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AbstractÐTransfer learning leverages existing models to help
train new models, rather than training the new models from
scratch. Unfortunately, realizing transfer learning in distributed
cloud-edge networks faces critical challenges such as online
training, uncertain network environments, time-coupled control
decisions, and the balance between resource consumption and
model accuracy. In this paper, targeting classification tasks,
we study the settings of both homogeneous and heterogeneous
transfer learning in cloud-edge networks via orchestrating model
placement, data dispatching, and inference aggregation. We
formulate non-linear mixed-integer programs of long-term cost
optimization over consecutive time slots, and design polynomial-
time online algorithms by exploiting the real-time trade-off
between preserving previous control decisions and applying
new control decisions. Our approaches produce new models by
combining the existing pre-trained offline models and the online
models that are continuously updated based on the inference
results of data samples arriving in streams. We rigorously prove
that our approaches only incur the number of inference mistakes
no greater than a constant times that of the single best model in
hindsight, and achieve constant competitive ratios for the total
cost. Evaluations have confirmed the superior performance of
our approaches compared to other state-of-the-art methods upon
real-world data traces, under text classification transfer learning
tasks.

Index TermsÐEdge computing, edge AI, transfer learning,
online optimization.

I. INTRODUCTION

MOBILE communication networks are shaping the new

paradigm of how users can explore and utilize Artificial

Intelligence (AI). The 5G networks often consist of centralized

gigantic data centers (referred to as ªcloudsº) in the core [2],
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[3], and distributed cellular base stations with co-located micro

computing servers (referred to as ªedgesº) in closer proximity

to the end users. AI models can be thus trained in the cloud

using abundant data and then dispatched to the edges to serve

the end users’ inference requests [4], [5].

One fundamental problem of the AI in this scenario is that,

as time goes, AI models often have varying or even decaying

accuracies. First, the underlying data distribution, i.e., the

relation between data’s features and labels, may drift due to

the non-stationary nature of the data and the environment [6],

[7]. Under such ªconcept driftsº, AI models which capture the

relation between existing data’s features and labels may not

work for the new data. Second, the underlying data distribution

may differ across communities or areas and AI models trained

by different data may reflect different relations between data’s

features and labels. As users move, their requests, which used

to be served by the models at a previous edge, may not be

properly resolved by the models at the new edge [8].

Transfer learning [9], [10] seems a promising solution to this

problem. As existing AI models become less accurate, rather

than dropping them and building new models from scratch, one

can leverage the existing models to help build the new models,

i.e., transferring ªknowledgeº from existing models (called

offline classifiers in this paper) to the combination of those

existing models and the new models (called online classifiers),

especially when the new data alone may be insufficient for

training new models or when the underlying data distribution

may possess periodical patterns. Yet, this approach confronts

multiple critical challenges in distributed cloud-edge networks.

First, it is non-trivial to design and realize transfer learning

in a distributed manner. It is desired to keep data samples

within the local edge networks without sending them to the

remote cloud due to privacy and performance (e.g., traffic lo-

calization); yet, extracting knowledge from each of the offline

classifiers that may reside across different edges to train the

online classifier(s) upon data samples that dynamically arrive

requires to make a comprehensive set of control decisions,

such as classifier placement, data sample dispatching, infer-

ence aggregation, and model weights update. It is challenging

to navigate the trade-offs among these intertwined decisions.

Second, it remains a non-trivial problem to implement dis-

tributed transfer learning cost-efficiently in an online manner

in the uncertain cloud-edge environment. As the operational

cost of edges, the delay between edges, and the available

capacity of each edge vary unpredictably [8], [11], we need

to control the system in real time to pursue the long-term

optimization. This is particularly hard due to time-coupled
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decisions [12], [13], caused by selecting the edge to download

each existing offline classifier from the cloud or host the

new online classifier(s) to be created. For instance, hosting

a classifier on a local edge now will save ªstart-upº cost

of downloading the classifier and re-instantiating the edge

environment if this same classifier is also needed here in

the next time slot, but will waste the operational cost if this

classifier turns out to be unwanted (e.g., if there exists another

cheaper edge) in the next time slot.

Third, the different homogeneous and heterogeneous on-

line transfer learning settings require different solutions over

the cloud-edge networks. Transitioning from homogeneous

to heterogeneous is not a simple extension, but rather a

fundamental shift in design and optimization methodology. In

the homogeneous setting, each classifier can access the whole

feature space of the data samples. In contrast, in the heteroge-

neous setting, each classifier can only have access to different

part of the feature space of the data samples [14], changing

the transfer learning process entirely by requiring multiple

online classifiers to be trained simultaneously; this also adds

additional dimensions to the system’s control-decision space,

e.g., we now need to jointly control where the inference

aggregation happens, considering additional operating cost and

start-up cost. Due to all such differences, we need to treat these

two online transfer learning settings separately.

Existing research falls insufficient for addressing the afore-

mentioned challenges. Prior works [8], [14]±[18] studied

transfer learning’s performance, efficiency, and accuracy, but

never considered resource or cost overhead, not to mention in

distributed cloud-edge environments or in an online manner.

Others [19]±[25] focused on resource utilization, job schedul-

ing, and various optimizations of cloud and edge networks

and applications. However, to the best of our knowledge,

distributed transfer learning remains unexplored in existing

studies. See Section VII for more detailed discussions.

To the best of our knowledge, this work is the first to design

and optimize distributed online transfer learning in cloud-edge

networks. In this paper, we make several contributions:

• We formulate cross-layer long-term joint cost optimiza-

tion for homogeneous and heterogeneous online transfer

learning, incorporating operational, start-up, delay, and

inference error costs. The NP-hard problems make no

assumptions on input dynamics or classifier types/forms.

• For homogeneous settings, we design four polynomial-

time algorithms, i.e., Algorithms 1-4 that work jointly

using primal-dual techniques and online adjustments,

proven to bound mistakes against the best single classifier

and achieve a parameterized-constant competitive ratio

for the total cost against the offline optimum.

• For heterogeneous settings, we develop Algorithms 5-

8, addressing additional start-up costs and split feature

spaces via aggregation-first inference and paired online

classifiers, with proven worst-case guarantees.

• Comprehensive evaluations on real-world datasets (e.g.,

traffic workload, text classification tasks) show that our

approaches reduce total cost by 40%±60%, achieve lower

mistake rates, and operate efficiently within seconds per

time slot, outperforming existing methods.
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Fig. 1: Scenario for Homogeneous Online Transfer Learning

The rest of this paper proceeds as follows. Sections II, III,

and IV elaborate our problem modeling, algorithm design,

and performance analysis for the homogeneous online transfer

learning in the distributed cloud-edge networks. Section V is

on the heterogeneous online transfer learning, focusing on

the differences from the homogeneous setting. Section VI

demonstrates the trace-driven experiments and results. Section

VII discusses the related work and Section VIII concludes.

II. MODELS AND PROBLEM FORMULATION

A. System Models

We summarize our notations in Table I.

Cloud-Edge Networks: We study the system over a series of

consecutive time slots [T ] = {1, ..., T}, corresponding to our

decision-making frequency. As shown in Fig. 1, we consider a

set of geographically distributed edges [I] = {1, ..., I}, where

an ªedgeº refers to a cellular base station or a WiFi access

point equipped with a micro data center or a server cluster.

The edges are connected to one another, and also to a common

cloud via backhaul networks. For i, j ∈ [I] and t ∈ [T ], we

use dtij to denote the delay between the edge i and the edge j
at the time slot t, and use Dt

i to denote the available capacity

of the edge i at the time slot t. We also consider that this edge

environment provides a virtual machine (VM) or a container

to host and run each offline or online classifier, which will be

further elaborated below.

Offline and Online Classifiers: The cloud maintains a set

[K] = {1, ...,K} of pre-trained ªofflineº classifiers that are

to be downloaded to the edges to serve users with ultra-low

latency and used to train a single ªonlineº classifier being

updated continuously to accommodate any concept drift. For

k ∈ [K], i ∈ [I], and t ∈ [T ], we use atki to denote

the operational cost (e.g., electricity consumption) of hosting

offline classifier k on edge i at t, use bti to denote the

operational cost of hosting the online classifier on edge i at

t, use cki to denote the ªstart-upº cost of offline classifier

k on edge i, including the cost (e.g., traffic or bandwidth

consumption) of downloading offline classifier k from the

cloud to edge i and the cost (e.g., lead time, system oscillation)

of booting and preparing the VM or container on edge i, and

use ci to denote the ªstart-upº cost of the online classifier on

edge i, which only includes booting and preparing the VM or

container on edge i. The online classifier is directly created

on edge using the training data samples per time slot, rather

than being downloaded from the cloud. We also use fk(·)
to denote the ªdecision functionº of the offline classifier k.

Besides, we use f tm(·) to denote the decision function of the

online classifier that is trained at the time slot t for the data
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TABLE I: Notations

Inputs Descriptions

[I] Set of edges

[K] Set of classifiers

[T ] Set of time slots

[M ]t Data samples at the time slot t from users

Dt
i Available capacity of the edge i at the time slot t

ptm Feature values for the data sample m

qtm Ground-truth label for the data sample m

atki
Operational cost of hosting offline classifier k on the edge
i at t

bti
Operational cost of hosting the online classifier on the
edge i at t

cki
Start-up cost of downloading offline classifier k from the
cloud to the edge i

ci Start-up cost of the online classifier at edge i

fk(·) Decision function of the offline classifier k

f t
m(·)

Decision function of the online classifier that is trained
at the time slot t for the data sample m

dtij
Delay between the edge i and the edge j at the time slot
t

Decisions Descriptions

xt
ki

Whether or not the offline classifier k is downloaded and
hosted on the edge i at the time slot t

yti
Whether or not the online classifier is trained and hosted
on the edge i at the time slot t

ztkim
Weight for the offline classifier k on the edge i for the
data sample m at the time slot t

wt
im

Weight for the online classifier k on the edge i for the
data sample m at the time slot t

ut
mi

Whether or not to transfer data sample m from the edge
where it arrives to the edge i at t

vtij
Whether or not to transfer the decision results of offline
classifiers from the edge i to the edge j at t

sample m. Note that we write f tm(·) instead of f t(·), because

the single online classifier is being updated per data sample

m during transfer learning, further elaborated as below.

Data Samples: We use [M ]t = {0, ...,Mt} to denote the

data samples that arrive at the system at the time slot t from

users. Each single data sample m ∈ [M ]t is represented

as (ptm, q
t
m), where ptm refers to its feature values and qtm

refers to its ground-truth label. Without loss of generality, we

assume qtm ∈ {−1, 1}, ∀m, ∀t. We emphasize that qtm is only

observable right after we conduct the inference for m using our

offline and online classifiers. We also note that any data sample

m may arrive at one edge but be dispatched to a different edge

to do the inference. We use dtmi to represent the delay between

the edge where the data sample m arrives and the edge i at t.

Distributed Online Transfer Learning: At the time slot t, as

the data sample m arrives at the system, we design distributed

transfer learning that works as follows, also in Fig. 2.

