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AbstractÐWhile ensemble methods can tackle concept drifts,
obtaining pretrained models and conducting ensemble learning
upon streamed data impose fundamental challenges, including
the dynamic balance between system overhead and inference ac-
curacy in uncertain system environments, and the interlacement
between desired economic properties and long-term participation.
In this paper, we propose the joint optimization which enables
service providers to obtain models via repetitive auctions from
the model providers and conduct ensemble methods online
in a cost-efficient manner. We design polynomial-time online
algorithms to solve the underlying non-linear mixed-integer social
cost minimization problem, involving bid selection, payment
allocation, model hosting, and ensemble model-weight adaption.
We further rigorously prove the performance guarantees with our
approach, such as the sub-linear dynamic regret for the bidding
cost, the sub-linear dynamic fit for the long-term participation
constraint, the truthfulness and the individual rationality for the
auctions, the upper bound for ensemble inference loss, and the
parameterized-constant competitive ratio for the long-term social
cost. Through extensive trace-driven evaluations under real-
world settings, we have validated the significant advantages of our
approach over multiple baselines and state-of-the-art algorithms.

Index TermsÐEnsemble Learning, Inference, Data Stream,
Cloud Computing, Online Optimization, Auction.

I. INTRODUCTION

IT is very common for cloud services to perform machine

learning inference in real time upon requests from end

users [1], [2]. Often, as time goes, the inference accuracy of

the service provider’s model may vary or even irreversibly

decrease because of concept drifts [3], [4], i.e., the existing

model can no longer infer the best label for the data. One

solution is to retrain or dynamically update the model as

concept drifts are detected. However, for real-time inference

on users’ request streams, this could be infeasible due to

insufficient training data, long delay of training, or prohibitive

computation overhead. In contrast, ensemble methods [5]±

[7] can combine multiple complementary pretrained models,
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Fig. 1: System scenario

including the service provider’s model and those provided by

others (which we can call model providers), to achieve better

accuracy and resilience against concept drifts without detecting

them explicitly, thus providing an intriguing alternative.

In fact, the service provider can engage in model transac-

tions through AI model marketplaces with model providers

[8]±[11]. To incentivize the model providers to contribute

their models, a monetizing mechanism is needed. Some AI

marketplaces adopt direct pricing [12], [13], which can be less

ideal due to the risk of mispricing [14], the lack of market

efficiency, and the inability to adapt to real-time demand and

supply. Auctions can address these disadvantages. In this paper,

we advocate an auction-based approach, where the service

provider can be the auctioneer and purchase models from the

model providers that act as the bidders.

Unfortunately, designing such an auction and control mech-

anism faces multiple challenges, as the service provider has to

optimally operate the system both by assembling the ensemble

and performing inference in the ªfront endº, and by jointly

conducting auctions and managing models in the ªback endº.

The first is how to control the dynamic balance, in an online

manner, between system overhead and inference accuracy

upon users’ data stream as the system operates continuously.

Combining more models to form the ensemble may lead to bet-

ter inference accuracy, but having too many models could incur

excessive model hosting cost. Whether to discard a model

is also tricky as it involves ªtime-coupledº decisions [15]Ð

keeping the model local could save the model downloading

cost from model providers if this model is needed in the future,

but it could cause waste if this model is not needed later. That

is, the models need to be selected and deployed in terms of not

only the incurred cost, but also the contribution to the inference

loss of the ensemble. The unknown and unpredictable time-

varying system environments and concept drifts, as well as the

nonlinearity of both the cost and the inference loss functions,

all escalate the difficulty and the complexity of the problem.

The other challenge is how to design the repetitive auctions

that attain the desired economic properties, including truthful-

ness (i.e., a bidder maximizes its utility by not cheating about
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the bidding price) and individual rationality (i.e., a bidder has

no loss on utility regardless of the auction outcome). The

well-known Vickrey-Clarke-Groves (VCG) auctions [16] often

require exactly solving the underlying social cost problem

which can be intractable in our setting. The service provider

may also desire to incentivize the long-term participation [17]±

[20] of model providers across auctions. Without a sufficient

number of participants, the service provider may struggle to

gather good models; if a model provider rarely wins in the

auctions, it may quit permanently. Consequently, selecting the

winning bids needs to consider not only the current auction but

also existing and future auctions in the long termÐbuying a

bid now could be unnecessary if the future bids end up cheaper

or offer better models; but not buying it now could force us to

buy bids later, even if they turn out to be costly or inferior. This

interlacement between long-term participation and economic

properties has not been typically studied previously.

Existing research is not adequate for addressing the afore-

mentioned challenges. The work in [21]±[26] studies ensemble

methods, but generally neglects the system environment where

such methods are executed. The work in [27]±[32] investigates

ensemble learning specifically in cloud and/or edge environ-

ments, but neither targets an online and data streaming setting

nor accounts for the auction mechanisms. The work on AI

model markets [12], [13], [33]±[36] also falls short, either

overlooking economic interactions or lacking consideration of

ensembles or the joint optimization of system performance.

See Section VII for our more detailed discussions.

In this paper, we model the joint cost and inference structure

of an auction-assisted ensemble-learning service for streamed

data samples. We formulate a social cost minimization prob-

lem over time for the service provider, considering model host-

ing cost, model downloading cost, ensemble inference loss,

payment flows, and the utility of model providers. Our for-

mulation features arbitrarily time-varying inputs, time-coupled

switching-cost terms, and long-term constraints, capturing all

the aforementioned challenges. Our problem is a non-linear

mixed-integer program, and is unsurprisingly NP-hard.

We propose a universal mechanism to select winning bids,

allocate payments, host models, and conduct ensemble learn-

ing, regardless of the types of the models that comprise the

ensemble. To that end, we design a holistic set of polynomial-

time online algorithms that work together. In each auction,

first, given the model hosting decisions, we design the Online

Fractional Algorithm (i.e., Algorithm 1) to make fractional

bid selections based on alternate descent-ascent primal-dual

steps for a reformulation that absorbs the long-term constraint

into the objective by a well-designed proximal term [37],

[38]. Next, we design the Randomized Rounding Algorithm

(i.e., Algorithm 2) to convert such fractional decisions into

more tangible integer bid selections in a randomized manner

without violating the residual constraints. Further, we design

the Payment Allocation Algorithm (i.e., Algorithm 3) to re-

place VCG and calculate payments to the bids based on the

actual fractional decision and bidding price and the envisaged

fractional decisions with alternative bidding prices. Then, we

design the Model Hosting Algorithm (i.e., Algorithm 4) that

ties the repetitive auctions over time and invokes Algorithms

1 and 2 to select and deploy models via comparing in real

time the most recent downloading cost of switching from

previous models to the current models versus the cumulative

hosting cost of retaining the current models since the last

switch operation. Finally, we design the Ensemble Learning

Algorithm (i.e., Algorithm 5) to combine the inference results

of the models from Algorithm 4 as a weighted sum to produce

the joint result for each data sample, while updating the

weights in an exponential manner as data samples arrive [39].

We provide a thorough analysis of our proposed algorithms

by formally proving a series of theorems. We exhibit that the

dynamic regret and the dynamic fit [38], [40] are sub-linear,

i.e., as the total number of time slots grows, the difference

between the time-averaged bidding cost incurred by our online

approach and its time-averaged offline optimum gradually

vanishes, so does the time-averaged violation of the long-

term participation. We show that truthfulness and individual

rationality are met in expectation. We further imply that the

inference loss generated by our ensemble method is upper-

bounded by a constant times that generated by the single best

model out of our selected models. Based on that, we establish

the competitiveness, i.e., the social cost over time incurred by

our online approach is no greater than a constant times the

sum of the offline optimal cost over time plus the cumulative

inference loss of the single best model for each time slot.

Finally, we implement and test a classification service upon

multiple real-world time-lapse data streams [41], [42] and

benchmark datasets [43], [44], with up to 64 model providers

at geographically-distributed clouds worldwide [45], [46] un-

der realistic settings [17], [20], [47], [48]. Our evaluations

reveal the following results: (i) Compared to the baselines

of the Random method, the Greedy method, and the state-

of-the-art-based DTEL+ and DES+ method, our approach

reduces the long-term social cost on average by 70%, 37%,

35%, and 46%, respectively, with the empirical competitive

ratio of 2.1 ∼ 2.7; (ii) Our approach achieves truthfulness

and individual rationality in every auction; (iii) Our approach

incurs the lowest dynamic regret and the lowest dynamic fit,

which only grow slowly with time; (iv) Our approach attains

an inference accuracy of about 2% ∼ 9% higher than DTEL+

and DES+; (v) Most of our algorithms complete in a few

seconds for each auction with the delay-insensitive payment

calculated in less than a minute, meeting the needs in reality.

II. MODEL AND PROBLEM FORMULATION

A. System Modeling

We summarize all our major notations in Table I.

Machine Learning Service: We consider a machine learn-

ing service that continuously conducts inference upon a stream

of data samples submitted by the end users. This machine

learning service can be provisioned and operated by a service

provider in the service provider’s own data center or a public

cloud. The data samples arrive dynamically over a series of

consecutive time slots T = {1, 2, . . . , T}. For the time slot

t ∈ T , we use Mt = {1, 2, . . . ,M t} to index the data samples

that arrive during t. For the data sample m ∈ Mt, we represent

it as {atm, btm}, where atm refers to its feature values and btm
refers to its ground-truth label.
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TABLE I: NOTATIONS

Input Description

T Set of time slots

N Set of model providers

Mt Set of data samples at time slot t

at
m Feature of data sample m at t

btm Ground-truth label of data sample m at t

ut
n Cost of downloading model n at t

vt
n Cost of hosting model n at t

et Cost of hosting the service provider’s own model at t

∆t
n Indicator of whether or not model n at t is the same as that at t − 1

W Minimal total number of models hosted per time slot

ht
n(·) Decision function of model n at t

ht(·) Decision function of the service provider’s own model at t

ctn Bidding price of bid n at t

Qt Service provider’s budget for bid procurement at t

ϕn Lower bound for cumulative participation of model provider n

Decision Description

xt
n Whether or not model n wins the auction at t

yt
n Whether or not model n is hosted at t

zt Whether or not the service provider’s own model is hosted at t

αt
n,m Weight of model n for performing inference for data sample m at t

βt
m Weight of the service provider’s own model for performing inference for

the data sample m at t

pt
n Payment to bid n at t

Models and Costs: Besides its own model, the service

provider can purchase models from the model providers,

denoted as N = {1, 2, . . . , N}, via the auction market as

elaborated below and then download the purchased models for

the local deployment. We consider each model provider offers

one model; a model provider that offers multiple models can

be treated as multiple ªvirtualº model providers. We use utn to

denote the cost (e.g., traffic, delay) of downloading the model

from the model provider n ∈ N , i.e., the model n, at the time

slot t, and use vtn to denote the cost (e.g., resource, energy

consumption) of hosting the model n at the service provider’s

facility at t. A model provider may offer different models as

time goes, so we use ∆t
n ∈ {1, 0} to imply whether or not

the model n at t stays the same as at t− 1. We also use et to

denote the cost of hosting the service provider’s own model at

t. Without loss of generality, for the ensemble learning to be

described next, we envisage that the service provider wants to

host a minimum number W ≥ 1 of models at any t, where W
is set based on the needs and capacity of the service provider.

