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AbstractÐMotivated by edge computing with artificial intel-
ligence, in this paper we study an adversarial bandit-learning
problem with switching costs. Existing results in the literature

either incur Θ(T
2
3 ) regret with bandit feedback, or rely on free

full-feedback in order to reduce the regret to O(
√

T ). In contrast,
we expand our study to incorporate two new factors. First, full
feedback could incur a cost. Second, the player may choose 2 (or
more) arms at a time and observe their feedback, even though
switching costs are still incurred when she changes the set of
chosen arms. For the setting where the player pulls only one arm
at a time, our new regret lower-bound shows that, even when

costly full-feedback is added, the Θ(T
2
3 ) regret still cannot be

improved. However, the dependence on the number of arms may
be improved when the full-feedback cost is small. In contrast, for
the setting where the player can choose 2 (or more) arms at a
time, we provide a novel online learning algorithm that achieves

a significantly lower regret equal to O(
√

T ). Further, our new
algorithm does not need any full feedback at all. This sharp
difference therefore reveals the surprising power of choosing 2
(or more) arms for this type of bandit learning problems with
switching costs. Both our new algorithm and regret analysis
involve several new ideas in choosing the primary and secondary
arms, tuning the weight-decay parameters within and across
episodes, and using the loss differences in the weight updates,
which may be of independent interest.

Index TermsÐBandit learning, switching costs, regret analysis,
edge computing with artificial intelligence.

I. INTRODUCTION

IN this paper, we are interested in bandit learning with

switching costs, which can be used to model many practical

decision-making problems that not only face significant uncer-

tainty, but also incur costs for changing decisions. Consider

edge computing with artificial intelligence (Edge AI) [2], [3]

as an example, where an edge server close to the end users

downloads machine learning (ML) models from the cloud

to process incoming inference requests. As the underlying

ground-truth model of the data changes in uncertain ways

(which is often referred to as concept drift [4]), the best ML

model also changes in time. However, because of the limited
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capability of the edge server, it can often only accommodate

a small number of ML models. Thus, the edge server needs

to learn which subset of ML models should be used, based

on the feedback (e.g., inference losses) observed. Further,

downloading an ML model (which is not currently on the

edge server) from the cloud incurs communication overhead,

which can be modelled by a switching cost β1. Hence, the edge

server has to carefully select the ML models to reduce the total

inference losses and switching costs in the long run, which

thus corresponds to a bandit learning problem with switch-

ing costs. Other examples of such problems can be found

in transportation networks [5], wireless communication [6],

recommendation systems [7], and robotics [8], etc.

In the online learning literature, it is well-known that the

existence of switching costs significantly changes the nature of

the regret. Specifically, in an adversarial setting (which we will

focus on in this paper), for bandit learning without switching

costs, the Exp3 algorithm can attain O(
√
T ) regret over a time-

horizon T [9]. However, once the switching cost is added, the

regret (for the setting where only one arm can be pulled at

each time) increases substantially to Θ(T
2
3 ) [10]. A matching

lower bound in [11] suggests that such an increased regret is

unavoidable. While this result may be somewhat discouraging,

it leaves many important open questions, as we explained

below. Note that since ML models in Edge AI corresponds to

arms in bandit learning, we use the word ªmodelº and ªarmº

interchangeably in the rest of the paper.

First, in practice, in addition to pulling one arm, there are

often other ways to obtain feedback. For example, in Edge AI,

the edge server could send the data to the cloud for analysis. In

this case, the feedback from all ML models can be obtained,

beyond the model already deployed on the edge server. This

is somewhat analogous to the full-feedback setting studied

in [12]. Reference [12] shows that, if the full feedback can

be obtained with zero costs, the regret for bandit learning

with switching costs will remain at O(
√
T ), which would

have been much lower than that of [10] where only bandit

feedback is available. However, in practice, feedback from the

cloud also incurs non-negative costs due to multiple reasons,

e.g., communication costs, latency and privacy issues [2], [3].

Thus, the regret for bandit learning with both switching costs

and full-feedback costs remains an open problem.

Second, instead of holding only one ML model at each

time, in Edge AI, the edge server can usually accommodate

M ≥ 2 ML models at each time. In this setting, at each

time, the feedback from all M models currently on the edge

server can be observed. This setting is thus most similar to

a bandit learning problem with limited advice [13], where

M ≥ 2 arms can be chosen at each time. However, [13] only
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studied the case without switching costs, where the regret is

O(
√
T ) regardless of whether one (M = 1) or more (M ≥ 2)

arms are chosen at each time. Our setting is also related to

bandit learning problems with semi-bandit feedback [14] and

side information [5]. The studies for semi-bandit feedback [14]

typically do not consider switching costs either. Although the

side-information setting [5] has been studied with switching

costs, it is somewhat different from ours because the source

of the side information is not controlled by the algorithm

there. Partly due to this difference, the regret [5] remains at

Θ(T
2
3 ). In summary, it remains an open problem whether in

our setting, choosing M ≥ 2 arms can improve the regret.

In this paper, we provide new answers to the aforementioned

two important open problems. First, we study the case when

M = 1, i.e., only one arm can be pulled at each time, and

there is a switching cost β1 to change the arm and a full-

feedback cost β2 to obtain feedback from all arms. As we

discussed earlier, the latter action corresponds to the edge

server sending data to the cloud for analysis. We provide a

lower bound of the regret, which grows as Θ(T
2
3 ). In other

words, when only one arm can be pulled (M = 1), adding

costly full-feedback will not fundamentally change how regret

depends on T . However, our lower bound does suggest that

utilizing costly full-feedback may change the multiplication

factor in front of T
2
3 . In some settings, this factor can be

reduced from O(K
1
3 ) to O((lnK)

1
3 ), where K is the total

number of arms. This lower bound is obtained by constructing

two new adversaries (please see Sec. III-B) that force any

online learning algorithm to either switch arms or use costly

full-feedback for at least Ω(T
2
3 ) number of times, in order

to obtain a loss no greater than the optimal static loss plus

O(T
2
3 ). The proof of the lower bound involves a non-trivial

analysis of the Kullback-Leibler (KL) divergence (i.e., relative

entropy) [15, p. 23] on a hidden Markov model, which is of

independent interest. Moreover, we provide an algorithm that

achieves a regret that matches the lower bound.

Second, we study the setting when M ≥ 2, i.e., more than

one arm can be chosen at each time and one of them is used

to incur loss. The feedback of all M arms are then observed,

while there are still switching costs and full-feedback costs.

Specifically, in Sec. IV, we first start from the case where

the switching cost is only for changing the set of the M

chosen arms. In other words, there is no switching cost for

picking the arm (from these M arms) that is used to incur

loss. Surprisingly, here we provide a new online learning

algorithm, called Randomized Online Learning With Working

Groups (ROW), that can achieve a regret of O(
√
T ) without

even using full feedback (see Theorem 2), which significantly

improves the Θ(T
2
3 ) regret for M = 1. In other words,

having the flexibility to accommodate one additional model

(i.e., M = 2) almost brings comparable benefit as having free

full-feedback [12]. To the best of our knowledge, this sharp

transition from M = 1 to M ≥ 2 has never be reported

in the literature for bandit learning with switching costs1.

This may be seen as somewhat analogous to the ªpower-

1Note that for bandit learning without switching costs, choosing M ≥ 2
arms will improve the regret, but it cannot alter the dependence on T [13].

of-2º routing in load balancing [16] (where sampling two

queues can attain comparable reduction to delay as sampling

all queues), which is why we refer to it as the ªpower-of-2-

armsº. Moreover, as M increases, the regret of ROW further

decreases. Using a trivial lower bound for bandit learning with

free full-feedback [12], [17], we conclude that the dependence

of the regret of our ROW algorithm on T must be optimal.

To achieve the improved O(
√
T ) regret, ROW employs

several new ideas. In order to fully utilize the flexibility of

choosing M ≥ 2 arms and minimize switching costs, the first

idea of ROW is to fix a primary arm over O(
√
T ) time-slots

(which we refer to as an episode), and switch the secondary

arms
⌈

K−1
M−1

⌉

times during an episode, each time to a new

subset of secondary arms that have not yet been chosen in this

episode. In this way, ROW only makes a constant number of

switches within each episode (and Θ(
√
T ) switches for all the

time), but it can obtain not only the feedback of the primary

arm for the entire episode, but also the feedback of every

other arms for 1

⌈K−1
M−1⌉ fraction of the episode. Intuitively, this

way of obtaining feedback incurs much lower costs than using

costly full-feedback to obtain the same amount of feedback

(for any positive K and β2 independent of T ), which is also

the reason that ROW does not use costly full-feedback at all.

Note that such a saving is only possible when M ≥ 2. As we

discussed earlier, for M = 1, either the switching cost or the

full-feedback cost has to be Ω(T
2
3 ) to attain a low loss.

However, just using the above idea alone is insufficient to

produce the O(
√
T ) regret. The reason is that the feedback

obtained is highly correlated in time. This is because each

subset of secondary arms is retained for the whole sub-

episode (whose length is also O(
√
T )). It is known that such

correlation tends to increase the regret. Indeed, we construct

two counter-examples in Sec. IV-A to show that, if we merely

use episodic versions of existing bandit-learning algorithms,

e.g., Exp3 [9], the regret will still be very high. To resolve

this challenge, ROW utilizes a second crucial idea. Our key

observation is that, whenever such a sub-episode with highly-

correlated feedback occurs, one of arms in the current working

group (either the primary arm or a secondary arm) will likely

be consistently better than other arms. Then, ROW will try

to switch to the better arm more quickly within the sub-

episode, and thus improve the regret. To accomplish this faster

switching within a sub-episode, our proposed ROW algorithm

will use a larger weight-decay parameter η2 within each sub-

episode, while using a smaller parameter η1 across episodes.

In Sec. IV-B2, we give a sufficient condition on how much η2
should be larger than η1 to strike the right balance. We note

that this idea of using two different weight-decay parameters

is new and may be of independent interest.

Furthermore, since in each episode the primary arm will

receive much more feedback than the secondary arms, this

creates a bias in the overall quality of feedback at the end

of each episode. This bias issue is resolved by using instead

the loss differences between the primary and secondary arms

(please see our Idea 3 in Sec. IV-A). Our proof for the O(
√
T )

regret carefully captures the effect of the above ideas by

utilizing several new techniques (please see Sec. IV-B for
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details). Then, in Sec. V, we extend our results in Sec. IV

to a more general case where there is an additional switching

cost for changing the arm (even among the M chosen arms)

that is used to incur loss.