• Step 1: The data sample m with its feature value ptm is

dispatched to every edge that has the offline classifiers

or the online classifier. Note that it only needs to be

dispatched to an edge once even if an edge hosts multiple

classifiers. Receiving ptm, every offline classifier k com-

putes fk(ptm) and the online classifier computes f tm(ptm).
• Step 2: The decisions from the offline classifiers are sent

to the edge that maintains the online classifier with all

the weights of all the classifiers to compute the inferred

label as F t
m(ptm) = sign(

∑
k

∑
i z

t
kimsign(f

k(ptm)) +∑
i w

t
imsign(f

t
m(ptm))) [32], where sign(·) returns 1 for

a positive value, −1 for a negative value, and 0 for 0;

ztkim is the weight for the offline classifier k on the edge

i for ptm; and wt
im is the weight for the online classifier
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Fig. 2: Transfer Learning per Data Sample

on the edge i for ptm.

• Step 3: The inferred label F t
m(ptm) is then sent to the

edge where the data sample m arrives originally, and is

further sent back to the user.

• Step 4: The ground-truth label qtm arrives at that same

edge, and is dispatched to the edge that has the online

classifier and all the weights. There, the weight for each

classifier is updated and the decision function itself of

the online classifier is also updated, i.e., f tm(·) is updated

to f tm+1(·) using the received decision results of offline

classifiers (see details in Section IV-B).

Our distributed transfer learning then proceeds to the next

data sample m + 1 at the time slot t. In the above process,

we ªtransfer knowledgeº from the existing offline decision

functions fk(·), ∀k to the new decision function F t
m(·) which

is a combination of fk(·), ∀k and the online decision function

f tm(·) being trained upon each data sample.

Control Decisions: We concentrate on making the following

control decisions in this paper. We use xtki ∈ {1, 0} to denote

whether or not the offline classifier k is downloaded from

the cloud and hosted on the edge i at the time slot t. We

use yti ∈ {1, 0} to denote whether or not the online classifier

is trained and hosted on the edge i at the time slot t. We

utmi ∈ {1, 0} to denote whether or not to transfer data sample

m from the edge where it arrives to the edge i at t, and use

vtij ∈ {1, 0} to denote whether or not to transfer the decision

results of offline classifiers from the edge i to the edge j at

t. We also use ztkim, w
t
im ∈ [0, 1] to denote the weight for the

offline classifier k on the edge i and the weight for the online

classifier on edge i, respectively, for the data sample m at the

time slot t, as described above.

Cost of Transfer Learning: The cost of distributed ho-

mogeneous transfer learning at any individual time slot t
consists of multiple components: (1) the operational cost of

hosting classifiers on edges:
∑

k

∑
i a

t
kix

t
ki +

∑
i b

t
iy

t
i ; (2)

the start-up cost of downloading classifiers from the cloud

to edges and preparing the VMs or containers on edges:∑
k

∑
i cki

[
xtki − xt−1

ki

]+
+
∑

i ci
[
yti − yt−1

i

]+
, where [·]+ =

max{·, 0}; (3) the performance overhead incurred by running

distributed transfer learning across edges, including the delay

of dispatching data samples
∑

m

∑
i d

t
miu

t
mi, the delay of

transmitting decisions of offline classifiers
∑

i

∑
j d

t
ijv

t
ij , and

the delay of transmitting the inferred label and the ground-

truth label 2 ·
∑

m

∑
i d

t
miy

t
i . Note that the inferred label (or

the ground-truth label) is only sent from (or to) the edge i that

has the online classifier.

Mistakes of Transfer Learning: We consider the number

of ªmistakesº to measure the quality or accuracy of transfer
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learning [14], i.e., the number of occurrences where the

inferred label does not match the ground-truth label. We denote

the number of mistakes for all data samples of any single

time slot t as
∑

m I{sign[qtm · (
∑

k

∑
i z

t
kimsign(f

k(ptm)) +∑
i w

t
imsign(f

t
m(ptm)))] < 0}, where I{·} = 1 if the inequal-

ity condition contained is true and I{·} = 0 if not.

B. Problem Formulation, Challenges, and Goal

Problem Formulation: We minimize the sum of (i) the long-

term total cost of transfer learning and (ii) the long-term total

number of mistakes of transfer learning over time:

Min H1 =
∑

t

∑
k

∑
i

(
atkix

t
ki + cki[x

t
ki − xt−1

ki ]+
)

+
∑

t

∑
i

(
btiy

t
i + ci[y

t
i − yt−1

i ]+
)

+
∑

t

∑
m

∑
i (d

t
mi (u

t
mi + 2yti)) +

∑
t

∑
i

∑
j d

t
ijv

t
ij

+
∑

t

∑
m I

{
sign

[
qtm ·

(∑
k

∑
i z

t
kimsign(f

k(ptm))

+
∑

i w
t
imsign(f

t
m(ptm))

)]
< 0

}
(1)

s.t. ztkim ≤ yti , ∀k, i, t,m, (1a)

wt
im ≤ yti , ∀i, t,m, (1b)∑
i y

t
i = 1, ∀t, (1c)∑

i x
t
ki = 1, ∀t, k, (1d)∑

i(
∑

k z
t
kim + wt

im) = 1, ∀m, t, (1e)∑
k x

t
ki + yti ≤ Dt

i , ∀i, t, (1f)
∑

j v
t
ij ≥ xtki, ∀k, i, t, (1g)

vtij ≤ ytj , ∀i, j, t, (1h)

utmi ≥ xtki, ∀k, i,m, t, (1i)

utmi ≥ yti , ∀i,m, t, (1j)

var. xtki, y
t
i , u

t
mi, v

t
ij ∈ {0, 1}, ztkim, w

t
im ∈ [0, 1].

Constraints (1a) and (1b) ensure that only the edge that

hosts the online classifier can maintain all the weights for all

the classifiers. Constraints (1c) and (1d) ensure that the online

classifier can only be hosted by a single edge, and every offline

classifier can only be hosted by a single edge. Constraint (1e)

states that all the weights are normalized and their sum is one.

Constraint (1f) respects the capacity of each edge. Constraints

(1g) and (1h) guarantee that the decision computed by every

offline classifier is transmitted to the edge that hosts the online

classifier. Constraints (1i) and (1j) guarantee that every data

sample is dispatched to every edge that hosts the classifier(s).

We note that as different terms in the objective may have

different units, each term can be associated to a weight which

is used to balance and control the optimization according to the

service’s need and preference. This weighted-sum method is

pretty common, and for brevity, we do not show such weights.

We will have experimental evaluations on this aspect.

Challenges: It is non-trivial to solve the above optimization

problem due to three challenges. First, we want to solve the

problem in an online manner. That is, as time goes, at any time

slot, we want to make control decisions for that time slot while

observing only the inputs for that single time slot and no inputs

for all the future time slots. For example, for the start-up cost

cki
[
xtki − xt−1

ki

]+
, we need to make xt−1 at t−1; however, at

t−1, we have not made the decision of xt, without which it is

difficult to make a good decision of xt−1 in order to optimize

cki
[
xtki − xt−1

ki

]+
. It is a similar case for yt−1 and its start-up

cost ci
[
yti − yt−1

i

]+
. Second, the problem contains nonlinear

terms, i.e., the number of the mistakes of transfer learning

with sign(·) and I{·} functions, which are intertwined with

online training. While fk(ptm) can be observed as the offline

classifiers are given and the data samples arrive, we need to

determine how we should train or update the online classifier

f tm(·) at t in our algorithms in addition to accommodating

the nonlinearity. Third, the problem is NP-hard. The problem

contains integer variables, and is actually NP-hard as it can be

reduced to the existing uncapacitated facility location problem

(if we only retain the variables x and u and the related terms in

the formulation). The NP-hardness demands computationally

efficient algorithms. It is not easy to achieve so in the offline

setting, and it will be harder to do it in an online setting.

Goal: Our goal is to design polynomial-time approximation

algorithms which make control decisions in an online manner

and ensure that such decisions lead to a provable ªcompetitive

ratioº. The competitive ratio r is a constant, which may contain

parameters, to satisfy H1 ≤ rH∗
1 . Here, H1 refers to the value

of the objective function of the problem (1) evaluated with the

solution produced by our online algorithms, and H∗
1 refers to

that evaluated with the optimal solution of (1) which were to

be produced in the offline manner, when all the inputs were

observed all at once before the start of the entire time horizon.

Algorithm Structure: First, to overcome intractability, we

design a primal-dual approximation algorithm (i.e., Algorithm

1) to solve xt, vt and ut from the one-shot problem at any

t, assuming yt is given. Second, to overcome the challenge

of being online, we design two algorithms (i.e., Algorithm 2,

which invokes Algorithm 1, and Algorithm 3, which invokes

Algorithm 2) to (re-)solve xt, yt, vt and ut at t, pursuing

the dynamic trade-off between switching to a new decision

and continuing to stay at the previous decision. Third, to

accommodate nonlinearity and online training, we present the

overall algorithm (i.e., Algorithm 4, which invokes Algorithm

3) to set the weights zt and wt of all classifiers given xt and

yt at t, and conduct online training by updating f tm(·) per data

sample m. We elaborate these four algorithms and prove the

performance guarantees in the next two sections.

III. ALGORITHM FOR ONE-SHOT PROBLEM

In this section, we formulate the innermost problem of

the offline classifier placement for each individual time slot,

assuming all the other control decisions are pre-specified (and

these decisions will be all made in the next section). We design

a primal-dual algorithm, i.e., Algorithm 1, with a provable and

guaranteed approximation ratio for this one-shot problem.

A. Innermost Problem

Consider H1, i.e., the objective function of (1). If yt is

given, then at t, we can temporarily remove
∑

m I{sign[qtm ·
(
∑

k

∑
i z

t
kimsign(f

k(ptm)) +
∑

i w
t
imsign(f

t
m(ptm)))] < 0},

because as we will show, given yt we will use Algorithm 4

in Section IV to determine zt and wt to satisfy Constraints
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(1a)∼(1b). Also, if yt is given,
∑

i b
t
iy

t
i +

∑
m

∑
i 2d

t
miy

t
i +∑

i ci
[
yti − yt−1

i

]+
is known at t accordingly. Thus, we only

need to focus on the following part of the problem (1):

Min H2 =
∑

t,k,i

(
atkix

t
ki + cki[x

t
ki − xt−1

ki ]+
)

+
∑

t,m,i d
t
miu

t
mi +

∑
t,i d

t
iv

t
i (2)

s.t.
∑

i x
t
ki = 1, ∀k, t, (2a)∑

k x
t
ki ≤ Qt

i, ∀i, t, (2b)

vti ≥ xtki, ∀k, i, t, (2c)

utmi ≥ xtki, ∀i,m, k, t, (2d)

var. xtki, v
t
i , u

t
mi ∈ {0, 1}, (2g)

where Qt
i = Dt

i −y
t
i . As yt is given, we have replaced vtij by

vti , d
t
ij by dti, and

∑
j v

t
ij ≥ xtki by vti ≥ xtki for simplification.

This is because there is only one j where ytj = 1, and for all

the other js, we have ytj = 0. So, for this specific j, we can

set vtij = 1, ∀i; for all the other js, we naturally have vtij = 0,

∀i, due to (1h). vtij is irrelevant to j now, but corresponds to

vti in a one-to-one manner; it is a similar case for dtij and dti.