Model Auctions: The service provider acts as the auctioneer,

and the model providers act as the bidders. At each time slot

t, the auctioneer conducts an auction, as shown in Fig. 2:

• Step 1: Each bidder n submits a bid in the format of

{ctn, htn(·),∆t
n}. ctn is the bidding price, i.e., the amount

of money the bid wants to charge for selling the offered

model; htn(·) is the decision function of the offered

model; and ∆t
n has already been explained in the above.

• Step 2: Collecting all the bids, the auctioneer decides the

winning bids, the payment ptn to be made to each winning

bid n (note that ptn does not necessarily equals ctn), and

notifies the bidders of the auction outcome.

• Step 3: The auctioneer downloads the models from the

winning bidder’s facilities if the same model was not

previously downloaded or if the model provider offers

a different model compared to the last time the model

was downloaded from this model provider.

• Step 4: The auctioneer sends the payment to each winning

bidder.

Step1: Collecting bids

Step2: Notifying auction outcome 

Step3: Downloading models

Data 

samples
 Inference 

results

Step4: Making payments

Data stream

Model market Cloud ensemble learning

Fig. 2: System workflow in a single time slot
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④

Fig. 3: Ensemble learning for a single data sample

To decide the winning bids, the auctioneer needs to solve

the social cost minimization problem, which will be described

next. For the auction at t, the auctioneer has the budget

Qt ≥ 0, indicating the maximum number of models that can

be purchased. To incentivize the long-term participation of

model providers, we use ϕn ∈ [0, 1] to imply the participation

threshold [17], [18]. That is, across all the T auctions, each

model provider n should win for no less than T · ϕn times;

otherwise, we consider that the model provider n may quit the

marketplace permanently. Step 4 may appear before Step 3,

depending on the agreement in the market.

Ensemble Learning: At the time slot t, after deploying

the models, the machine learning service employs ensemble

learning to perform inference sequentially upon the data

samples Mt by combining the inference results of different

models. This workflow is as follows, shown in Fig. 3.

• Step 1: The data sample m ∈ Mt from an end user

arrives with its feature atm. The machine learning service

uses each purchased model n and its own model, whose

decision functions are htn(·) and ht(·), respectively, to

make inference results htn(a
t
m) and ht(atm).

• Step 2: The joint inference result is then produced as

b̂tm =
∑

n α
t
n,mh

t
n(a

t
m) + βt

mh
t(atm), where αt

n,m is the

weight for the purchased model n upon the data sample

m and βt
m is the weight for the service provider’s own

model upon the data sample m. b̂tm is further sent back

to the corresponding end user.

• Step 3: The ground-truth label btm arrives from the same

end user.

• Step 4: The machine learning service updates the weights

for all the models for the next data sample m+ 1.

The aforementioned process of conducting the inference

first and receiving the ground truth afterward can capture

many real-world applications such as ads recommendation

systems [49], [50] and keyboard input methods [51]. Without

loss of generality, we consider the squared loss function

l(·, ·). Thus, we can denote the total cumulative loss in-

curred upon the entire data stream as
∑

t

∑
m l(b̂tm, b

t
m) =∑

t

∑
m ((

∑
n α

t
n,mh

t
n(a

t
m) + βt

mh
t(atm))− btm)

2
.

Control Variables: The service provider needs to make the

following control decisions. We use xtn ∈ {1, 0} to denote
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whether or not the model n wins the auction at the time slot

t. We use ytn ∈ {1, 0} to denote whether or not the model n
is hosted and deployed by the machine learning service at the

time slot t. We use zt ∈ {1, 0} to denote whether or not the

machine learning service hosts and deploys its own model at

the time slot t. We use αt
n,m ∈ [0, 1] to denote the weight of

the purchased model n for performing inference for the data

sample m at the time slot t. We use βt
m ∈ [0, 1] to denote the

weight of the service provider’s own model for performing

inference for the data sample m at the time slot t. We also

use ptn ≥ 0 to denote the payment made to the model provider

n at the time slot t.

Cost of Auctioneer: The cost incurred at the machine

learning service at t has the following components: (i) Cost

of hosting models
∑

n v
t
ny

t
n + etzt; (ii) Cost of download-

ing models
∑

n(∆
t
nu

t
n[y

t
n − yt−1

n ]
+
+ utny

t
n(1−∆t

n)), where

[·]+ = max{·, 0}; (iii) Payment made to bidders
∑

n x
t
np

t
n.

Cost of Bidders: The cost incurred at the model providers

at t refers to the cost of training or producing the model (i.e.,

bidding price) determined by each model provider, minus any

payment received from the service provider:
∑

n x
t
n (c

t
n − ptn).

B. Problem Formulation and Algorithmic Challenges

Social Cost Minimization: The social cost refers to the

sum of the cost of the service provider and the cost of the

model providers over time, plus the cumulative inference loss

upon the entire data stream. We formulate the social cost

minimization problem P0 as follows. Note that the payment

terms cancel one another, but the payments still need to be

determined later to satisfy the desired economic properties.

P0 : min
∑

t

∑
nx

t
nc

t
n +

∑
t

∑
n∆

t
nu

t
n

[
ytn − yt−1

n

]+

+
∑

t

∑
ny

t
n

(
vtn + utn

(
1−∆t

n

))
+
∑

te
tzt

+
∑

t

∑
m

((∑
nα

t
n,mh

t
n(a

t
m) + βt

mh
t(atm)

)
− btm

)2
,

(1)

s.t.
∑

ny
t
n + zt ≥W, ∀t ∈ T , (1a)

∑
nx

t
n ≤ Qt, ∀t ∈ T , (1b)

∑
nα

t
n,m + βt

m = 1, ∀m ∈ Mt, ∀t ∈ T , (1c)

αt
n,m ≤ ytn, ∀n ∈ N , ∀m ∈ Mt, ∀t ∈ T , (1d)

βt
m ≤ zt, ∀m ∈ Mt, ∀t ∈ T , (1e)

xtn ≥ ytn, ∀n ∈ N , ∀t ∈ T , (1f)
1
T

∑
t x

t
n ≥ ϕn, ∀n ∈ N , (1g)

var. xtn, y
t
n, z

t ∈ {0, 1} , αt
n,m, β

t
m ∈ [0, 1] ,

∀n ∈ N , ∀m ∈ Mt, ∀t ∈ T .

The objective (1) minimizes the social cost. Constraint (1a)

ensures the minimum number of models for ensemble learning.

Constraint (1b) enforces the purchase budget. Constraint (1c)

normalizes the weights, without loss of generality. Constraint

(1d) and (1e) ensure that the weight can be non-zero only if the

corresponding model is hosted. Constraint (1f) ensures that a

model can be hosted only if the corresponding bid wins in the

auction. Constraint (1g) ensures the long-term participation.

The domains for the decision variables are specified finally.

Our Mechanism

for t = 1 to T do

▷ Model Hosting and Winning-Bid Selection:

Invoke Algorithm 4 to purchase and host models, which

invokes Algorithm 1 and Algorithm 2;

▷ Ensemble Learning:

Invoke Algorithm 5 to obtain weights for the models and

conduct inference upon the data stream;

▷ Payment Allocation:

Invoke Algorithm 3 to calculate payments to the bids;

switch 

condition

Alg. 4

solve

set

Alg. 2

Alg. 5

relax

Alg. 3

Alg. 1
<latexit sha1_base64="IieAEknF+zuTb06aGcpZovYyjZ8=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBahqzKjaF0W3bisYB/QTksmzbShmcyQZJQy9D8EcaGIW7/DrTvRjzHTdqHVA4HDOfdyT44Xcaa0bX9YmaXlldW17HpuY3Nreye/u9dQYSwJrZOQh7LlYUU5E7Sumea0FUmKA4/Tpje6SP3mDZWKheJajyPqBnggmM8I1kbqdgKsh56X1CZd3Tvu5Yt22Z4C/SXOnBSrhdLXZ+XtvtbLv3f6IYkDKjThWKm2Y0faTbDUjHA6yXViRSNMRnhA24YKHFDlJtPUE3RolD7yQ2me0Giq/txIcKDUOPDMZJpSLXqp+J/XjrV/5iZMRLGmgswO+TFHOkRpBajPJCWajw3BRDKTFZEhlphoU1TOlOAsfvkvaRyVndPyyZVp4xxmyMIBFKAEDlSgCpdQgzoQkHAHj/Bk3VoP1rP1MhvNWPOdffgF6/UbrYKWXg==</latexit>

P
t

3

Fig. 4: Structure of our proposed approach

Algorithmic Challenges: Solving the problem P0 online

is non-trivial due to multiple fundamental challenges. First,

the switching cost term
∑

t

∑
n ∆

t
nu

t
n[y

t
n − yt−1

n ]
+

couples

every time slot t − 1 and its next time slot t. At t − 1, as

we have no idea whether we will want to host the model

at t, it is difficult to decide yt−1 to optimize the switching

cost between t − 1 and t. Second, the long-term constraint

of participation
∑

t x
t
n ≥ ∑

t ϕn needs to be considered

carefully. Determining xt at the current time slot t affects

not only the cost at t but also the determination of xt for

future t, in order to satisfy this constraint. Third, our problem

is nonlinear and NP-hard. If we ignore all the terms related

to x, z, α, β and the switching cost, our problem could then

become the minimum-cost knapsack problem, which is known

to be NP-hard. Solving an NP-hard problem on the fly as the

inputs gradually reveal themselves can be more challenging.

Fourth, we need to decide each winner’s payment to satisfy the

economic properties of truthfulness and individual rationality,

as it is intertwined with the previous three challenges.

Algorithms Roadmap: Our mechanism design incorporates

a set of polynomial-time online algorithms to overcome the

aforementioned challenges, as shown in Fig. 4.

Section III describes our Algorithms 1, 2, and 3. Algorithm

1 outputs the fractional bid-selection decisions while accom-

modating the long-term constraint, and Algorithm 2 converts

such fractional decisions into integers. Algorithm 3 further

determines the payment for each bid. In this section, we define

and prove the dynamic regret and the dynamic fitness with

Algorithms 1 and 2, and also define and prove the truthfulness

and the individual rationality with Algorithm 3.

Section IV describes our Algorithms 4 and 5. Algorithm 4

makes dynamic trade-offs between switching to a new decision

and keeping the previous decision regarding model hosting,

while actually invoking Algorithms 1 and 2 for bid selections.

Algorithm 5 updates the weights for all the deployed models

while conducting ensemble learning upon the data stream.