Finally, using both a generic setting and a more realistic

Edge-AI setting, our simulation results (in Sec. VI) demon-

strate that our algorithms can significantly reduce the regret.

II. PROBLEM FORMULATION

In this section, we provide the problem formulation for the

bandit learning problem with switching costs and full-feedback

costs that we consider. Moreover, we present a motivating

example based on edge computing with artificial intelligence

(Edge AI), which has received extensive attention recently [2],

[3]. Finally, we introduce the performance metric.

A. Bandit Learning With Switching Costs and Full-Feedback

Costs

A player interacts with the adversary/environment sequen-

tially in time. We use K ≜ {1, 2, ...,K} to denote the set of all

arms and let M be an integer, 1 ≤ M < K. In each time-slot

t = 1, ..., T , first the player chooses M arms among all K

arms. Let k̂(t) denote the set of the M arms chosen at time

t. The player uses one of the arms in k̂(t) as the active arm,

which is denoted by k(t). The loss of this arm, lk(t)(t), will

be used to calculate the loss and regret later. In addition, the

losses lk(t) of all arms k ∈ k̂(t) are observed by the player.

The loss lk(t) can be any arbitrary value in [0, 1]. In this paper,

we study both the cases when M = 1 and 2 ≤ M < K. When

M = 1, k̂(t) only contains the active arm k(t) and only the

loss of k(t) is observed. In this case, we simply say that the

player ªpullsº the single arm k(t) at time t. On the other hand,

when 2 ≤ M < K, in addition to the loss of the active arm

k(t), the losses of other M−1 arms in k̂(t) are also observed.

We next present our model for the switching costs. We

will first focus on the case where there is no switching cost

changing the active arm from the current set k̂(t). However,

every time a new arm is added to the set k̂(t), a switching cost

β1 > 0 will be incurred. (In Sec. V, we will generalize our

results to the case with additional switching costs for changing

the active arm k(t) in k̂(t).) Thus, the switching cost at time t

is β1

∑

k∈k̂(t) 1{k/∈k̂(t−1)}, where 1E is an indicator function

(i.e., 1E = 1 if the event E is true, and 1E = 0 otherwise). As

typically assumed in bandit learning problems [5], [9], [11],

[12], [18], we assume that k̂(0) = Φ is empty. In addition to

the feedback from the M arms in k̂(t), at each time t, the

player can choose to obtain full feedback of time t for all the

arms (including those not in k̂(t)) at a cost β2. Let z(t) = 1
if the player chooses to obtain the full feedback at time t, and

z(t) = 0 otherwise. Therefore, the total cost is

Cost(1 : T )

≜

T
∑

t=1

{

lk(t)(t) + β1

∑

k∈k̂(t)

1{k/∈k̂(t−1)} + β2z(t)
}

. (1)

B. An Example Motivated by Edge AI

We consider an Edge AI setting where an edge server

collaborates with a remote cloud. The edge server runs ma-

chine learning (ML) models on an online stream of input

data to predict their labels. (For example, in an E-commerce

recommendation system, the input data at each time contains

the customer data, item data and web shop transactions, etc.

The input data will be used by the edge server to return

the recommendations, i.e., the predicted labels of what the

customer is interested in.) We assume that K ML models are

already trained and available in the remote cloud. However,

due to the limited capability of the edge server, only M models

can be deployed at the edge server at each time. Since it

is unknown which ML model works best, the edge server

needs to use the feedback (e.g., the actual product picked by

the customer) to learn which subset of ML models it should

deploy. (In practice, both the underlying distribution of the

input data and the mapping from data to labels change in

time due to the so-called concept drift [4]. Therefore, the

best model(s) also changes in time. As a result, this learning

process may be performed again after a concept drift.)

This learning process can be modelled as the bandit learning

problem described in Sec. II-A. Each arm corresponds to one

of the K ML models. At each time t, the edge server chooses

the subset k̂(t) of M models, which correspond to the M

arms chosen in bandit learning. This subset k̂(t) may be the

same as the subset k̂(t−1) chosen at last time t−1, or it may

differ, in which case a switching cost β1

∑

k∈k̂(t) 1{k/∈k̂(t−1)}
for downloading the ML models that are not currently on the

edge server will be incurred. Note that this switching cost

is assumed to be proportional to the number of ML models

(which are not currently on the edge server) downloaded at

time t. Then, the input data X⃗(t) is revealed. The edge server

will use the models in k̂(t) to infer the label of X⃗(t). Further, it

will use the result Y⃗
′

k(t)(t) of one of the models k(t) ∈ k̂(t), to

return to the end user. This model k(t) then corresponds to the

active arm in bandit learning. Next, the true label Y⃗ (t) of X⃗(t)
is revealed. The edge server can then calculate the inference

loss lk(t) for each ML model k ∈ k̂(t), based on the difference

between the inferred label Y⃗
′

k (t) and the true label Y⃗ (t), e.g.,

using the squared loss (i.e., lk(t) = ∥Y⃗ (t)− Y⃗
′

k (t)∥2) [19].

At the end of time t, the edge server may also choose to

consult the cloud for the quality of all ML models. In that case,

it sends the data X⃗(t) to the cloud. After the cloud processes

this data with all ML models k ∈ K, the edge server can

retrieve the inference-loss lk(t) of all the ML models. Clearly,

it incurs additional computation/communication overhead to

obtain such feedback from the cloud, which we model by the

full-feedback cost β2.

C. Performance Metric

We use the regret [9]±[12] as the performance metric. For an

online learning algorithm π, its total cost Costπ(1 : T ) is given

by (1), which includes both switching costs and full-feedback

costs. For the optimal static solution OPT, it knows the future

losses in advance, and hence can choose only one arm/model

throughout the time-horizon. The cost of OPT is then given by



4

CostOPT(1 : T ) = min
k∈K

∑T
t=1 lk(t) + β1, where there is only

one switching cost β1 at the beginning of the time-horizon,

and there is no full-feedback cost. The regret of algorithm π

is defined to be the worst-case difference between the expected

total cost of algorithm π and the total cost of OPT, i.e.,

Rπ(T ) ≜ sup
l1:K(1:T )

{

Eπ [Costπ(1 : T )]− CostOPT(1 : T )
}

,

(2)

where the expectation is taken over the possible randomness

of the algorithm π, and l1:K(1 : T ) denotes the losses lk(t)
of all arms k ∈ [1,K] for all time t ∈ [1, T ]. Our goal is to

design an online learning algorithm with a regret as low as

possible.

III. THE CASE OF M = 1

In this section, we focus on the case when M = 1, i.e.,

the player (e.g., edge server) can pull only one arm (e.g.,

model) at each time. We are interested in studying whether

adding full feedback with a cost β2 can alter the regret of

bandit learning with switching costs. Recall that in this case,

the active arm k(t) is the only arm in k̂(t). As we mentioned

in the introduction, when full feedback is free, it has been

shown in [12] that using full feedback will improve the regret

from Θ(T
2
3 ) to O(

√
T ). However, since in our model the full

feedback incurs a cost, it is no longer clear whether the regret

can still be improved.

A. A Lower Bound on the Regret (When M = 1)

Our first main result shows that adding costly full-feedback

will not change the dependence of the regret on T , but may

change the multiplication factor as a function of K.

Theorem 1. Consider bandit learning with switching costs

and full-feedback costs introduced in Sec. II-A. When M = 1,

the regret of any online algorithm π must be lower-bounded

as follows,

Rπ(T ) ≥ Rπ(T ) ≜ max
{

C1β
1
3
a (log2 K)

1
3 T

2
3 , C2β

1
3

b T
2
3

}

,

(3)

where

βa = min

{

3

2
β1, β2

}

, βb = min

{

3

4
Kβ1, β2

}

,

C1 =
3

√

2

9 ln 2
· 1

144 (log2 T − log2 log2 K)
, and

C2 =
3

√

2

9 ln 2
· 1

144 log2 T
.

We can see from Theorem 1 that, even when the costly

full-feedback is added, as long as M = 1, Θ(T
2
3 ) is still the

optimal regret for bandit learning with switching costs. This is

in sharp contrast to the case of free full-feedback [12], where

the regret can be improved to O(
√
T ). While this result may

be somewhat discouraging, the costly full-feedback does play

some role in the multiplication factor in front of T
2
3 , which

depends on the relative magnitude of β1 and β2. Intuitively,

when the full-feedback cost β2 is large, the online learning

algorithm would rather switch to obtain feedback than using

costly full-feedback. On the other hand, when β2 is small, the

online learning algorithm should avoid switching and obtain

feedback from costly full-feedback. Thus, we expect that

costly full-feedback will be more useful in the latter case than

in the former case. The conclusion of Theorem 1 shows this

difference precisely. Specifically, we can make the following

observations.

(i) When β2 ≥ 3
4Kβ1, the lower bound Rπ(T ) in (3) is

equal to

max

{

C1

(

3

2
β1

)
1
3

(log2 K)
1
3 T

2
3 , C2

(

3

4
β1

)
1
3

K
1
3T

2
3

}

.

(4)

As K increases, the second term in (4) quickly dominates.

This means that, when the full-feedback cost β2 is high, the

regret of any online learning algorithm π will at least increase

as β
1
3
1 K

1
3T

2
3 . Note that this expression is the same as the

regret (for bandit learning with switching costs) when there

is no full feedback at all [11]. This observation is consistent

with our intuition that, when β2 is large, the online algorithm

cannot benefit from costly full-feedback.

(ii) When β2 < 3
4Kβ1, the lower bound Rπ(T ) in (3) is

equal to

max
{

C1β
1
3
a (log2 K)

1
3 T

2
3 , C2β

1
3
2 T

2
3

}

. (5)

As K increases, the first term in (5) quickly dominates.