To tackle the time-coupled term
∑

t,k,i cki[x
t
ki − xt−1

ki ]+ in

H2 in an online manner, we will explore the real-time trade-

off between keeping the ªpreviousº decisions and applying

the ªnewº decisions at each t, which will be discussed later

in details. Now, in order to obtain such ªnewº decisions, we

temporarily remove
∑

k,i cki[x
t
ki − xt−1

ki ]+ in H2 to decouple

the temporal dependencies introduced by the nonlinear term

involving previous configurations. This removal simplifies the

problem into a per-slot optimization framework, enabling real-

time computation by eliminating the need to track historical

configurations. By omitting the time index t, we further

reduce the problem to a formulation that depends only on the

current system state. Although this simplification temporarily

ignores explicit cross-time penalties, it ensures computational

tractability for latency-critical edge systems; we will later

reintroduce temporal coordination through adaptive parameter

tuning in Section IV to balance stability and optimality. We

construct the following one-shot problem at any individual

t (where we have omitted the time index t to simplify

the presentation). This is also what we call our ªinnermost

problemº:

Min H3 =
∑

k,i akixki +
∑

m,i dmiumi +
∑

i divi (3)

s.t.
∑

i xki = 1, ∀k, (3a)∑
k xki ≤ Qi, ∀i, (3b)

vi ≥ xki, ∀k, i, (3c)

umi ≥ xki, ∀i,m, k (3d)

var. xki, vi, umi ∈ {0, 1}. (3e)

By relaxing the binary variables xki, vi, umi into real domains

and introducing dual variables λk, δi, ϵki, ϕkim for (3a)∼(3d),

respectively, we write the Lagrange dual problem as

Max H4 = −
∑

iQiδi −
∑

k λk (4)

s.t. aki + δi + λk + ϵki +
∑

m ϕkim ≥ 0, ∀i, k (4a)∑
k ϵki ≤ di, ∀i, (4b)

∑
k ϕkim ≤ dmi, ∀m, i, (4c)

Algorithm 1: Offline Classifier One-Shot Placement

Input: aki, dmi, di, yi, Qi = Di − yi
1 Initialize: δi, γk, ϵki, ϕkim,∆Qi = 0
2 for k ∈ [K] do

3 i+ = argmini∈[I](aki + δi +
di

K +
∑

m dmi

K );
4 while ∆Qi+ + 1 > Qi+ do

5 [I] = [I]\i+;

6 i+ = argmini∈[I](aki + δi +
di

K +
∑

m dmi

K );

7 i∗ = i+,∆Qi∗ = ∆Qi∗ + 1;

8 δi∗ = δi∗(1 +
1
Qi

) +
aki∗+di∗/K+

∑
m dmi∗/K

Qiξ
;

9 λk = −(δi∗ + aki∗ + di∗

K +
∑

m dmi∗

K );
10 xki∗ = 1, umi∗ = 1;

11 vi∗ = 1 (i.e., vi∗j = 1 where yj = 1);

Output: x,v, u

var. δi, ϵki, ϕkim ≥ 0, λk ∈ R. (4d)

B. Primal-Dual Algorithm

We design Algorithm 1 to simultaneously construct integral

feasible solutions to the primal problem (3) and feasible

solutions to the dual problem (4). The idea of the primal-dual

algorithm is to elevate the dual variable continuously until the

dual constraint becomes tight (i.e., a constraint of the form of

ax ≤ b is considered tight when ax = b), and then the primal

variable corresponding to that tight dual constraint can be set

to a non-zero value in order to still satisfy the complementary

slackness of the Karush-Kuhn-Tucker (KKT) conditions. Our

Algorithm 1 is for each t, so t is omitted from the presentation.

We explain our Algorithm 1 following the above principle.

By combing (4b) and (4c) with (4a), we can transform (4a)

into
∑

k(λk + δi + aki) + di +
∑

m dmi ≥ 0. Note that if this

inequality is tight, then (4a) is tight. One sufficient condition

to make this inequality hold is to make the following hold:

λk + δi+aki+di/K+
∑

m dmi/K ≥ 0, ∀k. Now, instead of

increasing dual variables slowly, we can directly set the value

of λk to λk = −mini∈[I](δi+aki+
di

K +
∑

m dmi

K ), which can

make (4a) tight. Afterwards, the primal variable xki, which

corresponds to (4a), can be set to 1; vi and umi can be also

set to 1 at this point. Based on what is stated above, we choose

i as i = argmini∈[I](aki + δi +
di

K +
∑

m dmi

K ) for each k, as

in Line 3 of our algorithm. Line 4 guarantees no violation

of the constraint (3b), where ∆Qi is defined as the number

of classifiers that edge i host. We regard the dual variable δi
as a reflection on the potential capability of edge i to host

offline classifiers (i.e., the larger δi, the less likely i is to be

selected). Thus, δi is increased for the selected edge i∗ due to

the decrease of ∆Qi∗ and remains intact otherwise. The update

of δi is carefully designed for achieving low additive loss in

approximation ratio, as in Line 8, where ξ = maxi∈[I]{Qi}.

Lines 9 and 10 update the dual variable λk and the primal

variables xki, vi, umi, respectively.

C. Performance Analysis

First, by Lemma 1, we demonstrate that Algorithm 1 is a

polynomial-time algorithm with no violation of the constraints
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TABLE II: Abbreviative Notations

Notation Definition

X
t
SC

∑
k,i

cki[x
t
ki − xt−1

ki
]+

X
t
−SC

∑
k,i

at
kix

t
ki +

∑
i,j

dt
ijv

t
ij +

∑
m,i

dt
miu

t
mi

∆X−SC

∑t−1

τ=t̂
X

τ
−SC

Y
t
SC

∑
i
ci[y

t
i − yt−1

i ]+

Y
t
−SC X

t
SC + X

t
−SC +

∑
i
btiy

t
i +

∑
m,i

2dt
miy

t
i

∆Y−SC

∑t−1

τ=ť
Y

τ
−SC

of the primal problem (3) and the dual problem (4). Second, by

Theorem 1 on top of Lemma 1, we derive the approximation

ratio r1. We show H3 ≤ r1H4 ≤ r1H
∗
3 , where H3 and H4

refer to the objective function values of (3) and (4) evaluated

with the feasible solutions returned by Algorithm 1; H∗
3 refers

to the optimal objective function value of the primal problem.

Note that H4 ≤ H∗
3 holds automatically due to duality.

Lemma 1. Algorithm 1 returns feasible solutions to both the

problem (3) and the problem (4) in the polynomial time.

Proof. A solution is feasible for a problem if the solution

satisfies the problem’s constraints. For (3), (3a) is satisfied by

Line 10. Lines 4∼5 ensure no violation of the edge capacity

limit, i.e., (3b). Once the edges to host offline classifiers are

determined, (3c) and (3d) are also satisfied, following Line 10.

Line 10 also guarantees (3e). For (4), this inequality
∑

k(λk+
δi+aik)+di+

∑
m dmi ≥ 0 is constructed based on (4a), (4b)

and (4c), guaranteeing they are satisfied according to Lines

3∼6. As for the time complexity of Algorithm 1, the for loop

runs K times, and the while loop in the for loop runs at most I
times according to its termination condition ∆Qi+ +1 > Qi+ .

Thus, the total time complexity is O(KI).

Theorem 1. Algorithm 1 is an r1-approximation algorithm

to the problem (3), i.e., H3 ≤ r1H
∗
3 , where r1 = ξ

ξ−1 and

ξ > 1 is a tunable parameter. The parameter ξ balances

update responsiveness and approximation quality: smaller ξ
accelerates dual updates but worsens the competitive ratio,

while larger ξ ensures better performance with slower updates.

Proof. See Appendix A.

Note that all the appendices are placed in the supplementary

material of this paper.

IV. ALGORITHMS FOR LONG-TERM LEARNING

In this section, we design Algorithms 2 and 3 that determine

in real time the offline and online classifier placement with

data dispatching and inference aggregation for each time

slot. We also design Algorithm 4 for transfer learning upon

each data sample as the classifier placement is determined

dynamically. We theoretically analyze the number of mistakes

of transfer learning and the competitive ratio for the total

cost. We use some new notations in Table II to ease our

presentation.

A. Online Algorithms for Classifiers Placement

Our main rationale is to postpone changing the placement of

the classifiers until ªappropriateº. That is, until the cumulative

non-start-up cost (i.e., operational cost and delay of transfer

learning incurred by continuing to host classifiers at previous

Algorithm 2: Conditional Offline Classifier Placement

Input: yt,∆X−SC , t̂

1 given yt, get x̃t, ṽt, ũt by invoking Algorithm 1;

2 if Xt
SC(x̃

t,xt̂) ≤ 1
ρ2
∆X−SC then

3 xt = x̃t;

4 ∆X−SC = X
t
−SC(x̃

t, ṽt, ũt) ;

5 t̂ = t;
6 else

7 xt = xt̂;

8 set ut and vt according to xt and yt;

9 ∆X−SC = ∆X−SC + X
t
−SC(x

t̂,ut,vt);

Output: xt, vt, ut, t̂

Algorithm 3: Offline and Online Classifier Placement

Input: ∆Y−SC , t̂, ť
1 for i ∈ [I] do

2 set ỹt as ỹti = 1, and ỹtj = 0 for j ̸= i;

3 given ỹt, get x̃t, ṽt, ũt by invoking Algorithm 2;

4 if Yt
SC(ỹ

t,yť) ≤ 1
ρ1
∆Y−SC then

5 yt = ỹt;

6 ∆Y−SC = Y
t
−SC(x̃

t, ỹt, ũt, ṽt);
7 ť = t;
8 else

9 yt = yť;

10 given yt, get x̃t, ṽt, ũt by invoking Algorithm

2;

11 ∆Y−SC = ∆Y−SC + Y
t
−SC(x̃

t,yt, ũt, ṽt);

12 Ht
−M = Y

t
−SC + Y

t
SC ;

13 find the minimum Ht
−M for all i and its xt,yt,ut,vt;

Output: xt, yt, vt, ut, t̂, ť

locations) exceeds the current start-up cost (i.e., downloading

cost and edge instantiation cost incurred by changing the

classifier placement) times a constant which can be controlled.

We briefly explain our Algorithm 2.1 In Line 2, ρ2 is the

controllable constant as aforementioned, and ∆X−SC records

the cumulative non-start-up cost from t̂ to t − 1, where t̂
refers to the last time slot when the offline classifier placement

changes before t. When the condition in Line 2 is satisfied,

we adopt the decision returned by Algorithm 1; otherwise, we

use the most recent decision as the current decision. We design

Algorithm 3 in a similar spirit as for Algorithm 2. Specifically,

we traverse I possible values of yt in Lines 1∼2. Then, as

in Line 4, only when ∆Y−SC exceeds Y
t
SC(ỹ

t,yť) times ρ1
will we adopt the new decision of yt, where ť indicates the

last time slot of the online classifier placement change before

t. Otherwise, in Line 10, we invoke Algorithm 2 given yť. We

record all Ht
−M with the different yt, and find the minimum

Ht
−M over all i with its corresponding decisions.