In this section, we prove the competitive ratio of our entire

approach, and also prove the loss bound of ensemble learning.
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III. BID SELECTION AND PAYMENT ALLOCATION

A. Algorithm 1: Selecting Fractional Bids

We note that if yt is given (which will be further described

in Section IV-A), then we can actually extract the following

problem P1 from the original problem P0:

P1 : min
∑

t

∑
nx

t
nc

t
n, (2)

s.t. xtn ≥ ytn, ∀n ∈ N , t ∈ T , (2a)
∑

nx
t
n ≤ Qt, ∀t ∈ T , (2b)

1
T

∑
t x

t
n ≥ ϕn,∀n ∈ N , (2c)

var. xtn ∈ {0, 1} , ∀n ∈ N , ∀t ∈ T .
For a concise presentation, we denote the objective function of

P1 as f t(xt) =
∑

n x
t
nc

t
n. We also denote gtn = ϕn−xtn, ∀n ∈

N ; gt(xt) = [gt1, . . . , g
t
N ]; htn = xtn − ytn, ∀n ∈ N ; ht(xt) =

[ht1, . . . , h
t
N ]; and dt(xt) =

∑
n x

t
n−Qt. We can further relax

the bid-selection control variables to the real domain, and thus

transform P1 to a linear program. That is,

P2 : min
∑

tf
t(xt), (3)

s.t. ht(xt) ⪰ 0, (3a)

dt(xt) ≤ 0, (3b)
∑

tg
t(xt) ⪯ 0, (3c)

var. xt ∈ X = {xt|xtn ∈ [0, 1], ∀n ∈ N , ∀t ∈ T }.
Solving the above problem P2 is equivalent to solving its min-

max version as follows:

min
x

max
λ

∑
tLt(xt,λt) =

∑
tf

t(xt) +
∑

tλ
tgt(xt), (4)

s.t. ht(xt) ⪰ 0, dt(xt) ≤ 0,xt ∈ X ,

where λt is the Lagrange multiplier at t, and the long-term

constraint (3c) has been absorbed into the objective so that we

do not have to worry about it at this point.

Based on (4), we can now solve P2 on the fly at each t+1
by a standard dual ascent step to update the dual variable λt+1

as in (5), and a modified descent step to minimize Lt(x,λt+1)
and obtain the fractional solution x̃

t+1
as in (6).

λt+1 = [λt + η∇λLt(x̃t,λt)]+, (5)

where η > 0 is the step size; ∇λLt(x̃t,λt) is the gradient

of Lt(x̃t,λ) given λ = λt; and x̃
t

is the fractional solution

previously solved at t.

min∇f t(x̃t)(x− x̃
t) + λt+1gt(x) + ∥x−x̃

t∥
2

2γ , (6)

s.t. ht(x) ⪰ 0, dt(x) ≤ 0,x ∈ X ,

where γ is a predefined constant and ∇f t(x̃t) is the gradient

of f t(x) at x = x̃
t
. This can be called a Modified Online

Saddle-Point (MOSP) method [38]. MOSP differs from Online

Mirror Descent (OMD), since standard OMD does not involve

primal-dual updates [52], [53], but primal-dual-related OMD

and its variants do not often capture either the constraint

violation or the long-term time-varying constraints [54]±[60].

MOSP also relates to constrained online learning, as the latter

focuses on the long-term time-invariant constraints [61]±[64]

or the static regret [65]±[68].

Algorithm 1: Online Fractional Algorithm

Input: Fractional solution x̃
t
, dual solution λt, and yt

Output: Fractional solution x̃
t+1

1 Initial: λ1 = 0, η > 0

2 Calculate λt+1 based on (5);

3 Calculate x̃
t+1

by solving the problem (6) optimally;

Algorithm 2: Randomized Rounding Algorithm

Input: Fractions [x̃t1, . . . , x̃
t
N ]

Output: Integers [x̄t1, . . . , x̄
t
N ]

1 ▷ Fractions scaling

2 Denote W̃
t
= [x̃t1, . . . , x̃

t
N ], ε = 1⊤W̃

t
;

3 ω1 = ⌈ε⌉
ε

, ω2 = ⌊ε⌋
ε

;

4 X̃′
t

={
[ω1 · x̃t1, . . . , ω1 · x̃tN ] with probability ε− ⌊ε⌋
[ω2 · x̃t1, . . . , ω2 · x̃tN ] with probability ⌈ε⌉ − ε

5 Define N ′ = N\{n|x̃′tn ∈ {0, 1}};

6 ▷ Fractions rounding

7 while N ′ ̸= ∅ do

8 Select n1, n2 ∈ N ′, n1 ̸= n2;

9 φ1 = min{1− x̃′
t

n1
, x̃′

t

n2
}, φ2 = min{1− x̃′

t

n2
, x̃′

t

n1
};

10 (x̃′′
t

n1
,x̃′′

t

n2
) =



(x̃′

t

n1
+ φ1, x̃′

t

n2
− φ1) with probability

φ2

φ1+φ2

(x̃′
t

n1
− φ2, x̃′

t

n2
+ φ2) with probability

φ1

φ1+φ2

11 if x̃′′
t

n1
∈ {0, 1} then x̄tn1

= x̃′′
t

n1
,N ′ = N ′\{n1};

12 else set x̃′
t

n1
= x̃′′

t

n1
;

13 if x̃′′
t

n2
∈ {0, 1} then x̄tn2

= x̃′′
t

n2
,N ′ = N ′\{n2};

14 else set x̃′
t

n2
= x̃′′

t

n2
;

Algorithm 1 follows exactly the above idea. Through such

alternate descent-ascent steps, we solve for xt+1 and λt+1

at each t + 1 using only the inputs that have been known

before t + 1 rather than the unknowable future information

beyond (and including) t + 1. Lt(x,λt+1) is approximated

by ∇f t(x̃t)(x− x̃
t) + λt+1gt(x), and 1

2γ ∥x− x̃
t∥2 is a

regularization and proximal term. The problem (6) is solvable

using standard convex optimization solvers which can find the

ν-accurate optimal solution in O(N2 log(1/ν)) time [69] via

the interior-point method, for example.

B. Algorithm 2: Converting Fractional Bids to Integral Bids

Algorithm 2 converts the fractional bid-selection decisions

from Algorithm 1 into integers through a randomized rounding

process without violating the constraints (2a) and (2b) during

rounding while ensuring the expectation of each integer after

rounding equals the corresponding fraction before rounding.

Such expectation preservation is important for Algorithm 3.

Fractions scaling as in Lines 2∼5 adjusts the fractions and

ensures that the sum of the fractions after adjusting equals an

integer. In Line 4, after adjusting, each column of W̃
t

either

increases by multiplying ω1 > 1 or decreases by multiplying
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ω2 < 1. Thus, we have E[X̃′
t

] = ⌈ε⌉
ε
W̃

t · (ε−⌊ε⌋)+ ⌊ε⌋
ε
W̃

t ·
(⌈ε⌉ − ε) = (⌈ε⌉ − ⌊ε⌋)W̃t

= W̃
t
. We should mention that

the sum of x̃tn increases to at most ⌈ε⌉, and Qt is an integer,

so (2b) still holds after adjusting; and (2a) always holds.

Fractions rounding as in Lines 7∼14 iteratively selects a pair

of fractions and converts at least one of them into an integer

in each iteration. Since the sum of all columns is an integer

beforehand due to the previous step, it can be guaranteed that

X̃′
t

as a vector only contains 0 and 1 after the loop. In Line 10,

the sum is preserved, because x̃′′
t

n1
+ x̃′′

t

n2
= (x̃′

t

n1
+ φ1) +

(x̃′
t

n2
− φ1) = x̃′

t

n1
+ x̃′

t

n2
, for example. Also, the expectation

is preserved. That is, for every n, for the first case in Line

10, we have E(x̃′′
t

n) = (ε − ⌊ε⌋) φ2

φ1+φ2
(ω1x̃

t
n + φ1) + (ε −

⌊ε⌋) φ1

φ1+φ2
(ω1x̃

t
n−φ2)+(⌈ε⌉−ε) φ2

φ1+φ2
(ω2x̃

t
n+φ1)+(⌈ε⌉−

ε) φ1

φ1+φ2
(ω2x̃

t
n−φ2) = x̃tn; and it is analogous for the second

case. We note that Lines 9 and 10 guarantee that in each

iteration of the loop at least one fraction will be rounded to

either 0 or 1. This fractions rounding phase borrows the idea of

dependent rounding [70]. The time complexity of Algorithm

2 is O(N).

C. Algorithm 3: Allocating Payment

Algorithm 3 calculates the payments to the winning bids

output by Algorithm 2. Following the sufficient and necessary

conditions for a randomized auction to be both truthful and

individually rational [71], which will be formally defined in

Section III-E, we use Line 2 to calculate the payment to the

winning bids. Our auction at each time slot t has become a

randomized auction due to Algorithm 2. We note that the

fractional solution x̃tn can be considered as a function of ctn
and ct−n, where the former is the bidding price reported by

the bid n and the latter is what is reported by all the other

bids, because the value of x̃tn is calculated by Algorithm 1

using ctn and ct−n as the inputs. In other words, Algorithm 1

can be considered as the mapping from ctn and ct−n to x̃tn.

In a function format, we can just write x̃tn(c
t
n, c

t
−n). In Line

2 of Algorithm 3, to calculate the integral, we need to vary

the value of ctn, simply denoted as c here, keep ct−n, and

invoke Algorithm 1 to calculate the corresponding x̃tn. The

integration interval’s upper limit χt
n needs to be set to satisfy

the requirements in Theorem 2 which will be stated later.

Specifically, we need to find out the value of χt
n for n at t,

such that
∫ χt

n

0
x̃tn(c, c

t
−n)dc < ∞ and

∫∞

χt
n

x̃tn(c, c
t
−n)dc = 0.

Toward that end, we focus on the problem (6), whose objective

function is as follows, where xt+1
n , ∀n are the decision

variables and λt+1
n , ∀n come from (5):

∑
n

(
ctn(x

t+1
n − x̃tn) + λt+1

n (ϕn − 2xt+1
n + yt+1

n ) +
(xt+1

n −x̃t
n)

2

2γ

)
.

Note that this is a summation of a series of quadratic functions.

For each n, we desire that, in the interval [0, 1], its optimal

xt+1
n is 0. From the geometric image, we know that this

can only be achieved when the vertical symmetry axis of the

quadratic function falls on the non-positive half of the horizon-

tal real axis. That is, we require x̃tn − γctn +2γλt+1
n ≤ 0, i.e.,

ctn ≥ x̃t
n

γ
+ 2λt+1

n . Then we conclude that χt
n =

x̃t
n

γ
+ 2λt+1

n .

Algorithm 3: Payment Allocation Algorithm

Input: [x̄t1, . . . , x̄
t
N ]

Output: Payment ptn, ∀n
1 for n, where x̄tn = 1 do

2 Set ptn = ctnx̃
t
n(c

t
n, c

t
−n) +

∫ χt
n

ctn
x̃tn(c, c

t
−n)dc,

where χt
n =

x̃t
n

γ
+ 2λt+1

n ;

3 for n, where x̄tn = 0 do

4 Set ptn = 0;

The time complexity of Algorithm 3 is O(N3i log(1/ν)),
where i is the number of segments when dividing the range

of χt
n − ctn for calculating the integral numerically.

D. Regret and Fit Analysis

We define and adopt the dynamic regret and the dynamic fit

as the performance metrics. We prove that the dynamic regret

and the dynamic fit of our algorithms grow only sub-linearly

along with the length of the entire time horizon.

Definition 1 (Dynamic Regret and Dynamic Fit) The dy-

namic regret and the dynamic fit for the problem P1 are defined

as follows, respectively:

RegT := E[
∑T

t=1f
t(x̄t)]−∑T

t=1f
t(xt∗),

FitT := ∥[E[
∑T

t=1g
t(x̄t)]]+∥,

where for each t, x̄t is the output of Algorithm 2 as described

previously; xt∗ ∈ argminxt∈X tf t(xt); X t := {x|ht(x) ⪰
0, dt(x) ≤ 0,gt(x) ⪯ 0;xtn ∈ {0, 1}, ∀n}.