This means that, when the full-feedback cost β2 is not

high, the regret of any online algorithm π will at least

increase as β
1
3
a (lnK)

1
3 T

2
3 . If in addition β2 ≤ 3

2β1, we

have β
1
3
a (lnK)

1
3 T

2
3 = β

1
3
2 (lnK)

1
3 T

2
3 , which is smaller than

β
1
3
1 K

1
3T

2
3 . Compared with the earlier case (with large β2),

our regret expression here has the same dependence on T , but

now increases more slowly as a function of the total number K

of arms. This observation is also consistent with our intuition

that, when β2 is small, the online algorithm can benefit from

costly full-feedback more.

Finally, we note that the division of the two cases depends

on the value of Kβ1 and β2. The intuition is that, with K

switches, an online algorithm may also attain the feedback

from all K arms. Thus, it makes sense to compare Kβ1 with

β2 to determine which type of feedback is more effective.

B. Lower Bound Analysis

To prove Theorem 1, we design two important adversaries,

The first adversary captures the dependence of the regret

on T . The second adversary uses the first adversary as a

building block, which allows us to refine the dependence of

the regret on K. For both adversaries, we make use of Yao’s

principle [20] that the worst-case expected regret Rπ(T ) of a

randomized online algorithm π is lower-bounded by the ex-

pected regret of the best deterministic online algorithm against

a randomized adversary. Thus, in the following we focus on

designing randomized adversaries, and studying the regret of

deterministic online algorithms. Recall that K = {1, ...,K}.
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Algorithm 1 The Multivariate Hidden Markov (MHM) adver-

sary

Parameters: Choose ϵ and σ according to (8).

Initialization: Choose k∗ uniformly from K.

for t = 1 : T do

Step 1: Generate the value of G(t) according to (7).

Step 2: Generate the losses of each arm k ∈ K as follows,

lk(t) = G(t) +
1

2
− ϵ · 1{k=k∗} + γk(t), (6)

where γk(t) ∼ N (0, σ2) are i.i.d. Gaussian random

variables with zero-mean and σ2-variance.

end for

1) Multivariate Hidden Markov (MHM) Adversary: In this

section, we provide the first randomized adversary, called Mul-

tivariate Hidden Markov (MHM) adversary, which generalizes

the idea in [11]. Please see Algorithm 1.

Specifically, Step 1 in Algorithm 1 is the same as that used

by the adversary introduced in [11]. That is, for each time t,

define the parent time of t as ρ(t) ≜ t − 2δ(t), where δ(t) ≜
max{δ | t ≡ 0 (mod 2δ)}. The main reason that the parent

time ρ(t) is 2δ(t) time-slot ahead of time t is to guarantee that

with high probability, the generated losses lk(t) are in [0, 1].
Please see our technical report [21] for the concrete proof of

this guarantee. Then, Step 1 of MHM generates a Gaussian

process G(t) in the following way,

G(t) = G(ρ(t)) + ξ(t), for all time t ∈ [1, T ], (7)

where G(0) = 0, and ξ(t) ∼ N (0, σ2) are i.i.d. Gaussian

random variables with zero-mean and σ2-variance. As in [11],

this process G(t) creates a common uncertainty across all

arms. As a result, if an online algorithm does not switch

arms, it will have a difficult time figuring out whether the

losses experienced on the chosen arms are due to this common

process G(t), or due to the chosen arms being inferior to other

arms. In Step 2, the first three terms2 in (6) are also the same

as that used in [11].

However, (6) differs from the adversary of [11] in the

fourth term. This additional term adds a Gaussian noise γk(t)
to the loss lk(t) of each arm at each time. This additional

noise is critical because our online algorithm π can use costly

full-feedback, which is not considered in [11]. Intuitively,

without this noise γk(t), by using one round of costly full-

feedback, the online algorithm can know the losses of all

arms in the same time-slot. Then, the online algorithm will

immediately know which arm is the optimal one (i.e., the arm

with a loss that is ϵ lower). In contrast, the additional noise

in (6) eliminates the possibility for such a trivial solution.

As we explain soon, this additional noise γk(t) leads to new

difficulties in the proof of the lower bound. We refer to this

adversary as Multivariate Hidden Markov (MHM) because the

hidden loss lhi(t) ≜ lk(t)(t) − γk(t)(t) satisfies the Markov

property [22, p. 235].

2The first three terms in (6) guarantees that the expected values of the losses
are 1

2
and 1

2
− ϵ for the sub-optimal arms k ̸= k∗ and the optimal arm k∗,

respectively.

Lemma 1. Consider bandit learning with switching costs and

full-feedback costs introduced in Sec. II-A. When M = 1, by

choosing

ϵ =
3

√

2

9 ln 2
· 1

9 log2 T
· β

1
3

b T
− 1

3 and σ =
1

9 log2 T
, (8)

the regret of any online learning algorithm π against the

MHM adversary is lower-bounded as follows: for T ≥
max {βb, 6K},

Rπ(T ) ≥ 3

√

2

9 ln 2
· 1

144 log2 T
· β

1
3

b T
2
3 , (9)

where βb = min
{

3
4Kβ1, β2

}

.

Please see our technical report [21] for the complete proof

of Lemma 1. From Lemma 1, we can see that the regret lower-

bound produced by MHM corresponds to the second term in

(3). Note that it correctly captures the dependence of the regret

on T .

Below, we briefly sketch the main ideas of our proof and

the new difficulties. We follow the approach in [11] to derive

the regret lower-bound of any deterministic online algorithm

π against the MHM adversary. Specifically, let Pk∗(·) denote

the probability measure under the setting where one optimal

arm k∗ incurs ϵ lower cost than other arms, as in (6). Let P0(·)
denotes the probability measure when ϵ = 0, i.e., the arm k∗

is statistically the same as other arms. In addition, let lob(·)
denote the observed losses of the online learning algorithm.

Then, the analysis in [11] focuses on estimating the Kullback-

Leibler (KL) divergence DKL(Pk∗(lob(1 : T ))∥P0(l
ob(1 : T )),

which then leads to the lower bound on the regret. However,

for our MHM adversary, the additional noise γk(t) causes

several new difficulties in the proof of the lower bound.

Difficulty 1: The observed loss lob(t) does not satisfy the

Markov property [22, p. 235] any more. Recall that ρ(t) is

the parent (time) of t, and thus t is the child (time) of ρ(t).
Let ρ̄(t) denote the set of the predecessors of time t, i.e. its

parent, parent’s parent, etc. Similarly, let ρ(t) denote the set

of the descendants of time t. Note that without γk(t), the

observed loss lob(t) would have been a Gaussian process G(t)
plus a fixed constant 1

2 or 1
2 − ϵ. Thus, lob(t) would have

satisfied a form of the Markov property, i.e., conditioned on the

current observed losses, the conditional probability distribution

of future losses at a descendant time in ρ(t) is independent of

past losses at any predecessor time in ρ̄(t). Then, the proof

could use the chain rule of KL divergence [15, p. 23]. In

contrast, with the additional noise γk(t), the observed loss

lob(t) does not satisfy the Markov property any more. This

is because, conditioned on the observed losses at time t, past

observed losses still provide information for the statistics of

the future losses. For example, by taking the average of the

losses observed at all predecessors in ρ̄(t), we can average

out γk(t) across time, and thus estimate the mean value of

the loss at a descendant time in ρ(t) with a higher accuracy.

Therefore, we cannot use the chain rule directly, and must find

a new way to bound the KL divergence.

To overcome this new difficulty, we develop a result on the

KL divergence of hidden Markov models [15, p. 69]. Specif-

ically, notice that the hidden loss lhi(t) ≜ lk(t)(t) − γk(t)(t),
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i.e., the loss in (6) but with γk(t)(t) removed, satisfies the

Markov property. Then, using the chain rule of probability,

we can show that

DKL

(

Pk∗(lob(1 : T ))∥P0(l
ob(1 : T ))

)

≤ DKL

(

Pk∗(lob(1 : T )|lhi(1 : T ))∥P0(l
ob(1 : T )|lhi(1 : T ))

)

+DKL

(

Pk∗(lhi(1 : T ))∥P0(l
hi(1 : T ))

)

. (10)

The first term on the right-hand-side of (10) can be easily

calculated at each time, since conditioned on the hidden loss

lhi(t), the observed loss lob(t) is only due to i.i.d. Gaussian

variables γk(t). The second term on the right-hand-side of

(10) can be calculated by using the chain rule of the KL

divergence, since the hidden loss lhi(t) satisfies the Markov

property. Bounding the right-hand-side of (10) then leads to a

lower bound on the regret as in [11].

Difficulty 2: The losses generated in (6) may go out of

the range [0, 1]. In [11], the authors resolve this problem by

clipping any losses lk(t) to the range [0, 1]. Since there is no

additional noise γk(t) in their case, after clipping the loss gap

between the sub-optimal arm k ̸= k∗ and the optimal arm k∗ is

at most ϵ. In contrast, in our case, due to the additional noises

γk(t) that are independent for all k, the loss gap between the

sub-optimal and optimal arms could become arbitrarily large

both before and after clipping. As a result, it becomes more

difficult to establish the regret lower-bound for the clipped

losses.

To overcome this new difficulty, we leverage coupling and

stochastic dominance [23]. Specifically, since the conditional

probability distribution of γk(t) is symmetric for all arms k,

even though the worst-case loss gap could become larger after

clipping, the average loss gap can still be upper-bounded,

which eventually leads to the result in Lemma 1. Please see

our technical report [21] for details.

2) Dividing Set (DS) adversary and Randomized Online

Learning With Costly Full-Feedback (ROCF): Note that the

dependence on K provided in Lemma 1 still needs to be

refined. To further refine such dependence, we provide a

second adversary, called Dividing Set (DS) adversary. Please

see our technical report [21] for details. Finally, we design an

online learning algorithm, called Randomized Online Learning

With Costly Full-Feedback (ROCF), that attains the following

regret for large T ,

RROCF(T ) ≤
{

4β
1
3
1 (K lnK)

1
3 T

2
3 , if β2 ≥ 3K

4 β1,
7
2β

1
3
2 (lnK)

1
3T

2
3 +O(1), if β2 < 3K

4 β1,

(11)

which matches the lower bound in Theorem 1. ROCF essen-

tially uses episodic versions of either Exp3 [9] (when β2 is

large) or the shrinking dartboard algorithm [12] (when β2 is

small). Due to page limits, we refer the readers to our technical

report [21].