1In Algorithm 2, we use symbols like x̃ to refer to decisions obtained from
Algorithm 1. Analogously, in Algorithm 3, we use symbols like x̃ to represent
decisions obtained from Algorithm 2. This should be clear from the context.
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B. Online Algorithm for Transfer Learning

We propose our overall online transfer learning algorithm,

i.e., Algorithm 4, to tie together every per-slot optimization of

classifier placement and conduct the actual transfer learning

process as data dynamically arrive. Our algorithm conducts

online training in four steps: weights update, label inference,

parameters update, and online classifier update. First, at each

time slot, we invoke Algorithm 3 to find all the classifiers’

placements in Line 4, and for the current data sample, we

determine the weight for each classifier in Lines 7∼8. Then,

for this data sample, we conduct the joint inference as a

weighted sum of the static offline classifiers’ results and the

online classifier’s result in Line 10. As receiving the ground-

truth in Line 11, we next decrease the weights of those

classifiers which misclassify instances so as to weaken their

impact by updating the parameters used to determine the

weights for the next data sample, as in Lines 13∼17. Finally,

we update the online classifier itself based on its loss on

the current data sample, as in Lines 19∼21. Here, we regard

the data sample’s feature ptm as a support vector and add it

into the set of the support vectors of the online classifier:

f tm+1 = f tm + αt
mq

t
mf

t
m(ptm, ·), where αt

m is the coefficient

for the support vector; K (·, ·) is the kernel function; and C

is a constant trade-off value used to prevent the coefficient

of the vector from being too large. Note that we allow offline

classifiers of arbitrary and heterogeneous types or formats, but

without of loss of generality, we focus on training the online

classifier as a Support Vector Machine in this paper. This is

for concretizing our Algorithm 4, and does not impact our

performance analysis and proofs.

C. Performance Analysis

We now introduce some new notations to simplify our

descriptions. We split H1, the objective function of (1), as

H1 =
∑

t(H
t
M + Ht

−M ), where Ht
M =

∑
m I{sign[qtm ·

(
∑

k

∑
i z

t
kimsign(f

k(ptm))+
∑

i w
t
imsign(f

t
m (ptm)))] < 0},

and Ht
−M =

∑
k,i(a

t
kix

t
ki + cki[x

t
ki − xt−1

ki ]+) +
∑

i(b
t
iy

t
i +

ci[y
t
i − yt−1

i ]+) +
∑

m

∑
i(d

t
mi(u

t
mi + 2yti)) +

∑
i

∑
j d

t
ijv

t
ij .

We also use Ht∗
M and Ht∗

−M to denote their optimal values.

First, by Theorem 2, we exhibit that the total number of

mistakes, i.e.,
∑

tH
t
M , incurred by our transfer learning over

time is no greater than a constant times the total number of

mistakes incurred by the single best classifier (out of the offline

classifiers and the online classifier), plus another constant.

Second, by Theorem 3, we exhibit the competitive ratio of

Algorithm 4. That is, we show H1 ≤ rH∗
1 and find r, where

H1 is the objective function value of the problem (1), evaluated

with the solutions produced by Algorithm 4, and H∗
1 is the

optimal objective value. To do so, we derive
∑

tH
t
M ≤

r2
∑

tH
t∗
M and

∑
tH

t
−M ≤ r3

∑
tH

t∗
−M , and then find r by

H1 ≤ r2
∑

tH
t∗
M + r3

∑
tH

t∗
−M ≤ max{r2, r3}H

∗
1 = rH∗

1 .

Theorem 2. Algorithm 4 incurs the total number of mistakes

as
∑

tH
t
M ≤

(
2+2

√
2 ln(K + 1)

)
Γmin+2 ln(K+1), where

Γmin = min{Γ1, ...,Γk, ...,ΓK ,ΓO}, Γk =
∑

t,m ηtkm, ΓO =∑
t,m γtm. Here, ηtkm and γtm indicate whether the inference

computed by the offline classifier k and the online classifier is

Algorithm 4: Homogeneous Online Transfer Learning

Input: offline classifiers f [K] = (f1, f2, ..., fK),
trade-off C, and weight discount θ ∈ (0, 1)

1 Initialize: t = 1, t̂ = ť = 0, f0 = ∅, ζ0k1 = ψ1
0 = 1

K+1

2 for t = 1, 2, ..., T do

3 f t0 = f t−1;

4 invoke Algorithm 3 to obtain xt,yt;

5 for m = 0, 1, ...,M t do

6 ▷ Weights update

7 ztkmi =






ζtkm/(
∑

k ζ
t
km + ψt

m), yti = 1

0, yti = 0

8 wt
mi =






ψt
m/(

∑
k ζ

t
km + ψt

m), yti = 1

0, yti = 0

9 ▷ Label inference

10 calculate inference:

q̂tm = sign(
∑

k,i z
t
kimsign(f

k(ptm)) +∑
i w

t
imsign(f

t
m(ptm)));

11 receive ground-truth: qtm ∈ {−1,+1};

12 ▷ Parameters update

13 for k = 1, 2, ...,K do

14 ηtkm = I{sign[qtm · sign(fk (ptm))] < 0};

15 ζtk,m+1 = ζtk,mθ
ηt
km ;

16 γtm = I{sign[qtm · sign(f tm (ptm))] < 0};

17 ψt
m+1 = ψt

mθ
γt
m ;

18 ▷ Online classifier update

19 calculate loss: lt = [1− qtmf
t
m(ptm)]+;

20 if lt > 0 then

21 f tm+1 = f tm + αt
mq

t
mK(ptm, ·), where

αt
m = min{C, lt

K(pt
m,pt

m)};

wrong for the data sample m of the time slot t, respectively,

as in Algorithm 4.

Proof. See Appendix B.

Theorem 2 reveals that the cumulative number of inference

mistakes incurred by the proposed algorithm is tightly bounded

by the performance of the best offline classifier, up to a

sublinear regret term. This ensures that the online classifier

learns effectively over time and minimizes errors adaptively.

Theorem 3. Algorithm 4 is an r-competitive online algorithm

to the problem (1), i.e., H1 ≤ rH∗
1 , where r = max {r2, r3},

r2 = ln(1/θ)+ln(K+1)
1−θ , and r3 = (1+ 1

ρ1
)(1+ 1

ρ2
+Dmax)r1σ.

Here, θ is a constant in Algorithm 4; ρ1 and ρ2 are constants in

Algorithms 2 and 3; r1 is the approximation ratio of Algorithm

1, as in Theorem 1; Dmax = max{maxi,k,t{
bti

at
k,i

K
}, 2}; and

σ = maxt{
maxi{

∑
k aki+

∑
j dij+

∑
m dmi}

mini

∑
k aki

}.

Proof. See Appendix C.

Theorem 3 shows that our algorithm achieves an r-

competitive ratio with respect to the offline optimum, where

r is tightly linked to system heterogeneity and algorithm

parameters. The structure of this ratio indicates that the
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performance gap is bounded and manageable under practical

configurations.

V. HETEROGENEOUS ONLINE TRANSFER LEARNING

While the previous sections assume that the offline classi-

fiers and the online classifier have the same or homogeneous

feature space, in this section, we consider the setting that they

have different or heterogeneous feature spaces. We focus on

the case where the feature space of each offline classifier is a

ªsubsetº of that of the online classifier [32]. For example, for

three offline classifiers and one online classifier, if each data

sample for the online classifier has the features in the form of

{pm1, pm2, pm3}, then each data sample for the three offline

classifiers could have the feature in the form of {pm1, pm2},

{pm2, pm3}, and {pm3}, respectively. The feature space of

every offline classifier can be arbitrary but may not have the

full dimensions of the feature space of the online classifier.

In this section, we model and formulate the total cost

minimization problem of the distributed heterogeneous online

transfer learning in the cloud-edge networks. We also design

a set of new algorithms to address this case with a provable

competitive ratio for the total cost.

We summarize our additional notations in Table III.

TABLE III: Additional Notations

Inputs Descriptions

At
ιki

Operational cost of hosting the offline or online (depend-
ing on ι) classifier k on the edge i at t

Bt
i

Operational cost of inference aggregation on the edge i
at t

Cιki

Start-up cost of downloading offline classifier k from the
cloud to edge i, or preparing the VMs or containers for
the online classifier k on the edge i (depending on ι)

Ci Start-up cost of inference aggregation on the edge i

ftιkm(·)
Decision function of the offline or online classifier k at
the time slot t for the data sample m

Ft
kim(·)

Strong classifier which combines the decision functions
ftιkm(·) at the time slot t for the data sample m on the
edge i

Decisions Descriptions

Xt
ιki

Whether or not the offline or online (depending on ι)
classifier k is downloaded from the cloud and hosted on
the edge i at the time slot t

Y t
i

Whether or not the edge i at the time slot t is selected
for inference aggregation

P t
kim

Weight for the strong classifier Ft
kim(·) on the edge i

for the data sample m at the time slot t

W t
ιkim

Weight for the offline or online (depending on ι) classifier
k on the edge i for the data sample m at the time slot t

U t
mi

Whether or not to transfer the ground-truth label of m
from the edge where it arrives to the edge i that hosts
the online classifier(s) at t

V t
ij

Whether or not to transfer the decision results of classi-
fiers from the edge i to the edge j at t

A. System Models

Distributed Heterogeneous Online Transfer Learning: For

the data sample m of the time slot t, ft0km(·) is the decision

function of the offline classifier k with the feature space R
k,

where ft0km(·) = ft+1
0k0 (·), ∀t, k,m; and ft1km(·) and ft2km(·) are

the decision functions of the online classifiers with the feature

spaces R
k and R

o/Rk, respectively, where R
o is the feature

space of the online classifier. Unlike homogeneous transfer

qm
t

+

+

qm
t pm

t pm
t

pm
t

②

③

①

^

⋅

qm
t qm

t

t p0km
t

0km

t
0km ⋅t

1km ⋅t
2km

 

(      )

t p01m
t

01m(      )
t p0km

t
0km(      )

t p1km
t

1km(      )

t p11m
t

11m(      ) t p1km
t

1km(      )

t p2km
t

2km(      )

t p21m
t

21m(      )
④

⋅t
1km

⋅t
1km+1

④

⋅t
2km

⋅t
2km+1

t p2km
t

2km(      )...

...

...

Fig. 3: Heterogeneous Transfer Learning per Data Sample

learning, here we have two decision functions for the online

classifiers corresponding to each offline classifier. That is, in

this setting, the total number of the online classifiers in the

system is twice as many as the offline classifiers. We thus

allow that each online classifier can be on a different edge,

and that the weights for all the offline and online classifiers

still need to be hosted collectively on one common edge for

conducting inference aggregation, no matter this edge hosts

offline classifiers, online classifiers, or no classifier.