While the dynamic regret captures the difference between

the objective value incurred by our online solution and the sum

of the optimal objective value at each time slot, the dynamic

fit reflects the violation of Constraint (2c). Recall that (2c) was

absorbed into the objective in Algorithm 1; so it is important

to quantify the violation of this constraint. We actually have

the following result:

Theorem 1 The dynamic regret and the dynamic fit satisfy

RegT ≤ O(T
2
3 ) and FitT ≤ O(T

2
3 ).

Proof. See Appendix A in our supplementary material. □

Theorem 1 relies on some common assumptions, including

the requirement that the variation in the environment is sub-

linear, i.e., the cumulative variations of the per-time-slot min-

imizers and of the per-time-slot constraints grow sub-linearly

with time, respectively. Note that the supplementary material

is a separate document along with this paper.

E. Economic Properties Analysis

We define utility, based on which we further define truthful-

ness and individual rationality. We prove that our randomized

auction mechanism satisfies both of these economic properties.

Definition 2 (Utility) The utility of the bid n at time t is

Un(c
t
n, c

t
−n) =





ptn(ĉ
t
n, ĉ

t
−n)− ctnE(x̄tn(ĉ

t
n, ĉ

t
−n)),

if x̄tn = 1
0 , otherwise
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Algorithm 4: Model Hosting Algorithm

Output: ȳt, z̄t

1 if t = 1 then

2 Initialize t̂ = 1, ȳ0;

3 Obtain the optimal solution ŷ
1
, z̄1 to P

1
3;

4 Given ȳ1 = ŷ
1
, obtain x̄1 by Algorithms 1 and 2;

5 else

6 if k · C t̂
SC(ȳ

t̂, ȳt̂−1) ≤ ∑t−1
τ=t̂

Cτ
−SC(x̄

τ , ȳτ , z̄τ )
then

7 Obtain the optimal solution ŷ
t
, z̄t to P

t
3;

8 Given ȳt = ŷ
t
, get x̄t by Algorithms 1 and 2;

9 if ȳt ̸= ȳt−1 then

10 t̂ = t;

11 if t̂ < t then

12 ȳt = ȳt−1;

13 Given ȳt, obtain x̄t by Algorithms 1 and 2

and obtain z̄t by solving P
t
3;

where ĉtn is the bidding price submitted by the bid n; ĉ
t
−n

denotes the bidding prices of all the other bids except the bid

n; and ctn is the true cost of the bid n.

Definition 3 (Truthfulness) A randomized auction is truthful

in expectation if every bid n maximizes its expected utility by

bidding its true cost, i.e., U t
n(c

t
n, ĉ

t
−n) ≥ U t

n(ĉ
t
n, ĉ

t
−n).

Definition 4 (Individual Rationality) A randomized auction

is individually rational in expectation if every bid n always

achieves a non-negative utility, i.e., U t
n(ĉ

t
n, ĉ

t
−n) ≥ 0.

Theorem 2 A randomized auction is truthful and individually

rational in expectation if and only if the following conditions

are met [71]: (i) E(x̄tn) is monotonically non-increasing in

ctn, ∀n; (ii)
∫∞

0
E(x̄tn)dc <∞, ∀n; (iii) the payment is in the

form of ptn = ctnE(x̄tn(c
t
n, c

t
−n)) +

∫∞

ctn
E(x̄tn(c, c

t
−n))dc, ∀n.

Our randomized auction mechanism satisfies these conditions.

Proof. See Appendix B in our supplementary material. □

The two economic properties are important because truthful-

ness encourages the bidder to report its true cost as the bidding

price, and individual rationality guarantees no utility loss for

the bidder regardless of the auction outcome. We note that

Definitions 2∼4 and Theorem 2 only deal with E(x̄tn); yet,

via Algorithms 1 and 2, we are able to establish E(x̄tn) = x̃tn
and further prove that the conditions as required in Theorem

2 can be met by using E(x̄tn) = x̃tn. Following Theorem 2,

we can design Algorithm 3.

IV. MODEL HOSTING AND ENSEMBLE LEARNING

A. Algorithm 4: Hosting Models via Lazy Switch

Algorithm 4 neglects the inference loss tentatively and

dynamically determines the changing set of the models to host

at the service provider’s facility as time goes. Our idea is to

keep hosting the current set of models until the cumulative

model hosting cost exceeds a pre-specified constant times the

most recent switching cost of switching from a previous set

of models to the current set of models. To determine the set

Algorithm 5: Ensemble Learning Algorithm

Input: ȳt, z̄t, data samples Mt, step size µt
m, ∀m

Output: Inferred labels b̂tm, ∀m
1 Initialize weight parameters: ξtn,1 = ȳtn, ψt

1 = z̄t

2 for m = 1 to M t do

3 ▷ Weights update

4 for n = 1 to N do

5 αt
n,m =




ξtn,m/(

∑
n ξ

t
n,m + ψt

m), ȳtn = 1

0, ȳtn = 0

6 βt
m =




ψt
m/(

∑
n ξ

t
n,m + ψt

m), z̄t = 1

0, z̄t = 0

7 ▷ Label inference

8 b̂tm =
∑

n α
t
n,mh

t
n(a

t
m) + βt

mh
t(atm);

9 ▷ Weight parameters update

10 receive the ground-truth label btm;

11 for n = 1 to N do

12 ξtn,m+1 = ξtn,m exp{−µt
ml(h

t
n(a

t
m), btm)};

13 ψt
m+1 = ψt

m exp{−µt
ml(h

t(atm), btm)};

of models that we would want to potentially switch to, we use

P
t
3 at each t, which is extracted from our original problem P0.

P
t
3 : min

∑
ny

t
n(v

t
n + utn(1−∆t

n)) + etzt, (7)

s.t.
∑

ny
t
n ≤ Qt, (7a)

∑
ny

t
n + zt ≥W, (7b)

var. ytn, z
t ∈ {0, 1} , ∀n ∈ N .

The coefficient matrix of the constraints of P
t
3 is totally

unimodular [72]. Therefore, we can solve P
t
3 with its decision

variables in [0, 1] via any standard linear program solver, and

the optimal solution we obtain will be automatically in {0, 1}.

Algorithm 4 adopts the above idea in Line 6, where k is

the pre-specified parameter. We also define Ct
SC(y

t,yt−1) =∑
n ∆

t
nu

t
n[y

t
n − yt−1

n ]+ and Ct
−SC(x

t,yt, zt) =
∑

n x
t
nc

t
n +∑

n y
t
n(v

t
n + utn(1−∆t

n)) + etzt. t̂ records the most recent

time slot where a switch operation occurs. In Line 7, we solve

P
t
3 to obtain the new hosting decisions. In Line 8, we invoke

Algorithms 1 and 2 to get the other control decisions. Lines

9∼10 decide whether a model switch operation occurs. In case

of no model switch, then we are in Lines 11∼13 and keep

hosting the existing set of models that are being hosted. We

still need to update the other control decisions as the inputs

could be time-varying. The time complexity of Algorithm 4

is O(T ·N2 log(1/ν)), based on our previous analysis of the

time complexities of Algorithms 1 and 2.

Our motivation for Algorithm 4 is to balance the cumulative

switching cost
∑

t C
t
SC and the cumulative non-switching cost∑

t C
t
−SC , and control this balance by k. We want to inten-

tionally establish the relationship of
∑

t C
t
SC ≤ 1

k

∑
t C

t
−SC ;

that is,
∑

t C
t
SC+

∑
t C

t
−SC ≤ (1 + 1

k
)
∑

t C
t
−SC . We connect

the total cost to the non-switching cost only, and thus remove

the concern on the switching cost which used to be hard to

manage. Hereafter, we will further connect the non-switching

cost to the offline optimum and prove the competitive ratio,

as elaborated in our competitive analysis later.



8

B. Algorithm 5: Hedge-Based Ensemble Learning

As the models are selected and specified by Algorithm 4,

the key idea of Algorithm 5 is, for each given data sample,

using each model to conduct inference and then combining

these inference results as a weighted sum to produce the joint,

final inference result that will be returned to the end user.

Specifically, we adopt the Hedge algorithm [39] to update the

weights in an exponential manner based on the loss between

the inferred label of each model and the ground-truth label.

Lines 4∼6 conduct weight normalization. Line 8 produces

the joint inference result. Lines 11∼13 are the Hedge steps,

preparing for the next data sample in the stream. The time

complexity of Algorithm 5 is O(NM t), where the loops in

Lines 4 and 11 have N iterations, and Line 2 has M t iterations.

C. Loss and Competitiveness Analysis

We show that the inference loss cumulatively incurred by

our ensemble learning algorithm upon the entire data stream

could be no worse than a parameterized constant times the

sum of the optimal loss in each time slot incurred by the single

best model out of the selected models for that time slot. We

also define the competitive ratio and exhibit that our proposed

approach leads to a parameterized-constant competitive ratio.

We introduce some additional notations. We write the social

cost as C =
∑

t (C
t
L + Ct

−L) =
∑

t (C
t
L + Ct

SC + Ct
−SC),

where Ct
L =

∑
m ((

∑
n α

t
n,mh

t
n(a

t
m) + βt

mh
t(atm))− btm)

2

is the loss at t, and Ct
−L = Ct

SC + Ct
−SC is the non-loss

social cost at t; and Ct
SC and Ct

−SC are as in Section IV-A.

Theorem 3 With µt
m =

√
8 ln It/m, we have

∑
t C

t
L ≤ ∑

t C
t∗
L [1 + θ1(2

√∑
t
Mt

2

∑
t ln I

t +
√
(
∑

t ln I
t)T8 )].

It is the number of the models hosted at t. Ct
L is the loss

incurred jointly by the It models as in Algorithm 5 upon the

data samples Mt. Ct∗
L is the optimal loss incurred by the

single best model out of the It models upon the data samples

Mt, assuming
∑

t C
t∗
L ≥ 1

θ1
> 0 where θ1 ̸= 0 is a constant.

Proof. See Appendix C in our supplementary material. □

Theorem 4 Our entire proposed approach is ªr-competitiveº

for the problem P0. If we use C to denote the objective value of

P0 incurred by our approach, and C∗ to denote the sum of the

social cost (except the loss) in the offline optimum of P0 plus

the cumulative per-time-slot optimal loss incurred by the single

best model out of the selected models in each corresponding

time slot, then we have C ≤ rC∗, where r = max{r1, r2},

r1 = 1+θ1(2
√∑

t
Mt

2

∑
t
ln It+

√
(
∑

t
ln It)T

8
), and r2 = ρ(1+

1
k
)(RT θ2 + 1). In r2, assuming

∑
t C

t∗
−L ≥ 1

θ2
> 0 where

θ2 ̸= 0 is a constant; k is the constant as in Algorithm 4; and

ρ and RT are also constants.