IV. THE POWER-OF-2-ARMS (WHEN M ≥ 2)

In this section, we proceed to the case when M ≥ 2. In

contrast to the previous section where we show that adding

costly full-feedback does not change the Θ(T
2
3 ) regret, here

Algorithm 2 Randomized Online Learning With Working

Groups (ROW)

Parameters: Choose η2, τ2, η1 and τ1 according to (31).

Initialization: wROW
k [1] = 1 and pROW

k [1] = 1
K , for all k ∈

K.

for u = 1 :
⌈

T
τ1

⌉

(The u-th episode starts from tu = (u −
1)τ1 + 1 to tu + τ1 − 1.) do

Step 1: At the beginning of the first time-slot tu, accord-

ing to probability pROW
k [u] calculated in (12), choose a

primary arm kROW
0 [u] from all arms k ∈ K for the entire

episode.

for v = 1 : τ1
τ2

(The v-th sub-episode starts from tu,v =
(u− 1)τ1 + (v − 1)τ2 + 1 to tu,v + τ2 − 1.) do

Step 2: At the beginning of the first time-slot tu,v ,

uniformly choose the set k̂
ROW
M−1[u, v] of M − 1 sec-

ondary arms from the not-yet-been-chosen arms in

K−
(

v−1
⋃

v′=1

k̂
ROW
M−1[u, v

′]
⋃{kROW

0 [u]}
)

. Then, form the

working group by the primary arm and secondary arms,

i.e., k̂ROW[u, v] =
{

kROW
0 [u]

}
⋃

k̂
ROW
M−1[u, v].

Step 3: Initialize the weights ŵROW
k (tu,v) and probabil-

ities p̂ROW
k (tu,v) of all arms k ∈ k̂

ROW[u, v] according

to (13) and (14), respectively.

for t = tu,v : tu,v + τ2 − 1 do

Step 4: Use an arm k ∈ k̂
ROW[u, v] as the active arm

according to the updated probability p̂ROW
k (t).

Step 5: Update the weights ŵROW
k (t) and probabil-

ities p̂ROW
k (t) of all arms k ∈ k̂

ROW[u, v] according

to (15) and (14), respectively.

end for

end for

Step 6: At the end of the last time-slot of the u-th

episode, update the weights wROW
k [u+1] and probabilities

pROW
k [u+1] of all arms k ∈ K according to (17) and (12),

respectively.

end for

we provide a new algorithm that utilizes the flexibility of

having 2 (or more) arms and successfully improves the regret

to O(
√
T ). In this section, we focus on the case when the

switching cost is only for changing the set k̂(t) of the M

chosen arms. In other words, there is no switching cost for

picking the arm (from these M arms) that is used to incur

loss. The results in this section serve as a basis for a more

general case in Sec. V, where there are additional switching

costs for changing the active arm k(t) even inside k̂(t).

A. Randomized Online Learning With Working Groups (ROW)

We call our new algorithm Randomized Online Learning

With Working Groups (ROW). Please see Algorithm 2. We

start with describing the high-level skeleton of ROW. Recall

that K = {1, ...,K}.

Idea 1: Note that in order to obtain the O(
√
T ) regret,

we can switch or use costly full-feedback at most O(
√
T )

number of times. The first idea of ROW is thus to design an

effective way to rotate a working group (of M arms) through
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all K arms, so that plenty of feedback can be obtained for

all the arms, while incurring O(
√
T ) switching costs and zero

full-feedback costs. Specifically, ROW divides the entire time-

horizon into U =
⌈

T
τ1

⌉

episodes, each with τ1 = Θ(
√
T )

time-slots. In the first time-slot tu = (u− 1)τ1+1 of the u-th

(u = 1, ..., U ) episode, ROW chooses a primary arm kROW
0 [u].

This primary arm kROW
0 [u] will be fixed for all τ1 time-slots

in the u-th episode. In addition, ROW divides each episode

into V =
⌈

K−1
M−1

⌉

sub-episodes, each with τ2 = τ1
V time-slots.

In the rest of this paper, we refer to the v-th sub-episode in

the u-th episode as sub-episode (u, v). At the beginning of the

first time-slot tu,v = (u− 1)τ1 +(v− 1)τ2+1 of sub-episode

(u, v), ROW uniformly chooses M − 1 secondary arms from

the arms that have not yet been chosen in the u-th episode3

(i.e., Step 2 in Algorithm 2). We let k̂ROW
M−1[u, v] denote the set

of the M−1 secondary arms chosen in sub-episode (u, v). Let

k̂
ROW[u, v] =

{

kROW
0 [u]

}
⋃

k̂
ROW
M−1[u, v] denote the working

group formed by the primary arm and secondary arms. The

working group k̂
ROW[u, v] will be fixed for the whole sub-

episode (u, v).
Notice that by using this idea, ROW only switches at

the boundaries of sub-episodes and never uses full feedback.

Therefore, by tuning τ2 to be Θ(
√
T ), the total switching

cost is guaranteed to be Θ(
√
T ), and the total full-feedback

cost is 0. More importantly, with this idea, we not only have

the feedback for the primary arm for the entire episode, but

also have the feedback for each secondary arm for 1
V fraction

of each episode. Intuitively, this way of obtaining feedback

incurs much lower costs than using costly full-feedback. For

example, if we want to obtain the same amount of feedback

by using costly full-feedback alone, we would have to incur a

full-feedback cost equal to Θ(
√
T ) in every episode! This is

also the reason that ROW does not use full feedback at all.

We now describe the rest of the details of ROW. At the

beginning of the first time-slot of the u-th (u = 1, ..., U )

episode, each arm k ∈ K is associated with a weight wROW
k [u],

which is initialized to be wROW
k [1] = 1 (we will describe how

to update wROW
k [u] from wROW

k [u − 1] shortly). Then, from

all arms k ∈ K, ROW chooses a primary arm kROW
0 [u] with

probability (i.e., Step 1 in Algorithm 2)

pROW
k [u] =

wROW
k [u]

∑K
k=1 w

ROW
k [u]

. (12)

Then, at the beginning of the first time-slot of each sub-episode

(u, v), the M − 1 secondary arms k̂
ROW
M−1[u, v] are chosen

uniformly and rotated through all of the rest K − 1 arms as

we described earlier (i.e., Step 2 in Algorithm 2).

Further, within each sub-episode (u, v) we solve a bandit-

learning problem with the set of arms restricted to the chosen

working group. Note that this restricted version of the bandit-

learning problem has no switching cost (since any arm k ∈
k̂

ROW[u, v] can be used as the active arm without incurring

3When K − 1 is not divisible by M − 1, the number of the remaining
unchosen arms in the last (i.e., V -th) sub-episode may be less than M − 1.
In this case, after choosing all those unchosen arms, ROW uniformly chooses
the secondary arms from the arms that have not yet been chosen for the V -th
sub-episode.

switching costs), and also has full feedback (from all the arms

k ∈ k̂
ROW[u, v]). Thus, we can directly use the full-feedback

version of the Exp3 algorithm inside each sub-episode (u, v).
Specifically, in the first time-slot tu,v of sub-episode (u, v),
ROW initializes the weights of all the arms k ∈ K as follows

(i.e., Step 3 in Algorithm 2),

ŵROW
k (tu,v) = wROW

k [u], (13)

i.e., to be the values of the weights at the beginning of the

entire episode u. Then, for each time t = tu,v, ..., tu,v+τ2−1,

each arm k ∈ k̂
ROW[u, v] is used as the active arm kROW(t)

with probability (i.e., Step 4 and Step 5 in Algorithm 2)

p̂ROW
k (t) =

ŵROW
k (t)

∑

k∈k̂ROW[u,v] ŵ
ROW
k (t)

. (14)

After the losses lk(t) of all the arms k ∈ k̂
ROW[u, v] are

obtained for time t, ROW updates their weights with a tunable

parameter η2 as follows (i.e., Step 5 in Algorithm 2),

ŵROW
k (t+ 1) = ŵROW

k (t) · e−η2lk(t), (15)

and then proceeds to the next time-slot t + 1. Note that the

weights ŵROW
k (t) are reset by (13) in the first time-slot t = tu,v

of each sub-episode (u, v).
Finally, at the end of the last time-slot of the entire

episode u, ROW collects all the feedback received during

the episode. Next, during the sub-episodes that arm k was

chosen for the working group, ROW subtracts the loss of

the primary arm from the corresponding loss of this arm

k. Then, the resulting value is divided by the conditional

probability that k is chosen as a secondary arm (conditioned

on k not being the primary arm), i.e., M−1
K−1 . Precisely, we let

vu(k) ≜

{

v | v = 1, ..., V, k ∈ k̂
ROW[u, v]

}

denote the sub-

episodes (u, v) when the arm k was chosen in the working

group. Let Lk[u, vu(k)] ≜
∑

v∈vu(k)

∑tu,v+τ2−2
t=tu,v

lk(t) denote the

sum of the losses of arm k in sub-episodes (u, v) (except the

last time-slot t = tu,v + τ2 − 1) for all v ∈ vu(k). Then,

ROW computes the loss difference of each arm k ∈ K as

follows,

L̃ROW
k [u] =

Lk[u, vu(k)]− LkROW
0 [u][u, vu(k)]

M−1
K−1

. (16)

Note that for the primary arm kROW
0 [u], the loss difference

is L̃ROW
kROW
0 [u]

[u] = 0, which is also consistent with (16). Then,

ROW updates the weights for all the arms k ∈ K with a

tunable parameter η1 as follows (i.e., Step 8 in Algorithm 2),

wROW
k [u+ 1] = wROW

k [u] · e−η1L̃k[u], (17)

which becomes the initial weights for the next episode u+1.

In (31), we give the values of all parameters of ROW, i.e., η1,

η2, τ1 and τ2.

Readers familiar with bandit-learning algorithms may have

already noticed two other crucial differences in ROW. First, a

different weight-decay parameter η2 is used to update weights

in (15) within the episode, compared with the parameter η1
that is used in (17) across episodes. Second, when updating the

weights across episodes in (17), we use the difference between
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(a) Trace in counter-example 1 (i.i.d. across
arms k and sub-episodes [u, v]).
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(b) Trace in counter-example 2 (repeats
every 2 time-slots).
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(c) Trace in counter-example 3 (repeats
every episode u).