At the time slot t, as the data sample m arrives at the

system, we design the heterogeneous transfer learning process

that works as follows, also shown in Fig. 3:

• Step 1: The data sample m with its feature value ptm is

dispatched to every edge that has the offline classifiers

or the online classifiers. Receiving ptm, every offline

classifier k splits the feature ptm into pt1km ∈ R
k and

pt2km ∈ R
o/Rk, and each offline classifier k computes

ft0km(pt0km), where we denote pt0km = pt1km, ∀t, k,m;

and the online classifiers also split the feature and com-

pute ft1km(pt1km) and ft2km(pt2km).
• Step 2: The decisions from the offline classifiers and

online classifiers are sent to the single edge that is

selected for the weights update and the inference ag-

gregation to compute the inferred label as q̂tm =
sign

[∑
k

∑
i P

t
kimFt

kim(ptm)
]
, where Ft

kim(ptm) =
sign

{∑
ιW

t
ιkimsign[f

t
ιkm(ptιkm)]

}
, W t

ιkim is the weight

for the classifier ftιkm(·) on the edge i, where ι = 0, 1, 2;

and Ft
kim(ptm) serves as a ªstrongº classifier which

combines the decision functions ftιkm(·); and P t
kim is the

weight for this strong classifier.

• Step 3: The inferred label q̂tm is then sent to the edge

where the data sample m arrives originally, and is further

sent back to the user.

• Step 4: The ground-truth label qtm arrives at that same

edge, and is dispatched to the selected edge as in Step

2, where the weight for each classifier is updated. Note

that this ground-truth label qtm is also dispatched to every

edge that hosts any online classifier(s), where the deci-

sion function(s) of such online classifier(s) are updated,

i.e., ft1km(·) and ft2km(·) are updated to ft1km+1(·) and

ft2km+1(·), ∀k.

Control Decisions: We focus on the following control

decisions. We use Xt
ιki ∈ {1, 0} to denote whether or not

the offline classifier k is hosted on the edge i at the time slot

t (when ι = 0), or whether or not the online classifiers that

correspond to the offline classifier k are hosted on the edge

i at the time slot t (when ι = 1, 2). We use Y t
i ∈ {1, 0} to
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denote whether or not the edge i at the time slot t is chosen

for maintaining the weights and conducting the inference

aggregation. We use U t
mi ∈ {1, 0} to denote whether or not

to transfer the ground-truth label of m from the edge where it

arrives to the edge i at the time slot t (for updating decision

functions). We use V t
ij to denote whether or not to transfer the

decision results from the edge i to the edge j at the time slot

t. We use P t
kim ∈ [0, 1] to denote the weight for the strong

classifier, and use W t
ιkim ∈ [0, 1] to denote the weight for

the offline classifier k (ι = 0) and the weights for the online

classifiers that correspond to the offline classifier k (ι = 1, 2)

on the edge i for the data sample m at the time slot t. Besides

these decision variables, we continue to use utmi ∈ {1, 0} to

denote whether or not to transfer the data sample m from the

edge where it arrives to the edge i at t, as in previous sections.

Note that from now on U t
mi and utmi have different meanings.

Cost of Heterogeneous Online Transfer Learning:

The cost at any individual time slot t consists of the

following components: (1) the operational cost of hosting

classifiers and conducting inference aggregation on edges:∑
ι

∑
k

∑
iA

t
ιkiX

t
ιki +

∑
iB

t
iY

t
i ; (2) the start-up cost of

preparing the VMs or containers on edges for hosting

classifiers and for conducting inference aggregation:∑
ι

∑
k

∑
i Cιki

[
Xt

ιki −Xt−1
ιki

]+
+

∑
i Ci

[
Y t
i − Y t−1

i

]+
,

where [·]+ = max{·, 0}; (3) the performance overhead

incurred by running distributed heterogeneous transfer

learning across edges, including the delay of dispatching

data samples
∑

m

∑
i d

t
miu

t
mi, the delay of dispatching the

ground-truth label to the edges that have online classifiers

for updating decision functions
∑

m

∑
i d

t
miU

t
mi, the delay

of transmitting decisions of offline and online classifiers∑
i

∑
j d

t
ijV

t
ij , and the delay of transmitting the inferred label

and the ground-truth label from (or to) the edge that is selected

for conducting the inference aggregation 2 ·
∑

m

∑
i d

t
miY

t
i .

All the new coefficients here, such as At
ιki, B

t
i , Cιki, and Ci,

have similar meanings to the corresponding notations as in

the homogeneous transfer learning setting.

Mistakes of Heterogeneous Online Transfer Learning:

We consider the number of ªmistakesº, i.e., the number of

occurrences where the inferred label does not match the

ground-truth label. We denote the number of mistakes for any

time slot t as I

{
sign

[
qtm ·

(∑
k

∑
i P

t
kimFt

kim(ptm)
)]
< 0

}
.

B. Problem Formulation

We minimize the sum of the long-term total cost and total

number of mistakes of heterogeneous online transfer learning:

Min H5 =
∑

t

∑
ι

∑
k

∑
i

(
At

ιkiX
t
ιki + Cιki[X

t
ιki −Xt−1

ιki ]+
)

+
∑

t

∑
i

∑
j d

t
ijV

t
ij +

∑
t

∑
i

(
Bt

iY
t
i + Ci[Y

t
i − Y t−1

i ]+
)

+
∑

t

∑
m

∑
i d

t
miU

t
mi +

∑
t

∑
m

∑
i (d

t
mi (u

t
mi + 2Y t

i ))

+
∑

t

∑
m I

{
sign

[
qtm ·

(∑
k

∑
i P

t
kimFt

kim(ptm)
)]
< 0

}

(5)

s.t. P t
kim ≤ Y t

i , ∀k, i, t,m, (5a)

W t
ιkim ≤ Y t

i , ∀ι, k, i, t,m, (5b)
∑

i Y
t
i = 1, ∀t, (5c)

∑
iX

t
ιki = 1, ∀ι, t, k, (5d)

∑
k

∑
i P

t
kim = 1, ∀m, t, (5e)∑

ι

∑
iW

t
ιkim = 1, ∀k,m, t, (5f)

∑
ι

∑
kX

t
ιki + Y t

i ≤ Dt
i , ∀i, t, (5g)∑

j V
t
ij ≥ Xt

ιki, ∀ι, k, i, t, (5h)

V t
ij ≤ Y t

j , ∀i, j, t, (5i)

utmi ≥ Xt
ιki, ∀ι, k, i,m, t, (5j)

U t
mi ≥ Xt

ιki, ∀ι ∈ {1, 2}, k, i,m, t, (5k)

var. Xt
ιki, Y

t
i , u

t
mi, U

t
mi, V

t
ij ∈ {0, 1},

P t
kim,W

t
ιkim ∈ [0, 1].

Constraints (5a) and (5b) ensure that only the edge that

is selected for conducting inference aggregation can maintain

all the weights of all the classifiers. Constraint (5c) ensures

that only one edge in the system is selected for inference

aggregation. Constraint (5d) ensures that every classifier is

hosted on one edge. Constraint (5e) states that the weights

of the strong classifiers are normalized and their sum is one.

Constraint (5f) states that the weights of the decision functions

are normalized and their sum is one. Constraints (5g) ∼
(5j) are similar to Constraints (1f) ∼ (1i). Constraint (5k)

guarantees that every ground-truth label is dispatched to every

edge that hosts online classifiers for updating the decision

functions of these online classifiers.

C. Algorithm Design

We design Algorithms 5∼8 to solve this problem, which are

related to but different from Algorithms 1∼4: (i) the placement

algorithms change from firstly placing the online classifier

and then placing the offline classifiers to firstly deciding the

inference aggregation and then jointly placing both online and

offline classifiers; (ii) the online transfer learning algorithm

changes from homogeneous to heterogeneous, working with

the split feature spaces of the data samples that arrive online.

System Control: We describe Algorithms 5∼7 first. Con-

sider H5, i.e., the objective function of (5). We now assume

that Y t is given, and remove the mistakes of the heterogeneous

transfer learning. Unlike the homogeneous transfer learning,

the model of the heterogeneous transfer learning contains

an unconventional Constraint (5k). To overcome this, we

introduce Ât
ıȷi, X̂

t
ıȷi, Ĉıȷi, and dtımiÛ

t
ımi as replacements for

At
ιki, X

t
ιki, Cιki, and dtmiU

t
mi, respectively, where ı ∈ [0, 1]

and ȷ ∈ [0, ...,Kı]. If ı = 0, it represents the offline classifiers,

and K0 = K. If ı = 1, it represents the online classifiers, and

K1 = 2K. With this approach, we no longer classify online

classifiers into two categories, but instead focus on online or

offline classifiers. Note that if ȷ > K, then Ât
1ȷi = At

2ȷ−Ki,

X̂t
1ȷi = Xt

2ȷ−Ki, Ĉ1ȷi = C2ȷ−Ki; if ȷ ≤ K, then Ât
ıȷi = At

ıȷi,

X̂t
ıȷi = Xt

ıȷi, Ĉıȷi = Cıȷi, ∀ı, ȷ, i. We set dt0mi = 0,

dt1mi = dmi, ∀m, i to ensure that the value of Û t
0mi has

no effect on our objective function. Given Y t, we obtain the

following problem:

Min H6 =
∑

t,ı,ȷ,i

(
Ât

ıȷiX̂
t
ıȷi + Ĉıȷi[X̂

t
ıȷi − X̂t−1

ıȷi ]+
)
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+
∑

t,m,i d
t
miu

t
mi +

∑
t,i d

t
iV

t
i +

∑
t,ı,m,i d

t
ımiÛ

t
ımi

(6)

s.t.
∑

i X̂
t
ıȷi = 1, ∀ı, ȷ, t, (6a)

∑
ı,ȷ X̂

t
ıȷi ≤ Et

i , ∀i, t, (6b)

V t
i ≥ X̂t

ıȷi, ∀ı, ȷ, i, t, (6c)

utmi ≥ X̂t
ıȷi, ∀ı, ȷ,m, i, t, (6d)

Û t
ımi ≥ X̂t

ıȷi, ∀ı, ȷ,m, i, t, (6f)

var. X̂t
ıȷi, V

t
i , u

t
mi, Û

t
ımi ∈ {0, 1}, (6g)

where Et
i = Dt

i − Y t
i . Given Y t, we can simplify the

expressions in the model by replacing V t
ij with V t

i , dtij with

dti, and
∑

j V
t
ij ≥ X̂t

ıȷi with V t
i ≥ X̂t

ıȷi. We can also replace

Constraint (5k) with Constraint (6f) since dt0mi = 0 and the

value of Û t
0mi has no impact on the objective function H6.