Proof. See Appendix D in our supplementary material. □

Theorem 4 captures the competitive ratio and thus the mul-

tiplicative gap between the objective value of P0 incurred by

our proposed online approach and that of P0 in a particularly

specified case. This particular case is that we use the social

cost (except the inference loss) from the offline optimum of P0,

and use the inference loss incurred cumulatively by the per-

time-slot single best model out of the ensemble in each time

slot, where the ensemble is chosen as in the offline optimum of

P0. Alternatively, one may want to quantify the multiplicative

gap between our approach and the offline optimum of P0

directly; if so, in the offline optimum of P0, the inference loss

is incurred by the best ensemble which may vary dynamically

as time goes. Here, we choose not to directly compare to

the offline optimum of P0 in order to get aligned with the

convention of the ªlearning from expertsº setting [39]. The

comparison to the offline optimum of P0 can be of independent

interest, which we would like to postpone to future work.

V. EXPERIMENTAL STUDY

A. Experimental Settings

Datasets: We use two real-world datasets and two widely-

used benchmark datasets, all with concept drifts [22]±[26].

• The Posture dataset contains 164, 860 data samples from

a sensor carried by 5 different people one after another.

The task is to predict which movement is performed,

among the 11 classes. This dataset was artificially injected

with concept drifts according to Reis et. al. [42] in 2016.

• The Rialto dataset consists of 82, 250 data samples from

time-lapse videos of a webcam and 10 classes [41]. Each

data sample is a normalized 27-dimensional RGB his-

togram (i.e., 27 features), and the 10 classes correspond to

10 colorful buildings next to the Rialto bridge in Venice,

Italy in 2016. The task is classification. Concept drifts

exist as the changing weather and lighting conditions

affect the color-based representation.

• The Spam dataset contains 9, 324 email messages (20%

spam emails and 80% legitimate emails) derived from

the Spam Assassin collection. This data set contains

500 features, which were retrieved using the chi-square

feature-selection approach. It has been considered a typ-

ical gradual drift dataset since Katakis et. al. [43]. The

task is to predict an email is spam or legitimate.

• The Electricity dataset contains 45, 312 instances, col-

lected every 30 minutes from the Australian New South

Wales Electricity Market between May 1996 and De-

cember 1998 [44]. This data set contains 8 features and

2 classes and has been widely used for concept drift

adaptation evaluations. The task is to predict the change

of the price (i.e., up and down).

Models: We consider 8∼64 model providers, and divide the

first 80% data evenly into 8∼64 pieces and train the models

correspondingly. We use the rest 20% data as the data stream

for the service provider, arriving in a uniform manner. Without

loss of generality, we adopt the decision trees as the models

in our evaluations (unless otherwise specified), aligned with

lots of existing ensemble learning research [21], [25], [26];

specifically, we consider the Classification And Regression

Tree (CART) [73]. We also consider the Support Vector Ma-

chine (SVM) [21], [74] and the Multilayer Perceptron (MLP)

(as in deep learning) as other base models for comparison. We

consider |T | = 100 minutes, with 1 minute per time slot.
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Fig. 7: Impact of hosting budget Fig. 8: Utility

Costs and Bids: We consider the Alibaba Cloud [45] of

29 regions and 88 availability zones worldwide [46], with

each region often having multiple availability zones. We

choose Beijing, China as the location of the service provider’s

cloud, and use all the other regions with their 76 availability

zones as the model providers’ clouds (and we consider up to

64 of them), where each availability zone corresponds to a

model provider. We can thus use the geographical distance

to estimate the network delay as the model downloading

cost. We use the electricity cost as the model hosting cost,

following the hourly real-time electricity prices of ComEd

in January, 2024 [47]. The participation threshold of model

providers is uniformly generated in [0, 1] [17], [20], and the

service provider’s maximum number of models that can be

purchased from each auction is in [6, 10]. The bidding price is

from [5, 18] $, following the electricity consumption for model

training [48]. The model variation indicator is set to 1 (i.e.,

model unchanged) by default, unless otherwise noted.

Algorithms: We implement multiple algorithms.

• Proposed: Our proposed approach, which uses the Hedge

ensemble method to update the weights for the models.

• Random: The approach that selects bids randomly in each

time slot, where the model hosting decisions directly

follow the bid selection decisions with equal and constant

weight for each deployed model.

• Greedy: The approach that optimizes the one-shot slice

of our original problem in each individual time slot, i.e.,

deciding the models to host by solving P
t
3 at each t, uses

the same algorithms as our proposed approach for bid and

payment determination, and employs equal and constant

weight for each hosted model.

• DTEL+: The greedy approach above using the state-of-

the-art ensemble learning algorithm DTEL [25] to update

the weights for the models. This approach calculates the

weight based on the mean squared error, updates the

weight for each model only after processing all the data

samples in a time slot, and produces the inference result

of the ensemble by combining that of each model via a

weighted voting scheme.

• DES+: The greedy approach above using the state-of-the-

art ensemble learning algorithm with dynamic ensemble

selection [22]. For each data sample, this approach finds

its nearest neighbors within the set of the data samples

in the last time slot, uses the models that can correctly

classify these nearest neighbors to construct the ensemble,

and produces the inference result of the ensemble via a

soft majority voting scheme.

• Offline: The offline optimum of our original problem

solved via the Gurobi [75] solver, with all the inputs in

the entire time horizon known in advance.

B. Experimental Results

Fig. 5 shows the normalized social cost of different algo-

rithms in the cumulative manner as time goes, when there are

8 bids in every auction. Our approach shows a slower growth

trend of the cumulative social cost than all others, and is the

closest to the offline optimum. We have also conducted the

evaluations on the real-time cumulative social cost for 16, 32,

48, and 64 bids, respectively, and they show similar trends.

Fig. 6 presents the normalized average social cost of differ-

ent algorithms. As the number of bidders increases, compared

to Random, Greedy, DTEL+, and DES+, our approach re-

duces the social cost on average by 70%, 37%, 35%, and 46%,

respectively. Note that even though DES+ has better inference

accuracy than DTEL+, the former incurs larger loss when its

inference is incorrect, thus greater social cost. The empirical

competitive ratio of our approach is 2.1∼2.7. The social cost

of our approach decreases as the number of bidders grows

because there are more bids to choose from for further cost

reduction, which shows the scalability of our approach.

Fig. 7 shows the impact of the model hosting budget on the

normalized average social cost. As more models are allowed to

be hosted, the social cost increases for all algorithms; and ours

still incurs the lowest social cost, except the offline optimum.

Fig. 8 verifies the truthfulness of our auction mechanism.

We select two bids randomly as the example. As shown, if

the bid bids its true cost, i.e., 7$ and 10$, respectively, then

it achieves the highest utility. The utility could drop vastly if

the bidding price is not the same as the true cost.

Fig. 9 checks the individual rationality of our auction

mechanism. We randomly select two bids and record the

changes of their bidding price and corresponding payments

over 10 consecutive slots. We see that the payment received

is always no less than the bidding price. Note that when a bid

does not win in an auction, the payment defaults to zero.

Fig. 10 and Fig. 11 exhibit the dynamic regret and the

dynamic fit of different algorithms for P1, as the total length of

the time horizon varies. Our approach has the lowest dynamic

regret and fit, also confirming that our regret and fit grow only

sub-linearly with time, aligning with our theoretical analysis.

Fig. 12 illustrates how model variations can impact the

social cost. In our experiments, we simulate model variations

as the model provider using the additional training data from

another model provider to update its own model. When models

in the market undergo such updates, the social cost exhibits

less fluctuation compared to the social cost of models that are

static. This is because updated models could more easily adapt

to data streams, thereby minimizing the inference loss.
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Fig. 13 evaluates the inference accuracy in each time slot

over the entire data stream of the Posture data. The results

for other datasets are similar. Our approach not only achieves

the highest accuracy in all the time slots, but is also relatively

more stable; the accuracy results of other algorithms fluctuate

dramatically and are more sensitive to the concept drift.

Fig. 14 and Fig. 15 visualize the inference accuracy aver-

aged over time and the standard deviation upon the entire data

stream. The standard deviation is calculated based on the in-

ference accuracy of each time slot, representing the sensitivity

to concept drifts and the stability of the algorithm [25]. Fig. 14

exhibits significantly better accuracy upon all four data streams

and exhibits lower standard deviation compared to others on

most data streams, indicating that our approach is less sensitive

to concept drifts and is more stable. Fig. 15 exhibits that

our algorithmic approach can work with different types of

base models in the ensemble learning process. Different base

models can be more preferred for different datasets.

Fig. 16 depicts the execution time of each algorithm in our

approach. As the number of bidders reaches 64, Algorithms 1∼
5 can complete in 0.73 seconds, 0.07 seconds, 20.30 seconds,

1.30 seconds, and 0.28 seconds for each auction, performing

well compared to the length of a single time slot. This shows

the computational efficiency of our approach in practice.

VI. DISCUSSIONS

A. Cheap Models with Bad Inference Performance

Our goal in this work is jointly optimizing the cost and

the inference loss, as captured by the problem P0. It is yet

crucial to manage the balance or trade-off between the cost

and the inference performance of the models. One approach

is to associate weights to the different terms in the objective

function of P0. We leave to the service provider to decide the

weight for each term in the objective function, depending on

its own needs and requirements. In our current evaluations, the

weights for the cost of the auctioneer, the cost of the bidders,

and the inference loss in the objective are all set equal.

Our strategy for solving P0 is decoupling the cost from the

inference loss, and addressing the former first and the latter

afterwards. With this strategy, we can already achieve multiple

provable performance guarantees. In particular, Theorem 3

implies that at each time slot, as we update the weights for

the models in the ensemble, the inference loss incurred by our

model ensemble is no greater than a parameterized constant

times the inference loss incurred by the single best model in

terms of the inference loss in the ensemble at hindsight.

There could be multiple methods to address the cheap mod-

els that have bad inference performance. First, an empirical

method could be filtering out such models and ruling out such

bids from participating in the auction before the auction starts.

To do so, the system should allow the service provider to use

a testing dataset to pre-check the performance of each model

from the model providers. Second, a more systematic method

could be based on modifying our algorithms in the manuscript

without filtering out any bids in prior. To simultaneously

consider cost and inference performance, we would want to

modify our problem P
t
3, solved within Algorithm 4, by adding

the inference loss to the objective and adding the constraints

(1c)∼(1e). Solving this new P
t
3 faces new challenges: the data

samples Mt are unknown; the new P
t
3 now is a mixed-integer

non-linear program, harder to solve; determining the weights

for the models here may interfere with our current Algorithm

5; and Algorithm 4 that solves the new P
t
3 can impact our

current Theorems 3 and 4. Third, a new and different method

could be incorporating the inference loss directly into the

process of determining which bids to procure in each auction.

This is non-trivial, and will raise the fundamental question of

how to ensure truthfulness and individual rationality when part

of the objective function for the auction is unknown, i.e., the

inference loss is unknown as the data samples are unseen.

B. Duration of Each Time Slot

The time slots correspond to the decision frequency, depend-

ing on the system under control and the service provider. Our

models, formulations, algorithms, and analysis consider the

length of each time slot as pre-specified [76]. Yet, the length

of the time slot or the frequency of the control decisions indeed

impacts the social cost over time. We consider two cases as

follows, both taking exactly the same inputs as P0.
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The first case is that every time slot t is divided into J
smaller ªtime intervalsº of equal length, which are indexed as

J = {1, 2, ..., J}, and we make the control decisions for each

time interval j ∈ J of each time slot t. The control decisions

can thus be written as xt,jn , yt,jn , zt,j , αt,j
n,m, and βt,j

m . Mt,j can

represent the set of data samples that arrive at the time interval

j of the time slot t, where ∪J
j=1Mt,j = Mt, ∀t. Based on

these, we can transform the problem P0 to the problem P
′
0.