Fig. 1: One realization of the counter-example traces in one episode.

the loss of an arm and that of the primary arm, instead of

using the absolute loss of the arm directly. In the following,

we explain why these two differences (i.e., our idea 2 and idea

3) are crucial for achieving the O(
√
T ) regret. We emphasize

that these design choices are very different from the standard

full-feedback algorithm. As we will demonstrate through three

counter-examples below, our power-of-2-arms setting is very

different from the full-feedback setting, and thus requires these

crucial changes for attaining a low regret.

Idea 2: Use different weight-decay parameters η2 and

η1. Recall that in every episode, ROW can obtain at least
1
V fraction of feedback from every arm. We would have

hoped that this amount of feedback is sufficient for attaining

a low O(
√
T ) regret. Indeed, consider an alternate bandit-

learning problem where the feedback of each arm is obtained

independently with probability 1
V in every time-slot. It is not

difficult to show that Exp3 [9] using this amount of feedback

will attain the O(
√
T ) regret.

However, compared with the above alternate setting when

feedback is collected with probability 1
V , the difficulty that

we are facing here is that in ROW the feedback of different

arms are not collected simultaneously. Indeed, the secondary

arms are fixed during the whole sub-episode. Thus, we either

have all feedback of an arm, or have none for the whole sub-

episode. However, online decisions still need to be made after

the feedback of only a subset of the arms are collected. This,

combined with the possible correlation of the loss feedback

across arms and time, leads to a large regret for existing full-

feedback algorithm as we demonstrate below. Specifically, we

construct two counter-examples to illustrate the difficulties in

dealing with such correlation. For ease of exposition, we use

l(t1 : t2) ≜ [l(t), for all t = t1, t1 + 1, ..., t2] to collect l(t)
from t = t1 to t = t2.

Counter-example 1: Consider K = 4 arms and M = 2. For

each arm k, in each sub-episode (u, v), lk(tu,v : tu,v + τ2 −
1) = 0 with probability 1

2 , and lk(tu,v : tu,v + τ2 − 1) = 1
with probability 1

2 . The losses are independent across arms k

and across sub-episodes [u, v]. Please see Fig. 1a for this loss

trace in one episode. Using this counter-example, we show

why existing bandit-learning method, Exp3 [10], could lead

to a poor regret. Let us consider the optimal static loss. First,

the expected total loss of each arm is trivially E[L] = T
2 .

Second, let us estimate the variance of the total loss of each

arm. Since the loss is a constant within a sub-episode, the

higher correlation in time leads to a higher variance in the total

loss of each arm. Specifically, for each arm, the variance of its

total loss in a sub-episode4 is Θ(τ22 ). Thus the variance of its

total loss across T time-slots is Var(L) = T
τ2
·Θ(τ22 ) = Θ(T

3
2 ).

Thus, one of the K arms may incur a total loss that is smaller

than the average by Θ(
√

Var(L)). As a result, the total loss

of the optimal static decision OPT is E[L]−Θ(
√

Var(L)) =
T
2 −Θ(T

3
4 ). (This estimate can also be obtained by applying

the random walk analysis [18, p. 111].) Next, we consider the

total loss of the episodic version of Exp3 [10]. Such version

of Exp3 picks an arm k0 at the beginning of an episode, and

use it as the active arm for the entire episode. Since the loss

in each episode is independent, the total loss of such Exp3

will be the average loss of each arm in this counter-example,

i.e., T
2 . Therefore, the regret would be Θ(T

3
4 ).

Counter-example 1 clearly illustrates why the higher corre-

lation in time leads to a higher regret for the episodic version

of Exp3. To overcome this difficulty, we make an important

observation. In this setting with highly correlated losses, we

observe that one arm (with losses 0) will be consistently better

than the other arms (with losses 1) in each sub-episode. We

may then beat the average loss by switching to the better

arm within a sub-episode. Indeed, with M = 2, the chance

that one of the two arms incurs zero loss is 3
4 . Thus, if we

can switch to the better arm (with losses 0) quickly within a

sub-episode, we may attain a total loss approximately equals

to T
4 , which would have beaten the optimal static decision

OPT. This counter-example thus suggests why it is important

to use Exp3 [9] inside each sub-episode (in addition to across

episodes).

However, it is still highly non-trivial to choose the parameter

η of Exp3 within each sub-episode. One possible thought is

that, we can think of each sub-episode as a bandit-learning

problem with τ2 = Θ(
√
T ) time-slots. Then, if we view the

better arm within the sub-episode as the static optimal arm, we

would have to use η = Θ(T− 1
4 ) in order to attain the minimal

regret against the better arm. However, this choice of η would

have been too large, as can be seen in the counter-example

below.

4In contrast, if the losses were i.i.d. in time, the variance should have been
Θ(τ2).
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Counter-example 2: Consider K = 4 arms and M = 2. For

arms k = 1, 2, lk(t) = 0 for all odd time-slots t, and lk(t) = 1
for all even time-slots t. For arms k = 3, 4, lk(t) = 1 for

all odd time-slots t, and lk(t) = 0 for all even time-slots t.

Please see Fig. 1b for this loss trace in one episode. Using

this counter-example, we can see why using Exp3 [9] with a

parameter η = Θ(T− 1
4 ) could lead to a poor regret. Let us

consider the optimal static loss. Since the total loss of every

arm is T
2 , the optimal static loss is T

2 . Next, we consider the

total loss of Exp3. Notice that the probability of each arm is

initialized to be the same, i.e., 1
K , at time t = 1. Then, at

each time, suppose that all arms have been observed almost

the same number of times. Thus, the probabilities of all arms

would be about the same. However, whenever an arm with

loss lk1(t) = 0 and an arm with loss lk2(t) = 1 are observed

simultaneously, at the next time t+1 Exp3 will use the arm k1
as the active arm with a probability higher by approximately

Θ(η). According to counter-example 2, lk1
(t+ 1) = 1. Thus,

Exp3 will suffer an additional loss Θ(η) approximately at each

time. Hence, the total loss of Exp3 will be T
2 + Θ(ηT ) =

T
2 +Θ(T

3
4 ). Therefore, the regret would be Θ(T

3
4 ).

Counter-example 2 clearly indicates that, in order to attain

the O(
√
T ) regret, the parameter η2 should be no larger

than O(T− 1
2 ). However, since a sub-episode is of length

much smaller than T , we conjecture that η2 still needs to

be larger than η1 (the latter is used across episodes), so

that ROW converges fast to the better arm inside the chosen

working group. Lemma 4 in Sec. IV-B2 will provide the exact

condition on how η2 and η1 should be tuned to obtain the

O(
√
T ) regret.

Idea 3: Use the loss difference from the primary arm to

update weights across episodes. We next describe why it is also

crucial to use the loss difference in (16) instead of the absolute

loss of each arm. Recall that at the end of each episode, we

receive τ1 feedback from the primary arm, but only τ2 = τ1
V

feedback from each secondary arm. Intuitively, this bias will

also increase the variance of the total losses accumulated in

the past, which again leads to a higher regret. The following

counter-example illustrates this difficulty.

Counter-example 3: Consider K = 4 arms and M = 2.

In the first sub-episode of each episode, the loss of each arm

at each time is 0. For all subsequent sub-episodes of each

episode, the loss of each arm at each time is 1. Please see

Fig. 1c for this loss trace in one episode. In the literature, the

standard way to deal with this bias in the amount of feedback

is to divide the observed loss by the probability that the arm

is observed [9], [10], [17]. For each arm, this probability is

pk[u] + (1 − pk[u])
M−1
K−1 , where pk[u] is the probability that

arm k is chosen as the primary arm, and (1 − pk[u])
M−1
K−1 is

the probability that arm k is chosen as the secondary arm in

a sub-episode. With this mechanism, the estimated losses will

be L̃k[u] =
2τ2

pk[u]+(1−pk[u])
M−1
K−1

when k is the primary arm,

L̃k[u] = 0 when k is a secondary arm that is chosen in the

first (v = 1) sub-episode, and L̃k[u] = τ2
pk[u]+(1−pk[u])

M−1
K−1

when k is a secondary arms that is chosen in the subsequent

(v = 2, 3) sub-episodes. Suppose that pk[u] =
1
K is the same

across all arms. Then, the denominator is actually the same

across all arms, but the numerator will still lead to a significant

variance. Indeed. since the primary arm is chosen randomly

with probability pk[u] =
1
K , it is not hard to verify that the

total estimated loss of each arm over an episode will have a

variance of Θ(τ22 ). In contrast, if full feedback was available,

all arms would have a total loss equal to 2τ2 in an episode,

and the variance would have been zero. It is easy to show that,

with this additional Θ(τ22 ) gap in the variance, the regret of

Exp3 [10] is still O(T
2
3 ), which is much larger than O(

√
T ).

Counter-example 3 thus suggests that, instead of dividing

the loss by the probability of observing an arm, we need

some new ways to deal with the above bias issue. Precisely,

in (16), ROW updates the estimated loss by the difference of

the loss of each secondary arm and that of the primary arm.

In addition, the loss difference of the primary arm is simply 0.

Returning to counter-example 3, the new estimated loss will

then be L̃k[u] = 0 for all the arms k ∈ K. Thus, the additional

variance Θ(τ22 ) of the estimated losses has been eliminated,

which is also crucial for attaining the O(
√
T ) regret.

B. Regret Analysis

In Theorem 2 below, we show the upper bound of the regret

attained by ROW. For ease of exposition, we focus on the case

when K−1 is divisible by M−1. (It is not difficult to extend

to the case when K − 1 is not divisible by M − 1. Please see

our technical report [21] for details.)

Theorem 2. Consider bandit learning with switching costs

and full-feedback costs introduced in Sec. II-A. When M ≥ 2,

the regret of ROW can be upper-bounded as follows, for T ≥
448(K−1)2 lnK

5
2+2β1

,

RROW(T ) ≤ 8b1
K − 1

M − 1

√
lnK

√
T + b2, (18)

where b1 =
√

5
2 + 2b3β1, b2 = b3β1 + 1 and b3 =

min {M,K −M}.

