(t)−
∑

m:n∈Sm(t)

β(τ)
m (t)

+ θ(τ)n (t)− θ(τ)n (t+ 1)

]

= 0. (58b)

Lemma 2 then follows by combining (57) and (58).
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