We also consider another problem P
′′
0 , which is defined as

P
′
0 with the additional constraints that the bid selection and

model hosting decisions for all the intervals within a time slot

must stay unchanged (but are allowed to change across time

slots). For the problems of P0, P′
0, and P

′′
0 , we use P0, P ′

0, and

P ′′
0 to denote their objective functions, use the subscript OPT

to denote the offline optimal objective value, and use X∗ to

denote the offline optimal solution to P0. Then, we have

P ′
0OPT

(a)

≤ P ′′
0OPT

(b)

≤ P ′′
0 (X

∗)
(c)

≤ J ·P0(X
∗)

(d)
= J ·P0OPT .

Inequality (a) holds, as P
′
0 and P

′′
0 have the same objective

function, but the latter has a more restricted solution space

due to the additional constraints. Inequality (b) holds, because

P ′′
0OPT is the optimal value of P

′′
0 . Also, note that P

′′
0 and

P0 have exactly the same solution space. Inequality (c) holds

for any feasible solution, if we just apply the additional

constraints to the objective function P ′′
0 . Equality (d) holds,

due to the definition of X∗. Overall, the offline optimal social

cost incurred by such per-time-interval fine-grained control is

no greater than J times the offline optimal social cost incurred

by the per-time-slot coarse-grained control.

The second case is that the entire time horizon is divided

into J larger ªtime framesº of equal length, which are indexed

by J , and each time slot uniquely belongs to a time frame,

where the set of all the time slots of the time frame j can be

represented as Tj ; so, we make the control decisions for each

time frame j ∈ J . Note that in this case the corresponding

version of the problem P
′
0 can be equivalently defined as

P0 with the additional constraints that the bid selection and

model hosting decisions for all the time slots within a time

frame must stay unchanged (but are allowed to change across

time frames). It is obvious that P ′
0OPT ≥ P0OPT , as the

former has a more restricted solution space. Overall, the offline

optimal social cost incurred by such per-time-frame coarse-

grained control is no less than the offline optimal social cost

incurred by the per-time-slot fine-grained control.

We have conducted new evaluations to investigate how the

length of the time slot can impact the social cost incurred by

our proposed approach in practice. For Fig. 17, we take the

same inputs as our existing evaluations, with the same length

of the entire time horizon, i.e., 100 minutes. Yet, we divide

the time horizon into T = 50, 100, and 200 time slots, where

the length of a single time slot is 2 minutes, 1 minute, and

0.5 minutes, respectively. We see that, as the time slot length

increases, the total social cost increases, and that, as the time

slot length decreases, the total social cost also decreases.

VII. RELATED WORK

We categorized the previous research into three groups and

highlight their drawbacks compared to our work, respectively.
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Fig. 17: Social cost under different time slot length

We also summarize and recap the uniqueness of our work.

Ensemble Methods for Concept Drifts: Elwell et. al. [21]

trained a new classifier for each batch of data and used

a dynamically-weighted majority-voting method to combine

these classifiers. Jiao et. al. [22] employed the K-nearest

neighbors (KNN) method for dynamically selecting ensem-

ble classifiers for each incoming data sample, and the final

classification result is determined through a soft majority

vote of multiple base classifiers. Zhao et. al. [23] reused

historical models for the ensemble and adaptively adjusted the

weights for them. Liu et. al. [24] utilized an instance-weighting

method to adjust the sample weights and an ensemble diversity

measure to select the classifiers. Sun et. al. [25] exploited

a diversity-based strategy to preserve the historical models.

Lu et. al. [26] trained individual classifiers by adaptively

determining the data chunk size and the classifier weights.

These works study various different ensemble approaches to

tackle concept drifts; however, they only consider the inference

loss without the system cost and overhead, and none of them

has considered the cloud/edge environment.

Ensemble Learning at Cloud/Edge: Yao et. al. [27] built

an ensemble of classifiers and combined the prediction results

through majority voting in edge-assisted anomaly detection.

Stephanie et. al. [28] constructed ensembles via using local

models to produce a generalized final model with high accu-

racy. Shlezinger et. al. [29] proposed edge ensemble which

enabling diverse predictors on each device to form a deep

ensemble during the inference process. Bai et. al. [30] built a

deep neural network ensemble according to the features of

admitted inference tasks to optimize the inference quality.

Zhang et. al. [31] adopted ensemble methods to improve

the classification accuracy for meteorological applications in

cloud/edge systems. Zong et. al. [32] employed an ensemble

of constituent caching policies for edge caching.

This line of research is often focused on an offline perspec-

tive, and does not typically consider the data streaming sce-

nario in an online setting. None of them covers any incentive

or market mechanism in the ensemble learning context.

AI Model Markets: Chen et. al. [12] proposed the first

formal framework for the ML model marketplace, employing a

model-based pricing mechanism instead of data-based pricing.

Weng et. al. [33] deployed the marketplace on the blockchain

and determined the model price based on the true performance.

Sun et. al. [34] adopted a distributed federated-learning-based

marketplace with privacy and incentive considerations. Liu

et. al. [13] proposed an end-to-end marketplace and built

compensation functions for data owners and price functions

for buyers. Cao et. al. [35] proposed an edge federated ML
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model marketplace with cost evaluation. Nguyen et. al [36]

designed a distributed model marketplace based on blockchain

and considered the incentive mechanism in IoT networks.

These works mainly adopt direct pricing, rather than auc-

tions, without proving the economic properties as in our work.

They also lack the consideration of the long-term constraints

and the online setting that feature the problem we study.

Overall, our research in this paper is different from works

of the three groups as described above and is superior in

the following aspects: (i) our mechanism consists of dynamic

and repetitive auctions, capturing the long-term participation

of bidders and achieving the desired economic properties in

expectation; (ii) our mechanism works for unknown future

inputs and streamed data in online settings, while controlling

the state switching of model hosting in real time; and (iii) our

mechanism adopts the model ensemble method to equip the

service with robustness and stability against arbitrary concept

drifts in the data streams in the cloud computing environment.

VIII. CONCLUSION

Provisioning adaptive and accurate inference on streamed

data is generally desired in a wide range of cloud services,

yet gets largely overlooked in previous research. In this paper,

we aim to bridge this gap. We take a unique perspective of

acquiring models dynamically from the auction market and

combining them with the service provider’s own model to

conduct ensemble learning. We design online algorithms with

provable performance guarantees and economic properties to

achieve the long-term optimization of system overhead and

inference loss collectively for both the service provider and

the model providers. We also conduct comprehensive and

thorough evaluations with real-world and benchmark datasets

under realistic settings to validate the performance of our

approach from a variety of different angles. We hope our work

could inspire more new research along this direction.
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APPENDIX

A. Proof of Theorem 1

Proof. We first define the dynamic regret R̃eg
T

and the

dynamic fit F̃it
T

for the relaxed problem P2, and then propose

Lemmas 1 and 2 to assist subsequent proofs for the theorem.

R̃eg
T
=

∑T
t=1f

t(x̃t)−
∑T

t=1f
t(x̃t∗), (1)

F̃it
T
= ∥[

∑T
t=1g

t(x̃t)]+∥, x̃t ∈ X̃ t, ∀t. (2)

Here, x̃
t∗

is the fractional optimal solution, and x̃
t∗ ∈

argmin
xt∈X̃ tf

t(xt), where X̃ t := {x|ht(x) ⪰ 0, dt(x) ≤
0,gt(x) ⪯ 0;xt

n ∈ [0, 1], ∀n}.

Our lemmas and theorem reply on some common assump-

tions [1]±[3] that can be easily satisfied: (1) The function

f t(x̃) has bounded gradients on X̃ , i.e., ∥∇f t(x̃)∥ ≤ F , ∀x̃ ∈
X̃ ; and gt(x̃) is bounded on X̃ , i.e., ∥gt(x̃)∥ ≤ G, ∀x̃ ∈ X̃ ,

∀t; (2) The radius of the convex feasible set X̃ is bounded, i.e.,

∥x̃1 − x̃2∥ ≤ R, ∀x̃1, x̃2 ∈ X̃ ; (3) There exists a constant δ >

0 and an interior point x̂ ∈ X̃ , such that gt(x̂t) ≤ −δ1, ∀t; (4)

The slack constant δ satisfies δ > V (g), where the point-wise

maximal variation of the consecutive constraints is denoted as

V (g) = maxtmax
x̃∈X̃ ∥[gt+1(x̃)− gt(x̃)]

+
∥.

Lemma 1 The relationship on dynamic regret and fit of P1 in

the domain of integers and reals can be written as

RegT ≤ R̃eg
T
,FitT ≤ F̃it

T
. (3)

Proof. We derive the relationship between RegT and R̃eg
T

as

RegT= E[
T∑

t=1
f t(x̄t)]−

T∑
t=1

f t(xt∗)

(a)
=

T∑
t=1

f t(E[x̄t])−
T∑

t=1
f t(xt∗)

=
T∑

t=1
f t(x̃t)−

T∑
t=1

f t(xt∗) +
T∑

t=1
f t(E[x̄t])−

T∑
t=1

f t(x̃t)

(b)

≤
T∑

t=1
f t(x̃t)−

T∑
t=1

f t(x̃t∗) = R̃eg
T
, (4)

where (a) holds by the linearity of f t(x̄t), (b) holds due to

E[x̄t] = x̃
t

which ensured by randomized rounding algorithm

and the fact that the objective value conducted by integer

optimum is more than fractional optimum. We derive fit as

FitT = ∥[E[
∑T

t=1g
t(x̄t)]]+∥

(a)

≤ ∥E[
∑T

t=1g
t(x̄t)]∥

(b)
= ∥

∑T
t=1g

t(E[x̄t])∥ = ∥
∑T

t=1g
t(x̃t)∥ = F̃it

T
, (5)

where (a) follows that the value of the 2-norm will decrease

due to all the negative values are set to 0 by using [·]+ =
max{·, 0}. The linearity of gt(x̄t) and the unchanged expec-

tation property holds by the randomized rounding algorithm

guarantee (b).
□

Lemma 2 Under previous assumptions and the dual variable

initialization of λ
1 = 0, we have

(∥λt+1∥
2
−∥λt∥

2
)

2 ≤ ηλtgt(x̃t) + η2

2 ∥gt(x̃t)∥2, (6)

∥λt∥ ≤ ∥λ∥ := ηG+ 2FR+R2/(2γ)+(ηG2)/2

δ−V (g)
, ∀t. (7)

Proof. According to the update policy of λ , we have

∥λt+1∥2 = ∥[λt + ηgt(x̃t)]
+
∥2 ≤ ∥λt + ηgt(x̃t)∥2

= ∥λt∥2 + 2ηλtgt(x̃t) + η2∥gt(x̃t)∥2. (8)

After rearranging terms in (8), we obtain

(∥λt+1∥
2
−∥λt∥

2
)

2 ≤ ηλtgt(x̃t) + η2

2 ∥gt(x̃t)∥2. (9)