In Sec. III when M = 1, the optimal regret is Θ(T
2
3 ) for

bandit learning with switching costs and full-feedback costs. In

sharp contrast, now with M ≥ 2, ROW achieves a significantly

lower regret equals to O(
√
T ). Moreover, ROW never uses full

feedback. Further, as M increases, the regret of ROW can be

further reduced. To the best of our knowledge, this is the first

result in the literature to utilize the flexibility of choosing M ≥
2 arms to improved the regret to O(

√
T ) for bandit learning

with switching costs. Furthermore, using a trivial lower bound

for bandit learning with free full-feedback [12], [17], we can

conclude that the O(
√
T ) regret cannot be further improved.

The rest of this section is devoted to the proof of Theorem 2.

Due to the three new ideas in ROW, new analytical techniques

are needed to capture the evolution of the weights, which are

also of independent interest. In order to relate the loss of

ROW to that of the optimal static loss, our analysis below

is carried out in three steps. First, inside each sub-episode,

we relate the total loss of ROW in each sub-episode to a

log-sum-exp function g2[u, v] of the parameter η2 and the

feedback from the chosen working group. Second, at the end of

each episode, we relate g2[u, v] of all sub-episodes to another
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log-sum-exp function g1[u] of the parameter η1 and the loss

difference L̃ROW
k [u]. Third, across all episodes, we relate g1[u]

to the optimal static loss. Combining these three steps, the total

loss of ROW will then be related to the optimal static loss. In

the following, we let H[u−1] denote the σ-algebra generated

by the observation of ROW from time t = 1 to t = (u−1)τ1.

Let Lk[u, v] ≜
∑tu,v+τ2−2

t=tu,v
lk(t).

1) Inside each sub-episode: We start by relating the ex-

pected loss of ROW inside each sub-episode (u, v) to a

log-sum-exp function g2[u, v] (see Lemma 2). This function

g2[u, v] will then be further related to the variance of the

feedback from the chosen working group k̂
ROW[u, v] in the

sub-episode (see Lemma 3). Recall that in (13), the weights

ŵROW
k (tu,v) in the first time-slots of all sub-episodes are

initialized to be the weights wROW
k [u] at the beginning of the

episode u. Thus, given a same working group, the probabilities

p̂ROW
k (tu,v) are also the same at the beginning of all sub-

episode v in an episode u. We let

p̂ROW
k [u] ≜

wROW
k [u]

∑

k∈k̂ROW[u,v] w
ROW
k [u]

(19)

denote this common probability.

Lemma 2. For each sub-episode (u, v), given the history

H[u− 1] and the chosen working group k̂[u, v], we have

tu,v+τ2−1
∑

t=tu,v

∑

k∈k̂ROW[u,v]

p̂ROW
k (t)lk(t) ≤ g2[u, v] +

1

2
η2τ2 + 1,

(20)

where

g2[u, v] ≜ − 1

η2
ln





∑

k∈k̂ROW[u,v]

p̂ROW
k [u]e−η2Lk[u,v]



 . (21)

On the left-hand-side of (20), the probability p̂ROW
k (t) is

the probability of using arm k as the active arm. Thus, the

left-hand-side of (20) represents the conditional (conditioned

on the working group k̂
ROW[u, v] and history H[u − 1])

expected loss of ROW in sub-episode (u, v). Hence, (20)

upper-bounds the conditional expected loss of ROW by a

log-sum-exp function g2[u, v] and the term 1
2η2τ2 + 1. We

make two important comments. First, the value of g2[u, v] is

approximated dominated by the arm with the smallest loss

Lk[u, v] (whenever the corresponding probability p̂ROW
k [u] is

non-zero). (20) thus confirms that ROW is trying to switch

to the ªbetterº arm in the working group. Second, the gap
1
2η2τ2 is much smaller than the gap 1

2ητ
2
2 incurred by the

episodic version of Exp3 [10]. Note that the above-mentioned

two conclusions precisely capture our ideas 1 and 2, which

together allow ROW to converge quickly to the better arm in

the working group. Please see our technical report [21] for the

complete proof of Lemma 2.

The following lemma then relates g2[u, v] to the expectation

and variance of the feedback from the chosen working group

in the sub-episode, which will be useful when we move to the

second-step of studying the weight updates at the end of each

episode.

Lemma 3. For each sub-episode (u, v), given the history

H[u− 1] and the chosen working group k̂
ROW[u, v], if η2τ2 ≤

ln 2, we have

g2[u, v] ≤ E

[

L[u, v]
∣

∣H[u− 1], k̂ROW[u, v]
]

− η2

8
· Var

(

L[u, v]
∣

∣H[u− 1], k̂ROW[u, v]
)

, (22)

where the expectation is taken with regard to the randomness

in p̂ROW
k [u], i.e.,

E

[

L[u, v]
∣

∣H[u− 1], k̂ROW[u, v]
]

≜
∑

k∈k̂ROW[u,v]

p̂ROW
k [u]Lk[u, v],

Var
(

L[u, v]
∣

∣H[u− 1], k̂ROW[u, v]
)

≜
∑

k∈k̂ROW[u,v]

p̂ROW
k [u]

·
(

Lk[u, v]− E

[

L[u, v]
∣

∣H[u− 1], k̂ROW[u, v]
])2

.

Notice that the expectation and variance on the right-

hand-side of (22) are for the feedback from the working

group k̂
ROW[u, v]. Thus, Lemma 3 shows that the log-sum-exp

function g2[u, v] can be related to the expectation and variance

of the feedback from the chosen working group. Given the

working group k̂
ROW[u, v], Lemma 3 is proved by applying the

Taylor expansion on the e−x function in g2[u, v]. Please see

our technical report [21] for the complete proof of Lemma 3.

2) Relating the loss upper-bound at the end of a sub-

episode to the weights across episodes: Lemma 2 provides

an upper bound on the loss of ROW at the end of each

sub-episode (u, v). Note that this upper bound depends on

η2. On the other hand, at the end of each episode u, we

calculate the weights according to (17). Notice that not only is

L̃ROW
k [u] in (17) different from Lk[u, v] in (21), the parameter

η2 is also different from η1. Thus, we need a way to convert

the loss upper-bound in Lemma 2 for each sub-episode to a

form that depends on the weights calculated by (17). This is

accomplished by Lemma 4 below. Further, this lemma gives a

sufficient condition on how to tune the parameters η2 and η1.

Specifically, notice that the loss difference L̃ROW
k [u] calcu-

lated in (16) is a difference from the loss of the primary arm

kROW
0 [u]. We let g2[u] denote the sum of g2[u, v] for all sub-

episodes v, minus a term that corresponds to the loss of the

primary arm, i.e.,

g2[u] ≜

V
∑

v=1

g2[u, v]−
V
∑

v=1

LkROW
0 [u][u, v]

= − 1

η2

V
∑

v=1

ln





∑

k∈k̂ROW[u,v]

p̂ROW
k [u]e−η2LROW

k [u,v]



 , (23)

where LROW
k [u, v] = Lk[u, v]− LkROW

0 [u][u, v].

Lemma 4. If the parameters η2, τ2, η1 and τ1 satisfy that

η2 ≥ 16

(

K − 1

M − 1

)2

· η1, η2τ2 ≤ ln 2 and η1τ1 ≤ ln 2, (24)

we have

E
k̂ROW[u,1:V ]

[

g2[u]
∣

∣

∣
H[u− 1]

]

≤ E
k̂ROW[u,1:V ]

[

g1[u]
∣

∣

∣H[u− 1]
]

, (25)
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where the expectation is taken with respect to the randomness

in the working groups, and

g1[u] ≜ − 1

η1
ln

(

K
∑

k=1

pROW
k [u]e−η1L̃

ROW
k [u]

)

. (26)

The log-sum-exp function g2[u] on the left-hand-side of (25)

is related to g2[u, v] through (23), which is then related to the

loss of ROW in each sub-episode through (20). The log-sum-

exp function g1[u] on the right-hand-side of (25) is related

to the weights calculated at the end of the episode. Thus,

Lemma 4 relates the loss upper-bound at the end of each sub-

episode to the weights across episodes, and (24) confirms our

conjecture that η2 should be larger than η1.

The proof of Lemma 4 first relates the function g1[u] and

g2[u] to the variances of the working-group feedback and the

loss differences, respectively, and then bounds these variances.

Please see Appendix A for the proof sketch of Lemma 4.

Up to now, by combining (20), (23) and (25) for all sub-

episode v and episode u, we can relate the total loss of ROW to

g1[u] as follows,

U
∑

u=1

E

{

E

[

V
∑

v=1

tu,v+τ2−1
∑

t=tu,v

∑

k∈k̂ROW[u,v]

p̂ROW
k (t)

· lk(t)−
V
∑

v=1

LkROW
0 [u][u, v]

∣

∣

∣H[u− 1]

]}

≤
U
∑

u=1

E
{

E
[

g1[u]
∣

∣H[u− 1]
]}

+
1

2
η2T + V U, (27)

where the outer and inner expectations on both sides are taken

with respect to H[u − 1] and k̂
ROW[u, 1 : V ], respectively. In

the next subsubsection, we show how to relate the first term

on the right-hand-side of (27) to the optimal static loss.

3) Relating the upper-bound of the total loss of ROW to

the optimal static loss: Lemma 5 below relates the sum of

g1[u] on the right-hand-side of (27) to the optimal static loss

of OPT.

Lemma 5. We have the following inequality,

U
∑

u=1

EH[u−1]

{

E
k̂ROW[u,1:V ]

[

g1[u]
∣

∣

∣H[u− 1]
]}

≤ CostOPT(1 : T ) +
lnK

η1

−
U
∑

u=1

EH[u−1]

{

E

[

V
∑

v=1

LkROW
0 [u][u, v]

∣

∣H[u− 1]

]}

. (28)

In (28), the term on the left-hand-side is one of the terms in

the upper bound of the total loss of ROW, i.e., the first term

on the right-hand-side of (27). The first term on the right-

hand-side is the optimal static loss. The second term on the

right-hand-side of (28) can be obtained by following the Exp3

analysis [9]. The third term on the right-hand-side of (28) is

because the loss of the primary arm is subtracted in g2[u] (see

(23)). This term also appears on the left-hand-side of (27),

which will eventually be cancelled. Please see our technical

report [21] for the complete proof of Lemma 5.