We obtain the ªinnermost problemº of heterogeneous online

transfer learning:

Min H7 =
∑

ı,ȷ,i ÂıȷiX̂ıȷi +
∑

ı,m,i dımiÛımi

+
∑

m,i dmiumi +
∑

i diVi (7)

s.t.
∑

i X̂ıȷi = 1, ∀ı, ȷ, (7a)
∑

ı,ȷ X̂ıȷi ≤ Ei, ∀i, (7b)

Vi ≥ X̂ıȷi, ∀ı, ȷ, i, (7c)

umi ≥ X̂ıȷi, ∀ı, ȷ,m, i, (7d)

Ûımi ≥ X̂ıȷi, ∀ı, ȷ,m, i, (7e)

var. X̂ıȷi, Vi, umi, Ûımi ∈ {0, 1}. (7f)

By relaxing the binary variables X̂ıȷi, Vi, umi, and Ûımi into

real domains and introducing dual variables κıȷ, ςi, ϱıȷi, υıȷim,

and Φıȷim for (7a)∼(7e), respectively, we can express the

Lagrange dual problem as

Max H8 = −
∑

iEiςi −
∑

ı,ȷ κıȷ (8)

s.t. Âıȷi + ςi + κıȷ + ϱıȷi

+
∑

m υıȷim +
∑

m Φıȷim ≥ 0, ∀ı, i, ȷ, (8a)
∑

ı,ȷ ϱıȷi ≤ di, ∀i, (8b)
∑

ı,ȷ υıȷim ≤ dmi, ∀m, i, (8c)
∑

ȷ Φıȷim ≤ dımi, ∀ı,m, i, (8d)

var. ςi, ϱıȷi, υıȷim,Φıȷim ≥ 0, κıȷ ∈ R. (8e)

We design Algorithm 5 to simultaneously construct integral

feasible solutions to the primal problem (7) and feasible solu-

tions to the dual problem (8). In Algorithm 5, Lines 4 ∼ 11,

we cautiously maintain feasible solutions to both the primal

and the dual problems, where ∆Ei is defined as the number

of classifiers that edge i hosts, and ϖ = maxi∈[I]{Ei}. Lines

12 ∼ 20 update the variables Ûımi, Umi, Xιki and Vi.
We then design Algorithms 6 and 7 to determine in real-time

the classifier placement with data dispatching and inference

aggregation at each time slot. Note that although Algorithms 6

and 7 have a similar structure compared to Algorithms 2 and 3,

the underlying idea has changed as described at the beginning

of this section. Regarding the notations, we use Xt
SC , Xt

−SC ,

∆X−SC , Yt
SC , Yt

−SC and ∆Y−SC , to replace X
t
SC , Xt

−SC ,

Algorithm 5: Classifier One-Shot Placement

Input: Aιki, dmi, di, Yi, Ei = Di − Yi
1 Initialize: κıȷ, ςi, ϱıȷi, υıȷim,Φıȷim,∆Ei = 0
2 for ı ∈ {0, 1} do

3 for ȷ ∈ [Kı] do

4 i+ = argmini∈[I](Âıȷi + ςi +
di

3K +
∑

m dmi

3K +∑
ı,m dımi

3K );
5 while ∆Ei+ + 1 > Ei+ do

6 [I] = [I]\i+;

7 i+ = argmini∈[I](Âıȷi + ςi +
di

3K +∑
m dmi

3K +
∑

ı,m dımi

3K );

8 i∗ = i+,∆Ei∗ = ∆Ei∗ + 1;

9 ςi∗ = ςi∗(1 +
1
Ei

) +
Âıȷi∗+di∗/3K+

∑
m dmi∗/3K+

∑
ı,m dımi∗/3K

Eiϖ
;

10 κıȷ =

−(ςi∗ + Âıȷi∗ +
di∗

3K +
∑

m dmi∗

3K +
∑

ı,m dımi∗

3K );

11 X̂ıȷi∗ = 1, umi∗ = 1;

12 if ı == 1 then

13 Ûımi∗ = 1, Umi∗ = 1;

14 if ȷ > K then

15 X2ȷ−Ki∗ = X̂ıȷi∗ ;

16 else

17 Xıȷi∗ = X̂ıȷi∗ ;

18 else

19 Ûımi∗ = 1;

20 Vi∗ = 1 (i.e., Vi∗j = 1 where Yj = 1);

Output: X,U , u, V

TABLE IV: Abbreviative Notations for Heterogeneous Case

Notation Definition

Xt
SC

∑
ι,k,i

Cιki[X
t
ιki − Xt−1

ιki
]+

Xt
−SC

∑
ι,k,i

At
ιkiX

t
ιki +

∑
i,j

dt
ijV

t
ij

+
∑

m,i
dt
miu

t
mi +

∑
m,i

dt
miU

t
mi

∆X−SC

∑t−1

τ=t̂
Xτ

−SC

Yt
SC

∑
i
Ci[Y

t
i − Y t−1

i ]+

Yt
−SC Xt

SC + Xt
−SC +

∑
i
Bt

iY
t
i +

∑
m,i

2dt
miY

t
i

∆Y−SC

∑t−1

τ=ť
Yτ

−SC

∆X−SC , Yt
SC , Yt

−SC and ∆Y−SC . For the quick reference,

we have summarized these new notations in Table IV.

Learning Control: We describe our heterogeneous online

transfer learning algorithm, i.e., Algorithm 8. This algorithm

has four steps: weights update, label inference, parameters

update, and online classifiers update. First, at each time slot,

we invoke Algorithm 5 to find all the classifiers’ placements

in Line 3, and for the current data sample, we split the

corresponding data instance ptm into two parts: pt1km ∈
R

k(pt0km = pt1km, ∀t, k,m) and pt2km ∈ R
o/Rk, as in Line

5. We determine the weight for the base decision function

ftιkm(ptιkm) in Line 7, and determine the weight for the strong

classifier Ft
kim(ptm) in Line 8. Then, for this data sample, we

calculate the value of the strong classifier Ft
kim(ptm) in Line

10, and conduct the joint inference as a weighted sum of the
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Algorithm 6: Conditional Classifier Placement

Input: Y t,∆X−SC , t̂

1 given Y t, get X̃t, Ũ t, ũt, Ṽ t by invoking Algorithm

5;

2 if Xt
SC(X̃

t,X t̂) ≤ 1
ρ2
∆X−SC then

3 Xt = X̃t;

4 ∆X−SC = Xt
−SC(X̃

t, Ũ t, ũt, Ṽ t) ;

5 t̂ = t;
6 else

7 Xt = X t̂;

8 set U t, ut and V t according to Xt and Y t;

9 ∆X−SC = ∆X−SC +Xt
−SC(X

t̂,U t,ut,V t);

Output: Xt, U t, ut, V t, t̂

Algorithm 7: Inference Aggregation Placement

Input: ∆Y−SC , t̂, ť
1 for i ∈ [I] do

2 set Ỹ t as Ỹ t
i = 1, and Ỹ t

j = 0 for j ̸= i;

3 given Ỹ t, get X̃t, Ũ t, ũt, Ṽ t by invoking

Algorithm 6;

4 if Yt
SC(Ỹ

t,Y ť) ≤ 1
ρ1
∆Y−SC then

5 Y t = Ỹ t;

6 ∆Y−SC = Yt
−SC(X̃

t, Ỹ t, Ũ t, ũt, Ṽ t);
7 ť = t;
8 else

9 Y t = Y ť;

10 given Y t, get X̃t, Ũ t, ũt, Ṽ t by invoking

Algorithm 6;

11 ∆Y−SC =

∆Y−SC +Yt
−SC(X̃

t,Y t, Ũ t, ũt, Ṽ t);

12 Ht
−HM = Yt

−SC +Yt
SC ;

13 find the minimum Ht
−HM for all i and its

Xt,Y t,U t,ut,V t;

Output: Xt, Y t, U t, ut, V t, t̂, ť

strong classifiers’ results in Line 11. As receiving the ground-

truth label in Line 12, we next decrease the weights of those

classifiers which misclassify the instances in Lines 15 ∼ 23.

Finally, we update online classifiers based on their loss on the

current data sample, as in Lines 25 ∼ 30.

D. Performance Analysis

Our analysis is organized as follows. First, by Lemma 2,

we show that Algorithm 5 is a polynomial-time algorithm

producing the feasible solution to the problem (7). Second, by

Theorem 4 on top of Lemma 2, we derive the approximation

ratio r4 of Algorithm 5. Then, by Theorem 5, we show that

the total number of the mistakes incurred by the heterogeneous

online transfer learning possesses an upper bound. Finally, by

Theorem 6, we show the competitive ratio of Algorithm 8.

Lemma 2. Algorithm 5 returns feasible solutions to both the

problem (7) and the problem (8) in the polynomial time.

Algorithm 8: Heterogeneous Online Transfer Learning

Input: offline classifiers f10k0(·), trade-off C, and

weight discount β1, β2 ∈ (0, 1)
1 Initialize: t = 1, t̂ = ť = 0, f11k0 = ∅, f12k0 = ∅,

ψ1
ιk0 = 1/3, ζ1k0 = 1/K

2 for t = 1, 2, ..., T do

3 invoke Algorithm 7 to obtain Xt,Y t;

4 for m = 0, 1, ...,M t do

5 Split ptm into two instance:

pt1km(pt0km = pt1km, ∀t, k,m), pt2km ;

6 ▷ Weights update

7 W t
ιkim =






ψt
ιkm/

∑
ι ψ

t
ιkm, Y t

i = 1

0, Y t
i = 0

8 P t
kim =






ζtkm/
∑

k ζ
t
km, Y t

i = 1

0, Y t
i = 0

9 ▷ Label inference

10 Ft
kim(ptm) =
sign

(∑
ιW

t
ιkimsign(f

t
ιkm(ptιkm))

)
;

11 calculate inference:

q̂tm = sign
[∑

k

∑
i P

t
kimFt

kim(ptm)
]
;

12 receive ground-truth: qtm ∈ {−1,+1};

13 for k = 1, 2, ...,K do

14 ▷ Parameters update

15 for ι = 0, 1, 2 do

16 if sign(qtmftιkm(ptιkm)) < 0 then

17 ψt
ιkm+1 = ψt

ιkmβ2;

18 else

19 ψt
ιkm+1 = ψt

ιkm;

20 if sign(qtm
∑

i F
t
kim(ptm)) < 0 then

21 ζtkm+1 = ζtkmβ1;

22 else

23 ζtkm+1 = ζtkm;

24 ▷ Online classifiers update

25 for ι = 1, 2 do

26 calculate loss:

ltι = [1− qtmftιkm(ptιkm)]+;

27 if ltι > 0 then

28 ftιkm+1 =
ftιkm + αt

ιmq
t
mKk,ι(p

t
ιkm, ·), where

αt
ιm = min{C, ltι

Kk,ι(pt
ιkm

,pt
ιkm

)
};

29 else

30 ftιkm+1 = ftιkm;

Proof. A solution is feasible for a problem if the solution

satisfies the problem’s constraints. For (7), (7a) is satisfied

by Line 11. Lines 5∼6 ensure no violation of the edge

capacity limit, i.e., (7b). Once the edges to host classifiers are

determined, (7c) and (7d) are also satisfied, following Lines 11

and 20. Lines 13 and 19 guarantee (7e). For (8), this inequality∑
ı

∑
ȷ(κıȷ + ςi + Âıȷi) + di +

∑
m dmi +

∑
ι,m dιmi ≥ 0 is

constructed based on (8a), (8b), (8c) and (8d), guaranteeing

they are satisfied according to Lines 4∼7. As for the time
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complexity of Algorithm 5, the for loop runs 3K times, and

the while loop in the for loop runs at most I times according

to its termination condition ∆Ei+ + 1 > Ei+ . Thus, the total

time complexity is O(KI).

Theorem 4. Algorithm 5 is an r4-approximation algorithm to

the problem (7), i.e., H7 ≤ r4H
∗
7 , where r4 = ϖ

ϖ−1 .