Since x̃
t+1

is the optimum for objective in (6) of our main

paper, by using the interior point x̂
t

mentioned in assumption

3, we have

∇f t(x̃t)(x̃t+1 − x̃
t) + λ

t+1gt(x̃t+1) + ∥x̃t+1−x̃
t∥

2

2γ

≤ ∇f t(x̃t)(x̂t − x̃
t) + λ

t+1gt(x̂t) + ∥x̂t−x̃
t∥

2

2γ

(a)

≤ ∇f t(x̃t)(x̂t − x̃
t)− δλt+11+ ∥x̂t−x̃

t∥
2

2γ

(b)

≤ ∇f t(x̃t)(x̂t − x̃
t)− δ∥λt+1∥+ ∥x̂t−x̃

t∥
2

2γ , (10)

where inequality (a) holds due to assumption 2, and inequality

(b) holds because ∥λt+1∥ is less or equal to λ
t+11 for any

non-negative vector λt+1. Then we have

λ
t+1gt(x̃t+1)

≤ ∇f t(x̃t)(x̂t − x̃
t)−∇f t(x̃t)(x̃t+1 − x̃

t)

−δ∥λt+1∥+ (∥x̂t−x̃
t∥

2
−∥x̃t+1−x̃

t∥
2
)

2γ

(a)

≤ ∇f t(x̃t)(x̂t − x̃
t)−∇f t(x̃t)(x̃t+1 − x̃

t)− δ∥λt+1∥+ R2

2γ

(b)

≤ ∥∇f t(x̃t)∥(∥x̂t − x̃
t∥+ ∥x̃t+1 − x̃

t∥)− δ∥λt+1∥+ R2

2γ

(c)

≤ 2FR− δ∥λt+1∥+ R2

2γ

def
= Φt+1, (11)

where inequality (a) holds by the bounded radius on the

domain, and ∥x̃t+1 − x̃
t∥ ≥ 0; inequality (b) holds by

Cauchy-Schwartz inequality; the inequality (c) holds by using

the bounded gradient in assumption 1 and bounded domain.

We consider (11) with lemma 2, and have

∆(λt+1) := (∥λt+1∥
2
−∥λt∥

2
)

2

≤ ηλt+1gt+1(x̃t+1) + η2

2 ∥gt+1(x̃t+1)∥2

(a)

≤ ηλt+1(gt+1(x̃t+1)− gt(x̃t+1)) + η2G2

2 +Φt+1

(b)

≤ ηλt+1[gt+1(x̃t+1)− gt(x̃t+1)]+ + η2G2

2 +Φt+1

(c)

≤ ηV (g)∥λt+1∥+ η2G2

2 + 2FR− δ∥λt+1∥+ R2

2γ , (12)

where inequality (a) holds by using the upper-bound of g;

inequality (b) holds by the non-negative property of λ
t+1;

and inequality (c) holds by assumption 4.

Next, we show the correctness of (7) by contradiction.

Without loss of generality, we suppose that t + 2 is the first

time index that breaks (7), namely:

∥λt+1∥ ≤ ∥λ∥ < ∥λt+2∥. (13)
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By using the update policy of λ, the relationship can be

obtained on λ between consecutive time slots as follows:

∥λt+1∥
(a)

≥ ∥λt+2∥ − ∥λt+2 − λ
t+1∥

= ∥λt+2∥ − ∥[λt+1 + ηgt+1(xt+1)]
+
− λ

t+1∥

≥ ∥λt+2∥ − ∥λt+1 + ηgt+1(xt+1)− λ
t+1∥

= ∥λt+2∥ − ∥ηgt+1(xt+1)∥
(b)
> ∥λ∥ − ηG, (14)

where inequality (a) holds by the triangle inequality, and

inequality (b) holds by (13). Then we can obtain ∆(λt+1) < 0,

leading to ∥λt+2∥ < ∥λt+1∥, which contradicts ∥λt+1∥ ≤
∥λ∥ < ∥λt+2∥. Thus, Lemma 2 can be proved.

□

Here, we begin the proof of Theorem 1.

Step I: The objective in (6) of our main paper implies that it

is 1/γ-strongly convex with respect to x̃, denoted by J t(x̃t),
i.e., ∀x̃1, x̃2 ∈ X̃ :

J t(x̃2) ≥ J t(x̃1) +∇J t(x̃1)(x̃2 − x̃1) +
∥x̃2−x̃1∥

2

2γ . (15)

Since x̃
t+1

is the optimum for min
x̃∈X̃J t(x̃), then we have

∇J t(x̃t+1)(x̃t∗ − x̃
t+1) ≥ 0. (16)

We set x̃1 = x̃
t+1

and x̃2 = x̃
t∗

, and plugging (16) into

(15), we have

J t(x̃t∗) ≥ J t(x̃t+1) + 1
2γ ∥x̃

t∗ − x̃
t+1∥2. (17)

After adding f t(x̃t) on both two sides, expanding J t(·) ac-

cording to its definition and using the property of convex func-

tion on f t(·), i.e., f t(x̃t∗) ≥ f t(x̃t)+∇f t(x̃t)(x̃t∗ − x̃
t), we

have

f t(x̃t) +∇f t(x̃t)(x̃t+1 − x̃
t) + λ

t+1
gt(x̃t+1) + ∥x̃t+1−x̃

t∥
2

2γ

≤ f t(x̃t∗) + λ
t+1

gt(x̃t∗) + ∥x̃t∗−x̃
t∥

2

2γ − ∥x̃t∗−x̃
t+1∥

2

2γ

(a)

≤ f t(x̃t∗) + ∥x̃t∗−x̃
t∥

2

2γ − ∥x̃t∗−x̃
t+1∥

2

2γ , (18)

where inequality (a) holds by λ
t+1 ⪰ 0 and the per-slot

optimal solution x̃
t∗

is feasible, i.e., gt(x̃t∗) ⪯ 0 . Then we

analyze the gradient term as

−∇f t(x̃t)(x̃t+1 − x̃
t) ≤ ∥∇f t(x̃t)∥∥x̃t+1 − x̃

t∥

(a)

≤ ∥∇ft(x̃t)∥
2

2ζ + ζ
2∥x̃

t+1 − x̃
t∥2

(b)

≤ F 2

2ζ + ζ
2∥x̃

t+1 − x̃
t∥2,

(19)

where ζ is an arbitrary positive constant. Inequality (a) holds

by a2+b2 ≥ 2ab, inequality (b) holds by the bounded gradient

of f t. Then we plug (19) into (18) and get

f t(x̃t) + λ
t+1

gt(x̃t+1) ≤ f t(x̃t∗) + ( ζ2 − 1
2γ )∥x̃

t+1 − x̃
t∥2

+ 1
2γ (∥x̃

t∗ − x̃
t∥

2
− ∥x̃t∗ − x̃

t+1∥
2
) + F 2

2ζ

(a)
= f t(x̃t∗) + 1

2γ (∥x̃
t∗ − x̃

t∥
2
− ∥x̃t∗ − x̃

t+1∥
2
) + γF 2

2 ,

(20)

where inequality (a) holds by setting ζ = 1/γ. By plugging

(20) into the Lemma 2, we have

∆(λt+1)
η

+ f t(x̃t)≤ λ
t+1

gt+1(x̃t+1) + η
2∥g

t+1(x̃t+1)∥2

+f t(x̃t) + λ
t+1

gt(x̃t+1)− λ
t+1

gt(x̃t+1)

= f t(x̃t) + λ
t+1

gt(x̃t+1) + η
2∥g

t+1(x̃t+1)∥2

+λ
t+1

gt+1(x̃t+1)− λ
t+1

gt(x̃t+1)

(a)

≤ f t(x̃t∗) + 1
2γ (∥x̃

t∗ − x̃
t∥

2
− ∥x̃t∗ − x̃

t+1∥
2
) + γF 2

2

+η
2∥g

t+1(x̃t+1)∥2 + λ
t+1(gt+1(x̃t+1)− gt(x̃t+1))

≤ f t(x̃t∗) + 1
2γ (∥x̃

t∗ − x̃
t∥

2
− ∥x̃t∗ − x̃

t+1∥
2
) + γF 2

2

+ηG2

2 + λ
t+1[gt+1(x̃t+1)− gt(x̃t+1)]+

(b)

≤ f t(x̃t∗) + 1
2γ (∥x̃

t∗ − x̃
t∥

2
− ∥x̃t∗ − x̃

t+1∥
2
) + γF 2

2

+ηG2

2 + ∥λt+1∥V (gt), (21)

where inequality (a) holds by using (20), inequality (b) holds

by assumption 4. Then we consider the intermediate terms as

follows:

∥x̃t∗ − x̃
t∥2 = ∥x̃t∗ − x̃

t∥2 − ∥x̃t − x̃
t−1∗∥2 + ∥x̃t − x̃

t−1∗∥2

(a)
= ∥x̃t∗ − x̃

t−1∗∥∥x̃t∗ − 2x̃t + x̃
t−1∗∥+ ∥x̃t − x̃

t−1∗∥2

(b)

≤ 2R∥x̃t∗ − x̃
t−1∗∥+ ∥x̃t − x̃

t−1∗∥2, (22)

where equation (a) holds by applying difference of two

squares on the first two terms, inequality (b) holds by the

triangle inequality for vectors and the bounded radius on

domain. After applying (22) to (21), we have

∆(λt+1)
η

+ f t(x̃t) ≤ f t(x̃t∗) + ∥λt+1∥V (gt) + γF 2

2 + ηG2

2

+ 1
2γ (2R∥x̃t∗ − x̃

t−1∗∥+ ∥x̃t − x̃
t−1∗∥

2
− ∥x̃t∗ − x̃

t+1∥
2
),

(23)

Sum over t, we have

T∑
t=1

∆(λt+1)
η

+
T∑

t=1
f t(x̃t) ≤

T∑
t=1

f t(x̃t∗) + γF 2T
2 + ηG2T

2

+
R·V ({x̃t∗}T

t=1)
γ

+
T∑

t=1
{∥λt+1∥V (gt)}

+ 1
2γ

T∑
t=1

(∥x̃t − x̃
t−1∗∥

2
− ∥x̃t∗ − x̃

t+1∥
2
)

(a)

≤
T∑

t=1
f t(x̃t∗) + γF 2T

2 + ηG2T
2 +

R·V ({x̃t∗}T

t=1)
γ

+∥λ∥
T∑

t=1
V (gt) + 1

2γ (∥x̃
1 − x̃

0∗∥
2
− ∥x̃T∗ − x̃

T+1∥
2
)

(b)

≤
T∑

t=1
f t(x̃t∗) + γF 2T

2 + ηG2T
2 +

R·V ({x̃t∗}T

t=1)
γ

+∥λ∥V ({gt}Tt=1) +
1
2γ (∥x̃

1 − x̃
0∗∥

2
), (24)

where V ({x̃t∗}Tt=1) :=
∑T

t=1 ∥x̃
t∗ − x̃

t−1∗∥, inequality (a)
holds by the definition of ∥λ∥, inequality (b) holds due to

V ({gt}Tt=1) :=
∑T

t=1 max
x̃∈X̃ ∥[gt+1(x̃)− gt(x̃)]

+
∥. Then,

R̃eg
T
=

T∑
t=1

f t(x̃t)−
T∑

t=1
f t(x̃t∗) ≤ γF 2T

2 + ∥λ∥V ({gt}Tt=1)

+ηG2T
2 +

R·V ({x̃t∗}T

t=1)
γ

+ (∥x̃1−x̃
0∗∥

2
)

2γ −
T∑

t=1

∆(λt+1)
η

= γF 2T
2 + ∥λ∥V ({gt}Tt=1) +

ηG2T
2 +

R·V ({x̃t∗}T

t=1)
γ
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+ (∥x̃1−x̃
0∗∥2

)
2γ − ∥λT+2∥2

2η + ∥λt=2∥2

2η

(a)

≤ RT , (25)

where RT =
R·V ({x̃t∗}T

t=1)
γ + γF 2T

2 + ηG2(T+1)
2 + R2

2γ +

∥λ∥V ({gt}Tt=1), inequality (a) holds due to ∥x̃1 − x̃
0∗∥2 has

been bounded by R according to bounded radius of domain,

∥λT+2∥2 ≥ 0 , and ∥λt=2∥2 ≤ η2G2 if λ1 = 0 .