4) The final regret: Since ROW only switches the chosen

working group k̂(t) at the boundaries of the sub-episodes, and

the expected number of switching the active arm is at most

ln 2 in each sub-episode, the total switching cost of ROW can

be upper-bounded as follows,

T
∑

t=1

∑

k∈k̂ROW(t)

β11{k/∈k̂ROW(t−1)} ≤ min {M,K −M} · β1

⌈

T

τ2

⌉

.

(29)

Next, since ROW never asks for full feedback, the total full-

feedback cost of ROW is 0. Combining (27), (28) and (29), we

can see that the regret of ROW is upper-bounded as follows,

RROW(T )

≤ lnK

η1
+

1

2
η2T +min {M,K −M} · β1

⌈

T

τ2

⌉

+

⌈

T

τ2

⌉

.

(30)

Then, by choosing






η2 = c1c2√
T
, τ2 =

⌊

ln 2
c1c2

√
T
⌋

,

η1 = c1
c2

√
T
, τ1 =

⌈

K−1
M−1

⌉ ⌊

ln 2
c1c2

√
T
⌋

,
(31)

where c1 =
√

lnK
5
2+min{M,K−M}·2β1

and c2 = 4(K−1)
M−1 , we have

RROW ≤ 8(K − 1)

M − 1

√

5

2
+ min {M,K −M} · 2β1

√
lnK

√
T

+min {M,K −M} · β1 + 1, (32)

for T ≥ 448(K−1)2 lnK
5
2+2β1

. The result of Theorem 2 then follows.

Please see our technical report [21] for the complete proof of

Theorem 2.

V. POWER-OF-2-ARMS FOR A MORE GENERAL CASE

In the model studied in Sec. IV, we assume the switching

cost is only incurred for changing the set k̂(t) of that M

chosen arms, but there is no switching cost when changing

the active arm within this set. Readers may ask whether the

power-of-2-arms improvement attained by the ROW algorithm

is only because there is no switching cost for changing the

active arm. To answer this question, in this section we consider

a more general case where switching costs are also incurred

for changing the active arm k(t) chosen from k̂(t). We will

propose another algorithm that also attains O(
√
T ) regret,

which then confirms that the power-of-2-arms improvement

is precisely due to our intelligent use of 2 or more arms,

regardless of the presence of switching costs for changing the

active arm.

Specifically, in addition to the switching cost β1 for chang-

ing the arm in k̂(t), if the active arm k(t) used at time t is

different from the one used at time t − 1, another switching

cost β3 > 0 will also be incurred. Therefore, the total cost

becomes

Cost(1 : T ) ≜
T
∑

t=1

{

lk(t)(t) + β1

∑

k∈k̂(t)

1{k/∈k̂(t−1)}

β31{k(t) ̸=k(t−1)} + β2z(t)
}

, (33)
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where the third term on the right-hand-side represents the

additional switching cost for changing the active arm k(t).
Note that due to such an additional switching cost, the regret of

ROW from Sec. IV could be linear in the time horizon T . This

is because within each sub-episode, ROW could use any arm

in the chosen working group k̂
ROW(t) as the active arm (please

see Step-4 of Algorithm 2). By doing so, ROW could change

the active arm kROW(t) almost every time, which results in a

total switching cost that is linear in T .

To address this new issue, we present a new algo-

rithm ªSwitching Reduced Randomized Online Learning With

Working Groupsº (SR-ROW), whose total switching cost

can be upper-bounded by O(
√
T ). The difference between

SR-ROW and ROW is in how to choose the active arm

at each time within a sub-episode. Specifically, as in Algo-

rithm 2, SR-ROW follows Step-1 to choose the primary arm

kSR-ROW
0 [u] for each episode u, follows Step-2 to choose the

secondary arms k̂SR-ROW
M−1 [u, v] for each sub-episode (u, v), and

follows Step-3 to initialize the weights ŵSR-ROW
k (tu,v) and

probabilities p̂SR-ROW
k (tu,v). However, differently from Step-4

of Algorithm 2, SR-ROW chooses the active arm kSR-ROW(t)
according to the shrinking-dartboard method in [12]. That is,

at the beginning of the sub-episode (u, v), i.e., at time tu,v ,

SR-ROW chooses the initial active arm kSR-ROW(tu,v) with

probability p̂SR-ROW
k (tu,v). Then, at each time t = tu,v +

1, ..., tu,v + τ2 − 1, in order to reduce the switching costs

for changing the active arm, SR-ROW will reuse the previous

active arm with probability
ŵSR-ROW

kSR-ROW(t−1)
(t)

ŵSR-ROW

kSR-ROW(t−1)
(t−1)

. Only with prob-

ability 1− ŵSR-ROW

kSR-ROW(t−1)
(t)

ŵSR-ROW

kSR-ROW(t−1)
(t−1)

, SR-ROW will change the active

arm, in which case she picks an arm k in k̂
SR-ROW[u, v] as the

active arm kSR-ROW(t) according to the updated probability

p̂SR-ROW
k (t).

Intuitively, this way of switching will significantly lower the

switching costs. Interestingly, using the techniques in [12], we

can show that the probability of choosing a given active arm at

each time is exactly the same as that of Algorithm 2. Thus, the

losses incurred would also be the same. It then only remains

to bound the switching costs due to β3. Note that

ŵSR-ROW
kSR-ROW(t−1)(t)

ŵSR-ROW
kSR-ROW(t−1)

(t− 1)
= e

−η2lkSR-ROW(t−1)(t−1)

≈ 1− η2lkSR-ROW(t−1)(t− 1),

where the approximation is because e−x ≈ 1 − x when x is

small. Then, since η2 = Θ( 1√
T
) and 0 ≤ lkSR-ROW(t−1)(t −

1) ≤ 1, within each sub-episode of length O(
√
T ),

SR-ROW changes the active arm only a constant number of

times on average. Indeed, we can upper-bound this constant by

ln 2. (Please see our technical report [21] for details.) Finally,

by using the same values of parameters τ1, τ2, η1 and η2 in

(31), the regret of SR-ROW can be upper-bounded as follows.

Theorem 3. Consider bandit learning with switching costs

and full-feedback costs. When M ≥ 2 and when there exists

a switching cost β3 for changing the active arm among the

chosen M arms, the regret of SR-ROW (with parameters τ1,

τ2, η1 and η2 in (31)) can be upper-bounded as follows, for

T ≥ 448(K−1)2 lnK
5
2+2β1

,

RSR-ROW(T ) ≤ 8b1
K − 1

M − 1

√
lnK

√
T + b2 + ln 2 · β3

⌈

T

τ2

⌉

,

(34)

where b1 =
√

5
2 + 2b3β1, b2 = b3β1 + 1 and b3 =

min {M,K −M}.

Notice that the only difference between the regret of

SR-ROW in Theorem 3 and the regret of ROW in Theorem 2

is the last term ln 2 · β3

⌈

T
τ2

⌉

, which captures the switching

costs for changing the active arm. Please see our technical

report [21] for the complete proof of Theorem 3.

VI. NUMERICAL RESULTS

In this section, using both a generic setting and a more real-

istic Edge-AI setting, we perform numerical experiments com-

paring the regrets of our algorithms ROW and SR-ROW for

M ≥ 2 (and ROCF for M = 1), and the episodic version of

Exp3 proposed in [10]. (Please see our technical report [21]

for more numerical results for ROW, SR-ROW and ROCF.)

According to [10], the theoretical regret of the episodic version

of Exp3 is Θ(K
1
3T

2
3 ).

A. Regret Comparisons for a Generic Bandit Setting

In Fig. 2 and Fig. 3, we use both the lower-bound trace that

we designed in Sec. III-B and the three counter-example traces

that we designed in Sec. IV-A. We consider K = 4 arms, and

M = 2 for ROW and SR-ROW. (When M increases, the

gap between the regret of ROW/SR-ROW and that of Exp3

will further increase.) Note that the switching-cost coefficients

β’s could be affected by various practical factors, e.g., how

much the service provider and the customer dislike the delay,

service interruption, and/or communication overhead, etc. As

a result, the values of β’s could vary significantly across

different scenarios. Below, guided by the condition on the

relation between β1 and β2 in Theorem 1 (i.e., 3
4Kβ1 v.s.

β2), we focus on two cases: β1 = 1 and β2 = 1 in Fig. 2

(which corresponds to the setting when the user views model

switching as costly as consulting the cloud), and β1 = 0.1 and

β2 = 1 in Fig. 3 (which corresponds to the setting that the user

views model switching to be less costly than consulting the

cloud). We find that our main conclusions below hold across

these different settings and are robust to the β values.

Specifically, we compare how the regret increases with the

time length T . From Fig. 2 and Fig. 3, we can see that for all 4
traces, the regret of ROW (with M = 2) is much smaller than

that of Exp3 (and ROCF). For example, when using counter-

example 3 and T =
√
10×106 in Fig. 2, the regret of Exp3 is

around 2.61×104. In contrast, the regret of ROW is only about

3.22×103, confirming the power of using 2 arms. For M = 1,

the regret of ROCF is also smaller than that of Exp3. This is

because the choice of β1 and β2 here satisfies β2 ≤ 3
4Kβ1. As

we show in (3) and (11), this is the range where costly full-

feedback is helpful for reducing the regret when M = 1. When
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(d) Using counter-example 3.

Fig. 2: Compare ROW, SR-ROW, ROCF and the episodic version of Exp3. (β1 = 1, β2 = 1, synthetic data.)
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Fig. 3: Compare ROW, SR-ROW, ROCF and the episodic version of Exp3. (β1 = 0.1, β2 = 1, synthetic data.)
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Fig. 4: Compare the regrets of ROW, SR-ROW, ROCF and the episodic version of Exp3. (Real-world data.)

β2 increases to values larger than 3
4Kβ1, the gap between the

regret of ROCF and that of Exp3 will diminish (see Fig. 3).

Note that all the above results do not consider the switching

cost for changing the active arm (i.e., β3 = 0). To evaluate

SR-ROW, we further use β3 = 1. In Fig. 2 and Fig. 3, we can

see that the regrets of SR-ROW are close to that of ROW and

are still much smaller than that of Exp3 (and ROCF).