Proof. See Appendix D.

We introduce several new notations to simplify our de-

scriptions. Now, we split H5, the objective function of

(5), as H5 =
∑

t(H
t
HM + Ht

−HM ), where Ht
HM =

∑
m I

{
sign

[
qtm · (

∑
k

∑
i P

t
kimFt

kim(ptm))
]

< 0
}

and

Ht
−HM =

∑
ι

∑
k

∑
i(A

t
ιkiX

t
ιki + Cιki[X

t
ιki − Xt−1

ιki ]+) +∑
i(B

t
iY

t
i +Ci[Y

t
i −Y t−1

i ]+)+
∑

m

∑
i(d

t
mi(u

t
mi +2Y t

i ))+∑
i

∑
j d

t
ijV

t
ij +

∑
m

∑
i d

t
miU

t
mi. We also use Ht∗

HM and

Ht∗
−HM to denote their optimal values.

Theorem 5. Algorithm 8 incurs the total number of mistakes

as
∑

tH
t
HM ≤ Υmin(4(

1+β2

2β2
+ ln 3

1−β2
)( 1+β1

2β1
+ lnK

1−β1
)), where

Υmin = min{Υk}, Υk = min{Λk
0 ,Λ

k
1 ,Λ

k
2}. Here, Λk

ι =∑T
t=1

∑Mt

m=0 I
{
sign[qtmftιkm(ptιkm)] < 0

}
, ∀ι ∈ {0, 1, 2},

I
{
sign[qtmftιkm(ptιkm)] < 0

}
indicates whether the inference

computed by the offline or online classifier is wrong for the

data sample m of the time slot t, respectively, as in Algorithm

8.

Proof. See Appendix E.

Theorem 6. Algorithm 8 is an R-competitive online algorithm

to the problem (5), i.e., H5 ≤ RH∗
5 , where R = max {r5, r6},

r5 = 4( 1+β2

2β2
+ ln 3

1−β2
)( 1+β1

2β1
+ lnK

1−β1
), and r6 = (1 + 1

ρ1
)(1 +

1
ρ2

+Dmax)r4σ1. Here, β1 and β2 are constants in Algorithm

8; ρ1 and ρ2 are constants in Algorithms 6 and 7, as in

Algorithms 2 and 3; r4 is the approximation ratio of Algorithm

5, as in Theorem 4; Dmax = max{maxt,ι,k,i{
Bt

i

3At
ιki

K
}, 2};

and σ1 = maxt{
maxi{

∑
ι,k Aιki+

∑
j dij+2

∑
m dmi}

mini

∑
ι,k Aιki

}.

Proof. See Appendix F.

VI. EXPERIMENTAL STUDY

A. Experimental Settings

Transfer Learning Datasets: We use the text classification

dataset 20Newsgroups [29], which contains nearly 20,000

newsgroup documents with 61,188 unique words (i.e., fea-

tures), associated to multiple topics. Each topic has several

sub-topics, and each document has been labelled with one

and only one sub-topic. We consider the 8843 documents

associated to all the sub-topics of comp and sci, as in Table V.

We treat all the sub-topics of comp as the label of +1, and all

the sub-topics of sci as the label of −1. By matching one sub-

topic from +1 with another sub-topic from −1, we have 20

pairs of sub-topics in total and for each of such pairs, we can

train a Support Vector Machine (SVM). All our evaluations use

this dataset by default, unless explicitly specified otherwise.

We also use the dataset Wine Reviews [30], which con-

tains 130,000 reviews with the information on variety, location,

winery, price, points, and description. We use description

TABLE V: Sub-topics of Documents

Label of +1 Label of −1
comp.graphics sci.crypt

comp.os.ms-windows.misc sci.electronics
comp.sys.ibm.pc.hardware sci.med

comp.sys.mac.hardware sci.space
comp.windows.x

as the feature and treat points no less than 90 as the label

+1, and points less than 90 as the label −1. We use

country to identify the top twelve countries with the highest

data volume. For each of these countries, we can train an SVM.

Transfer Learning Classifiers: For the first dataset as

aforementioned, for the homogeneous transfer learning setting,

we select the SVM with comp.windows.x and sci.space as our

online classifier (with a linear kernel function) to be trained,

and the rest 19 SVMs as our existing offline classifiers. For the

heterogeneous transfer learning setting, we select the rest 19

SVMs as our offline classifiers. The feature space is divided

into 19 portions on average, corresponding to the feature space

of each offline classifier. We select the 38 SVMs as our online

classifier (with a linear kernel function) to be trained.

For the second dataset as aforementioned, for the homoge-

neous transfer learning setting, we select the SVM with US

as our online classifier (with a linear kernel function) to be

trained, and the remaining 11 SVMs as our existing offline

classifiers. For the heterogeneous transfer learning setting,

we select the remaining 11 SVMs as our offline classifiers.

The feature space is divided into 11 portions on average,

corresponding to the feature space of each offline classifier.

We select the 22 SVMs as our online classifiers (with a linear

kernel function) to be trained.

We note that in the heterogeneous case, two online clas-

sifiers correspond to one offline classifier, where one online

classifier is trained with the same features as the offline

classifier and the other is trained with the remaining features.

Edge Networks and Data Samples: We adopt the data of the

268 underground stations in London with dynamic passenger

counts [26]. We choose the first 25 stations based on the total

passenger count at each station, and envisage that each of such

stations has an edge. We study the system for T = 24 hours

and set the length of a single time slot as 15 minutes. We

consider one document as one data sample. Based on the ratio

of the passenger count at each edge in each time slot over the

total passenger count across all edges and time slots, we spread

the 8843 documents proportionally. We use the geographical

distance [27] to estimate the network delay between the two

edges. We set the dynamic operational cost as within [2, 8]
cents/kWh, following the wholesale electricity prices [28]. We

vary the unit start-up cost as multiplied by a weight in order

to demonstrate a spectrum of different results. Note that the

operational and start-up costs for both the homogeneous and

heterogeneous settings are the same. We assume that each edge

can host 2∼8 VMs or classifiers at most.

Algorithms and Implementation: We implement the fol-

lowing algorithms for comparison: (i) Proposed refers to

our proposed homogeneous or heterogeneous online transfer

learning algorithms; (ii) Delay_only chooses edges for clas-

sifiers only based on optimizing delay regardless of other costs,
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and directly downloads classifiers and/or preparing VMs as

the one-shot optimum indicates (i.e., without postponing start-

up); (iii) OC_only chooses edges only based on optimizing

operational cost regardless of others and without postponing

state switching; (iv) Random selects edges randomly without

considering any cost optimization; (v) OLSA is a state-of-the-

art method that selects edges based on delay, operational cost,

and start-up cost via a so-called lazy switching strategy [31].

We also adopt and implement state-of-the-art homogeneous

and heterogeneous online transfer learning algorithms for

comparison. For homogeneous settings, we implement (i)

HomOTL_1 [32], (ii) HomOTL_2 [32], and (iii) OMTL_MC

[33], which all dynamically update the combination weights

for the classifiers according to their performance. HomOTL_1

uses a fixed combination of online and offline classifiers, while

HomOTL_2 adjusts the weights based on prediction mistakes.

OMTL_MC employs a two-stage ensemble strategy by first

combining each offline classifier with the online classifier,

and then aggregating the resulting models. For heterogeneous

settings, we implement (iv) HetOTL_3 [32], which partitions

the feature space and uses separate classifiers for each part,

updating their weights based on prediction mistakes, and (v)

OHKT, which is an approach that predicts the combination

weights via SVM [34].

Our implementation includes around 9,000 lines of Python

codes, and we conduct all evaluations on a commodity laptop

with an Intel Core i5 2.9-GHz CPU and 8-GB RAM.

B. Results for Homogeneous Setting

Total Cost: Fig. 4 visualizes the total cost of the different

algorithms per time slot as time goes. Proposed always

has the lowest total cost, achieving 47% less total cost than

Delay_only, 61% less total cost than OC_only, 54% less

total cost than Random, and 46% less total cost than OLSA.

This improvement comes from our method’s ability to jointly

optimize delay, operational cost, and start-up cost. In contrast,

Delay_only and OC_only overlook important cost com-

ponents, resulting in either high latency or frequent switching.

Random performs worst due to its lack of optimization, while

OLSA considers multiple costs but lacks joint optimization of

system capacity constraints in the online setting.

Impact of Operational Cost and Delay: Fig. 5 and Fig.

6 compare the total cost incurred by different algorithms

as the weight of the operational cost and the weight of

the delay varies, respectively. Proposed beats others no

matter how these weights change. In Fig. 5, OC_only which

only optimizes operational cost embodies more advantages

compared to Delay_only and Random, and is getting

closer to OLSA because the weight of the operational cost

increases; yet, as the operational cost becomes more weighted,

Proposed still outperforms all others by balancing among

the different cost components. The maximum cost reduction

of Proposed is 51.3% compared to Delay_only, 37.3%

compared to OC_only, 63.1% compared to Random, and

37.0% compared to OLSA. In Fig. 6, Proposed yields the

maximum reduction of 48.3%, 61.5%, 55.6%, and 48.2%

compared to Delay_only, OC_only, Random, and OLSA.

Impact of Start-up Cost: Fig. 7 compares the normalized

total costs of different algorithms as the weight on the start-

up cost varies. Proposed beats all others. Proposed beats

Delay_only and OC_only because the latter always pursue

one-shot optimum in each time slot and essentially neglect

the start-up cost. Thus, as the weight grows (i.e., the start-up

becomes more dominating), Proposed becomes better. The

maximum cost reduction of Proposed is 300% compared

to Delay_only, 450% compared to OC_only, 500% com-

pared to Random, and 75% compared to OLSA.

Impact of ρ2: Fig. 8 investigates how ρ2 affects the total

cost. Algorithm 2 is controlled by its parameter ρ2, which is

used to compare the cumulative non-start-up cost against the

start-up cost and then determine whether to change the offline

classifier placement. The total cost decreases as ρ2 goes up
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when below 10, and as ρ2 goes down when exceeding 10,

respectively. A smaller ρ2 incurs frequent switches and a larger

ρ2 means a stricter criterion for the switch, both of which could

lead to suboptimal costs. Therefore, ρ2 needs to be carefully

configured to prevent the suboptimums.

Cost Dissection: Fig. 9 illustrates each cost component

as the weights associated to the start-up cost, the operating

cost, and the delay vary. We see that the larger the weight

is, the smaller the corresponding cost becomes. That is, our

approach can indeed work with different weight configurations

to optimize different cost components to different extents. The

weight configurations can be controlled by the service provider

following its own needs and preferences.

Switching Operations: Fig. 10 shows how the variation

of the weight of the start-up cost, denoted as ω, influences

the total number of the occurrences of state switching for the

online classifier (i.e., preparing VMs) and the offline classifiers

(i.e., downloading classifiers plus preparing VMs). In this

figure, 1 means new and different decisions are applied to

the current time slot; 0 means decisions of the previous time

slot are applied to the current time slot. Our approach incurs

more frequent state switching (i.e., there are more 1s than 0s)

when ω is small because the state switching criterion can be

satisfied easily, and leads to less frequent state switching as ω
becomes larger, due to a stricter criterion.