Step II: According to the dual recursion in Algorithm 1,

we have:

[λT + ηgT (x̃T )]+ ≥ . . . ≥ λ1 +
T∑

t=1
ηgt(x̃t). (26)

Since λ1 = 0, we can rearrange the terms, and then obtain

T∑
t=1

gt(x̃t) ≤ λ
T+1

η − λ
1

η ≤ λ
T+1

η . (27)

Therefore, F̃it
T
= ∥[∑T

t=1 g
t(x̃t)]+∥ can be treated as

F̃it
T
≤ ∥∑T

t=1 g
t(x̃t)∥ ≤ ∥λ

T+1

η ∥ ≤ ∥λ∥
η . (28)

Then we can obtain the following results: RegT ≤
R̃eg

T
≤ RT and FitT ≤ F̃it

T
≤ λ

T+1

η ≤ ∥λ∥
η . By choos-

ing proper step sizes, we can express these bounds as

sub-linear functions of T . The dynamic regret and the

dynamic fit can be bounded by controlling step sizes

as γ = η = max{
√

V ({x̃t∗}T
t=1)

T
,
√

V ({gt}T
t=1)

T
}, then we have

RegT = O(max{√V ({x̃t∗}T
t=1)T ,

√
V ({gt}T

t=1)T) and FitT ≤
∥λ∥
η = O(max{ T

V ({x̃t∗}T
t=1)

, T
V ({gt}T

t=1)
}). If we further

set γ = η = O(T− 1
3 ), we can get RegT =

O(max{V ({x̃t∗}Tt=1)T
1
3 , V ({gt}Tt=1)T

1
3 , T

2
3 }) and FitT =

O(T
2
3 ). Then the sub-linear regret and fit of O(T

2
3 ) can be

achieved if we have V ({x̃t∗}Tt=1) ∈ o(T
2
3 ) and V ({gt}Tt=1) ∈

o(T
2
3 ). □

B. Proof of Theorem 2

Step I: We aim to prove that E(x̄t
n) is monotonically

non-increasing in ctn. We make C(x̄t
n, c

t
n, c

t
−n) denote the

objective value of P1 with reported prices (ctn, c
t
−n). where

ctn denotes the bidding price of model provider n and ct−n

denotes all the other prices except n. We define x̃t
n and

˜̇xt

n as the optimal fractional results of n with bid ctn and

ċtn with fixing ct−n. In the case that ctn ≥ ċtn, we have

C(x̃t
n, c

t
n, c

t
−n) ≤ C(˜̇xt

n, c
t
n, c

t
−n) and C(˜̇xt

n, ċ
t
n, c

t
−n) ≤

C(x̃t
n, ċ

t
n, c

t
−n). By combining the above inequalities together,

we have x̃t
nc

t
n + ˜̇xt

nċ
t
n ≤ ˜̇xt

nc
t
n + x̃t

nċ
t
n,⇒ x̃t

n(c
t
n − ċtn) ≤

˜̇xt

n(c
t
n − ċtn) ⇒ x̃t

n ≤ ˜̇xt

n,⇒ E(x̄t
n) ≤ E(¯̇xt

n).

Step II: We denote χt
n =

x̃t
n

γ + 2λt+1
n as the upper

bound of the integral of
∫∞
0

E(x̄t
n)dc. Based on our statement

in Section III-C, we know
∫ χt

n

0
x̃t
n(c, c

t
−n)dc < ∞ and∫∞

χt
n
x̃t
n(c, c

t
−n)dc = 0. Then we have

∫∞
0

E(x̄t
n(c, c

t
−n))dc =∫ χt

n

0
E(x̄t

n(c, c
t
−n))dc+

∫∞
χt
n
E(x̄t

n(c, c
t
−n))dc <∞.

Step III: For the individual rationality in expectation,

we have ptn = ctnE(x̄t
n(c

t
n, c

t
−n)) +

∫ χt
n

ctn
E(x̄t

n(c, c
t
−n))dc and

U t
n = ptn − ctnE(x̄t

n(c
t
n, c

t
−n)) =

∫ χt
n

ctn
E(x̄t

n(c, c
t
−n))dc ≥ 0.

C. Proof of Theorem 3

Lemma 3 (Theorem 2.3 in [4]) Assume the loss function l
is convex in its first argument and takes values in [0, 1]. For

all M t ≥ 1, the regret of the exponentially weighted average

forecaster with time-varying parameter µt
m =

√
8lnIt/m

satisfies

Ct
L − Ct∗

L ≤ 2
√

Mt

2 ln It +
√

ln It

8 .

The proof is based on a reduction from our scenario to

standard exponentially weighted average forecaster. We let the

hosted set {I |ytn = 1, zt = 1, ∀n, t} be the expert pool, and

denote the number of models hosted at t as It and the length

of the data sequence at t as M t. Then we plug the expert

number N = It and the number of instances n = M t into

Theorem 2.3 in [4]. We use jm to lower bound the weight

ln
wt

jm,m

W t
m

by keeping track of the currently best expert, where

wt
i,m represents the weight of the hosted model i, W t

m =
∑It

i=1 w
t
i,m = 1; and jm is the index of the expert with the

smallest loss after the first m rounds.

Then we have 1
µt
m
ln

wt
jm−1,m−1

W t
m−1

− 1
µt
m+1

ln
wt

jm,m

W t
m

=

( 1
µt
m+1

− 1
µt
m
) ln

W t
m

wt
jm,m

+ 1
µt
m
ln

ẇt
jm,m/Ẇ t

m

wt
jm,m

/W t
m

+

1
µt
m
ln

wt
jm−1,m−1/W

t
m−1

ẇt
jm,m

/Ẇ t
m

. We now bound separately the three

terms on the right-hand side and get ( 1
µt
m+1

− 1
µt
m
) ln

W t
m

wt
jm,m

≤

( 1
µt
m+1

− 1
µt
m
) ln It, 1

µt
m
ln

ẇt
jm,m/Ẇ t

m

wt
jm,m

/W t
m

≤ ( 1
µt
m+1

− 1
µt
m
) ln It,

and 1
µt
m
ln

wt
jm−1,m−1/W

t
m−1

ẇt
jm,m

/Ẇ t
m

≤ Ct
L,jm,m − Ct

L,jm−1,m−1 −

l(b̂tm, btm) +
µt
m

8 . We substitute back in the main

equation the bounds on the three terms, then we obtain

l(b̂tm, btm) ≤ Ct
L,jm,m − Ct

L,jm−1,m−1 +
√
σ ln It

8
√
m

+ 2( 1
µt
m+1

−
1

µt
m
) ln It+ 1

µt
m+1

ln
wt

jm,m

W t
m

− 1
µt
m
ln

wt
jm−1,m−1

W t
m−1

. Summing over

m, we have Ct
L ≤ Ct∗

L +
√
σMt ln It

4 +2
√

(Mt+1) ln It

σ −
√

ln It

σ .

By choosing σ = 8 to trade off the two main terms, we get

Ct
L ≤ Ct∗

L + 2
√

Mt

2 ln It +
√

ln It

8 .

Finally we perform the global loss performance analysis

on the whole data stream by summing over t, and get
∑

t C
t
L ≤ ∑

t C
t∗
L +

∑
t (2

√
Mt

2 ln It +
√

ln It

8 )
(a)

≤
∑

t C
t∗
L +

2
√∑

t
Mt

2

∑
t ln I

t +
√
(
∑

t ln I
t)T8 ≤

∑
t C

t∗
L [1 + θ1(2

√∑
t
Mt

2

∑
t ln I

t +
√

(
∑

t ln I
t)T8 )] =∑

t C
t∗
L r1, where the inequality (a) holds by applying

Cauchy-Schwarz inequality.

D. Proof of Theorem 4

According to Algorithm 4, we denote the time slots recorded

by t̂ as {t̂1, t̂2, . . .}. Consider any ϑ ≥ 1, for the con-

secutive time slots {t̂ϑ, t̂ϑ + 1, . . . , t̂ϑ+1 − 1}, we have

C t̂ϑ
−SC(ȳ

t̂ϑ , ȳt̂ϑ−1) ≤ 1
k

∑t̂ϑ+1−1

τ=t̂ϑ
Cτ

−SC(x̄
τ , ȳτ , z̄τ ) due to

Line 5 of Algorithm 4. Both sides sum over ϑ, we have∑
t C

t
SC ≤ 1

k

∑
t C

t
−SC . Then we can obtain

∑
t C

t
−L =∑

t C
t
SC +

∑
t C

t
−SC ≤ (1 + 1

k )
∑

t C
t
−SC .
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We denote ρ = max
t

max
yt,ztC

t
−SC(yt,zt)

min
yt,ztC

t
−SC

(yt,zt)
, and

get
∑

t f
t(xt) −

∑

t f
t(xt∗) ≤ RT according

to the Theorem 1. Then, we have
∑

t C
t
−SC ≤

∑

t maxyt,zt Ct
−SC(y

t, zt) ≤ ρ
∑

t minyt,zt Ct
−SC(y

t, zt) =
ρ(
∑

t f
t(xt)+{

∑

t

∑

n y
t
n(v

t
n + ut

n(1−∆t
n)) +

∑

t e
tzt}∗) ≤

ρ(RT +
∑

t f
t(xt∗) + {

∑

t

∑

n y
t
n(v

t
n + ut

n(1−∆t
n)) +

∑

t e
tzt}∗) = ρ(RT +

∑

t C
t∗
−SC) ≤ ρ(RT +

∑

t C
t∗
−L).

Based on all the above, we can obtain
∑

t C
t
−L =

∑

t C
t
SC +

∑

t C
t
−SC ≤ (1 + 1

k
)
∑

t C
t
−SC ≤ ρ(1 + 1

k
)(RT +

∑

t C
t∗
−L) ≤ ρ(1 + 1

k
)(RT θ2 + 1)

∑

t C
t∗
−L. Jointly with

Theorem 3, we can prove that our approach is r-

competitive for P0, where r = max{r1, r2}, r1 =

1 + θ1(2
√

∑

t
Mt

2

∑

t ln I
t +

√

(
∑

t ln I
t)T8 ), and r2 =

ρ(1 + 1
k
)(RT θ2 + 1).
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