B. Regret Comparisons for a More Realistic Edge-AI Setting

We then consider a more realistic Edge-AI setting, where

an edge server uses various types of ML models to analyze

incoming images. For such tasks, the inference accuracy and

latency have been shown to be two important factors that

affect the performance of Edge AI systems [24]. Specifically,

if the edge server uses a simple ML model with low inference

latency, the performance will be good when the incoming

image is clear and easy to be analyzed (see Fig. 1a in [24] as

an example). However, when the incoming image is obscure

and hard to be classified (see Fig. 1c in [24] as an example),

the accuracy could be very bad. On the other hand, if a more

sophisticated ML model with high inference accuracy is used,

while the accuracy will be better for hard-to-analyze images,

the inference latency will be unnecessarily high for easy-to-

analyze images. Thus, there is a need to adaptively select the

ML models based on the incoming images.

Towards this end, we use the MS COCO dataset [25].

We first train three ML models based on YOLOv7 [26]:

YOLOv7-W6, YOLOv7-E6, and YOLOv7-D6. YOLOv7-W6

is with the worst accuracy but the lowest inference latency,

while YOLOv7-D6 is with the best accuracy but the highest

inference latency. Then, we use these K = 3 models as

the arms in an online bandit-learning problem, and apply

ROW (and SR-ROW) with M = 2. For the feedback lk(t), we

use the sum of the confidence level reported by the ML model

k and its inference latency as the loss, both of which are scaled

back to [0, 1]. These losses are averaged every 10 images and

fed back to the online algorithm. We let the switching cost

and full-feedback cost be β1 = β2 = 1. To evaluate SR-ROW,

we further use β3 = 1. In Fig. 4, we compare how the regret

increases with the time length T . In Fig. 4a, we plot the regrets

for the case when around 80% images are easy to be analyzed,

while Fig. 4b is for the case when around 80% images are

hard to be analyzed. Each incoming image is chosen i.i.d.

between the easy-to-analyze and hard-to-analyze images. From

Fig. 4, we can see that for both of these two traces, the regret

of ROW and SR-ROW with M = 2 is much smaller than

that of Exp3 (and ROCF). The results thus suggest that our
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ROW and SR-ROW algorithms are more efficient than existing

algorithms in balancing inference accuracy, inference latency

and switching cost.

VII. CONCLUSION

In this paper, we investigate adversarial bandit-learning

problems with switching costs and full-feedback costs. First,

when only M = 1 arm is pulled at each time, we provide a

lower bound (and a matching upper bound) of the regret. Our

new bounds show that adding costly full-feedback will not

alter the Θ(T
2
3 ) regret for M = 1, while the dependence on

K could be improved when the full-feedback cost β2 is small.

Second, when M ≥ 2 arms can be chosen at each time, we

provide a novel online learning algorithm ROW that improves

the regret to O(
√
T ) without even using full feedback. Our

result thus reveals that having 2 (or more) arms is surprisingly

as powerful as having free full-feedback, for obtaining a low

regret in bandit-learning problems with switching costs. Our

algorithm ROW and regret analysis involve several new ideas,

e.g., using different weight-decay parameters inside and across

episodes. Our numerical results confirm that the regret of our

algorithm ROW is much smaller than that of the episodic

version of Exp3.

There are several interesting directions of future work. First,

notice that we study the static regret. It would be interesting to

extend our study to the dynamic regret, where the optimal arm

changes in time. Second, ROW assumes the knowledge of the

time length T . It would be useful to extend ROW to the setting

where T is not known in advance. Third, it remains open

whether the benefit of power-of-2-arms holds in contextual

bandits.

REFERENCES

[1] M. Shi, X. Lin, and L. Jiao, ªPower-of-2-arms for bandit learning
with switching costs,º in Proceedings of the Twenty-Third International

Symposium on Theory, Algorithmic Foundations, and Protocol Design

for Mobile Networks and Mobile Computing, 2022, pp. 131±140.

[2] J. Chen and X. Ran, ªDeep learning with edge computing: A review,º
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655±1674, 2019.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ªEdge
intelligence: Paving the last mile of artificial intelligence with edge
computing,º Proceedings of the IEEE, vol. 107, no. 8, pp. 1738±1762,
2019.
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APPENDIX A

SKETCH OF PROOF OF LEMMA 4

Please see our technical report [21] for the complete proof

of Lemma 4. In the following, we sketch the key steps (Step

1 - Step 3 below) for proving Lemma 4, which may also be

of independent interest.

Sketch of proof of Lemma 4:

Step-1: Similar to Lemma 3, we can derive a lower bound

of g1[u] by relating it to the expectation and variance of the

loss differences.

Lemma 6. For each episode u, given the history H[u − 1]
and the chosen working groups k̂

ROW[u, 1 : V ], if η1τ1 ≤ ln 2,

we have

g1[u] ≥ E

[

L̃ROW[u]
∣

∣

∣
H[u− 1], k̂ROW[u, 1 : V ]

]

− η1 · Var
(

L̃ROW[u]
∣

∣

∣H[u− 1], k̂ROW[u, 1 : V ]
)

, (35)



15

where the expectation is taken with regard to the randomness

in pROW
k [u], i.e.,

E

[

L̃ROW[u]
∣

∣

∣H[u− 1], k̂ROW[u, 1 : V ]
]

≜

K
∑

k=1

pROW
k [u]L̃ROW[u],

Var
(

L̃ROW[u]
∣

∣

∣H[u− 1], k̂ROW[u, 1 : V ]
)

≜

K
∑

k=1

pROW
k [u]

·
(

L̃ROW[u]− E

[

L̃ROW[u]
∣

∣

∣H[u− 1], k̂ROW[u, 1 : V ]
])2

.

Please see our technical report [21] for the complete proof

of Lemma 6.

Step-2: Lemma 4 is then proved by mainly comparing the

expectations of (22) and (35) with regard to the randomness in

the working groups. Here, we use the help of a fictitious ªfull

feedbackº system, where we assume that there is an oracle

who knows the losses from all arms in all time-slots during the

episode. Further, this oracle assigns the probability distribution

pROW
k [u] on the arms.

It is easy to show that the expectations of both working-

group feedback and the loss differences are related to

the expectation of the fictitious ªfull feedbackº. Further,

Lemma 7 and Lemma 8 below show that the variances of

both the working-group feedback and loss differences can

also be related to the variance of full feedback, given by

Var (L[u, v]|H[u− 1]) in the lemma below.

Lemma 7. For each sub-episode (u, v), given the history

H[u− 1], we have

E
k̂ROW[u,v]

[

Var
(

L[u, v]
∣

∣k̂
ROW[u, v]

) ∣

∣

∣
H[u− 1]

]

≥ M − 1

K − 1
· Var (L[u, v]|H[u− 1]) , (36)

where

Var (L[u, v]|H[u− 1])

≜

K
∑

k=1

pROW
k [u]

(

L[u, v]−
K
∑

k=1

pROW
k [u]L[u, v]

)2

.

The variance on the left-hand-side of (36) is for the losses

from the feedback in the working group k̂
ROW[u, v]. The

outside expectation is taken over all possible working groups.

The variance on the right-hand-side of (36) is for the fictitious

ªfull feedbackº. Intuitively, if the right-hand-side of (36) is

strictly positive, there must be some difference among the

losses of the arms. Then, even when a random subset of

arms is chosen into the working group, we should still see

some variance. That is the intuition why the left-hand-side of

(36) must also be strictly positive, which is the conclusion in

Lemma 7. Moreover, as M increases, the constant factor M−1
K−1

increases to be closer to 1. This is one of the reasons that the

regret of ROW decreases with M . In sharp contrast, when

M = 1, we have M−1
K−1 = 0. Indeed, in this case, no matter

how large the variance of full feedback is, the variance on the

left-hand-side of (36) will always be equal to 0. This is one

of the reasons for the sharp transition from the O(T
2
3 ) regret

when M = 1 to the O(
√
T ) regret when M ≥ 2. Please see

our technical report [21] for the complete proof of Lemma 7.

Step-3: However, the fictitious ªfull feedbackº is not avail-

able to the online learning algorithm. Hence, Lemma 7 is not

very useful unless we can related the full feedback to the loss

difference that we design in (16). This is exactly the purpose

of Lemma 8 below.

Lemma 8. For each episode u, given the history H[u − 1],
we have

V
∑

v=1

Var (L[u, v]|H[u− 1]) ≥ M − 1

2(K − 1)

· E
k̂ROW[u,1:V ]

[

Var
(

L̃ROW[u]
∣

∣k̂
ROW[u, 1 : V ]

) ∣

∣

∣
H[u− 1]

]

.

(37)

Different from Lemma 7, Lemma 8 focuses on the variance

of the loss differences L̃ROW[u], as in the right-hand-side of

(37). Moreover, the expectation is taken over all possible

sequences of the working groups for the whole episode. Thus,

the variance of full feedback on the left-hand-side of (37) is

also summed over all sub-episodes v. Intuitively, if the right-

hand-side of (37) is strictly positive, there must exist some

difference across the secondary arms when comparing with

the common primary arm. Then, the differences among the

secondary arms cannot all be 0. This means there must be

some variance of the full feedback. This is the intuition why

the left-hand-side of (37) must also be strictly positive, which

is the conclusion in Lemma 8. Similar to that in (36), as M

increases, the constant factor M−1
2(K−1) increases to be closer

to 1. This is another reason that the regret of ROW decreases

with M . In sharp contrast, when M = 1, we have M−1
2(K−1) = 0,

which again implies a sharp transition from M = 1 to M ≥ 2.

By comparing the constant factors in (22) and (36) with that

in (35) and (37), we can see that to obtain (25), η2 needs

to be larger than 16
(

K−1
M−1

)2

· η1. Please see our technical

report [21] for the complete proof of Lemma 8.

Remark 1. Lemma 8 is the result of using our idea 3. In other

words, without our idea 3 for constructing the loss differences

L̃ROW
k [u] in (16), Lemma 8 may not hold. For example, in

the counter-example 3 that we introduced in Sec. IV-A, the

variance of full feedback is 0. Without our idea 3, the variance

of the absolute loss from the feedback in all sub-episodes

will be Θ(τ22 ), which would have made Lemma 8 invalid. In

contrast, with our idea 3, the loss difference is the difference

from the loss of the primary arm, which will be 0 for all

arms. Thus, the variance of the loss differences of ROW in

each episode is 0, which is the same as the variance of full

feedback.

Combining Lemma 3, Lemma 6, Lemma 7, and Lemma 8,

we can then prove Lemma 4.
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