Execution Time: Fig. 11 depicts the cumulative distribution

of the execution time of each of our proposed algorithms. Al-

gorithms 1∼3 can finish within several seconds per 15-minute-

long single time slot. For the time horizon of 24 hours, it takes

no more than 7.1 minutes in total to finish across all time slots,

which includes the homogeneous transfer learning process.

Hence, our proposed algorithms are practically efficient.

Mistakes of Homogeneous Transfer Learning: Fig. 12

presents the rate of the mistakes (i.e., the ratio of the number

of incorrect inferences compared to the ground-truth over the

total number of inferences). With both datasets, Proposed

is always effective in transferring knowledge from existing

classifiers, with an acceptable rate of mistakes lower than those

of HomOTL_1, HomOTL_2, and OMTL_MC. This benefits

from our adaptive weight update strategy, which exponentially

downweights misclassified results, allowing our algorithm

to focus more on reliable classifiers and adapt quickly to

changing data.

C. Results for Heterogeneous Setting

Cost of Heterogeneous Transfer Learning: We omit the

visualization of such results here because we observe similar

trends in the heterogeneous transfer learning setting compared

to Fig. 5, Fig. 6, Fig. 8, Fig. 7 and Fig. 9 in the homogeneous

transfer learning setting. It takes no more than 8 minutes in

total to finish running Algorithms 5, 6, 7, and 8.

Mistakes of Heterogeneous Transfer Learning: Fig. 13

presents the rate of the mistakes of different algorithms for

different datasets. Proposed has lower mistake rates than

those other heterogeneous transfer learning algorithms. This is

attributed to the hierarchical integration of offline and online

classifiers and the adaptive weight updates, which enhance

reliable predictions and suppress erroneous ones for stable

performance across dynamic environments.

Impact of Feature Spaces of Offline Classifiers: Fig. 14

reflects the impact of the feature spaces of the offline classifiers

on the mistake rate. The mistake rate drops as the feature

spaces of the offline classifiers become larger. This implies that

the more information about the features we have, the better

inference accuracy we can achieve in transfer learning.

Edge Occupation: In Fig. 15, we compare the number of

edges occupied by offline and online classifiers in each time

slot in both homogeneous and heterogeneous settings. In the

homogeneous setting, the number of edges occupied by offline

classifiers is 15 or less, while the number of edges occupied

by online classifiers is only 1. In the heterogeneous setting,

online classifiers occupy more edges than offline classifiers

due to the greater number of online classifiers compared to

offline classifiers. Across the two settings, the offline classifiers

occupy a similarly varying number of the edges.

VII. RELATED WORK

We discuss existing research in two groups, and for each

group, we highlight its insufficiency compared to our work.

Transfer Learning Methods and Systems: Daga et al. [8]

designed a distributed transfer learning system for adapting to

varying workload and data shift. Wu et al. [14] proposed online

transfer learning for both homogeneous and heterogeneous

environments. Yang et al. [15] focused on evaluating which

source domain could be more suitable for transfer learning

and the amount of knowledge transferred. Ding et al. [16]

studied the minimization of the divergence among different

sources by realizing cross-domain and cross-source knowledge

transfer. Yang et al. [17] minimized domain discrepancy by

promoting positive knowledge and decreasing the effect of

unrelated instances. Yan et al. [18] introduced neural data

servers to select relevant data in the transfer learning process.

These works focus on transfer learning, and almost all of

them neglect resource usage and cost minimization from the

systems perspective. The last work mentioned above is not

typically for the cloud-edge and 5G environments.

Cloud-Edge System and Network Optimization: Castellano

et al. [19] explored optimal partitioning of shared resources

in heterogeneous edge networks. Wang et al. [20] studied

online resource allocation for edge computing in response to

high dynamism of user mobility. Tu et al. [21] developed

distributed learning optimization of the costs associated to

device processing, offloading, and data disgarding. Meng et

al. [22] optimized bandwidth and computing resource for

deadline-restricted tasks. You et al. [23] explored dynamic

resource provisioning in edge networks. Zhou et al. [24]

proposed an online framework for cost-efficiency of cross-edge

service functions. Han et al. [25] minimized the response time

for latency-sensitive jobs in edge-cloud computing.

These works study cloud-edge systems and networks, but

are unfortunately not about (distributed) transfer learning

which has unique computing and and communication pattern.

Thus, such existing research generally do not apply.
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VIII. CONCLUSION

Transfer learning is a useful and important technique, yet

gets largely overlooked in the context of mobile communica-

tion networks. This paper aims to bridge this gap. We consider

both homogeneous and heterogeneous online transfer learning

settings and formulate non-linear mixed-integer programs by

considering operational cost of edges, delay of networks, start-

up cost of downloading classifiers and preparing local edge en-

vironments, and the performance of transfer learning in terms

of the mistakes of the combined classifiers. We design online

optimization algorithms and prove their theoretical guarantees.

Using real-world data, we conduct extensive expriments and

validate the practical efficacy and efficiency of our algorithms.

For future work, we intend to further explore transfer learning

that involves pre-trained foundation models such as the Large

Language Models (LLMs) in the cloud-edge environments.
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APPENDIX

A. Proof of Theorem 1

Proof. Let ∆P and ∆D denote the increment of the

objective function in the problem (3) and (4), respec-

tively, ∆D = −(λk∗ + Qi∗∆δi∗), where ∆δi∗ =
δi∗
Qi

+
ai∗k∗+di∗/K+

∑
m dmi∗/K

Qiξ
stands for the increment in δi∗ . Thus,

we have ∆D = − (λk∗ +Qi∗∆δi∗) = −λk∗ − Qi(
δi∗
Qi

+
ai∗k∗+di∗/K+

∑
m dmi∗/K

Qiξ
) = (1 − 1

ξ
)(ai∗k∗ +

d∗i
K

+
∑

dmi∗

K
) =

ξ−1
ξ

∆P . Let P k and Dk denote the value of the objective

function in the problem (3) and (4) after handling the of-

fline classifer k. Due to H3 = PK =
∑

k(P
k − P k−1) =

ξ
ξ−1

∑
k(D

k −Dk−1) = ξ
ξ−1

(DK −D0) = ξ
ξ−1

DK = ξ
ξ−1

H4 ≤
ξ

ξ−1
Ht∗

3 , followed by P 0 and D0 are initialized with 0 and

duality, we obtain r1 = ξ
ξ−1

.

B. Proof of Theorem 2

Proof. In order to simplify our proof, we introduce some new

symbols. We use pn to identify nth data sample, use ωk,n to

replace ζtk,m and ψt
m, where k ∈ {1, ...,K,K + 1} (including

the offline and online classifiers), use Pk,n =
ωk,n∑
k ωk,n

to denote

the normalized weight and mk,n to denote the mistakes of the

classifier k, which are all updated as our Algorithm 4 shows.

Firstly, we prove that I{qn · q̂n < 0}=I{
∑

k Pk,nmk,n > 0.5}.
By assuming that there are only K1 classifiers predict correctly

(i.e., sign(fk(pn)) = qn), we have q̂n = sign(qn(
∑K1

k=1 Pk,n −∑K+1
k=K1+1 Pk,n)). Then, based on

∑
k Pk,n = 1, we obtain

qn · q̂n < 0 ⇐⇒
∑K1

k=1 Pk,n −
∑K+1

k=K1+1 Pk,n < 0 ⇐⇒∑K+1
k=K1+1 Pk,n > 0.5 ⇐⇒

∑
k Pk,nmk,n > 0.5.

Next, we have ln(
∑

k ωk,n+1∑
k ωk,n

) = ln(
∑

k Pk,nθ
mk,n) ≤ −(1 −

θ)
∑

k Pk,nmk,n, thus ln(
∑

k ωk,N∑
k ωk,1

) ≤ −(1 − θ)
∑

k,n Pk,nmk,n,

and have ln(
∑

k ωk,N∑
k ωk,1

) lower bounded as ln(
∑

k ωk,N∑
k ωk,1

) ≥
ln(ωk,1θ

∑
n mn,k ) = ln( 1

K+1
) +

∑
nmk,n ln(θ). Based on the

above, we have
∑

k,n Pk,nmk,n ≤ ln(1/θ)
∑

n mk,n+ln(K+1)

1−θ
≤

ln(1/θ)Γmin+ln(K+1)
1−θ

. Finally, we upper bound the mistakes as∑
n I{qn · q̂n < 0} ≤ 2

∑
k,n Pk,nmk,n ≤ 2 ln(1/θ)Γmin+2 ln(K+1)

1−θ
.

When we set θ =
√
Γmin/(

√
Γmin +

√
ln(K + 1)), we further

obtain
(
2 + 2

√
2 ln(K + 1)

)
Γmin + 2 ln(K + 1).

C. Proof of Theorem 3

Proof. Firstly, the start-up cost X
t
SC is no more than 1

ρ2

times ∆X−SC within [t̂, t − 1]. Hence we have
∑

t X
t
SC ≤

1
ρ2

∑
t X

t
−SC as the worst case, i.e., the change of offline

classifier placement always happens at each t. Similarly, we

can obtain
∑

t Y
t
SC ≤ 1

ρ1

∑
t Y

t
−SC . Then, we have

∑
tH

t
−M ≤∑

t Y
t
SC +

∑
t Y

t
−SC ≤ (1 + 1

ρ1
)
∑

t Y
t
−SC . Followed by the

constraints of
∑

i y
t
i = 1 and yti ∈ {0, 1}, ∀i, we have∑

t,i(b
t
i +

∑
m 2dtmi)y

t
i ≤ max{maxi,k,t{ bti

at
k,i

K
}, 2}

∑
t X

t
−SC ,

and
∑

t Y
t
−SC =

∑
t(X

t
SC + X

t
−SC) +

∑
t,i(b

t
i +

∑
m 2dtmi)y

t
i ≤

(1 + 1
ρ2

+Dmax)
∑

t X
t
−SC .

Next, we focus on
max

yt X
−SC(Alg2(y

t))

min
yt X

−SC(Alg2(yt))
, where Alg2(·) refers

to Algorithm 2. We construct a new problem P0 with C0 =∑
i,k akixki +

∑
i,m dmiumi +

∑
i,j dijvij and the constraints

of (1c)∼(1d), (1f)∼(1j), we can obtain
max

yt X
−SC(Alg2(y

t))

min
yt X

−SC(Alg2(yt))
=

MaxP0

MinP0
. Based on duality, we have MaxP0

MinP0
≤ P1

P2
≤ D1

D2
, where

P1 is the problems which maximizes C0 with (1d) (1g)

(1i), and
∑

k xki ≤ Qi, ∀i, P2 is minimization problem with

the same constraints as P1, and D1 and D2 are their dual

problems. We introduce the dual variables λ̄k, δ̄i, ϵ̄kij , ϕ̄kim

and λ̃k, δ̃i, ϵ̃kij , ϕ̃kim for P1 and P2, respectively. By choosing

λ̄k = aki +
∑

j dij

K
+

∑
m dmi

K
, δ̄i = 0, ϵ̄kij =

−dij
K

, ϕ̄kim = −dmi

K

and λ̃k = −aik, δ̃i = ϵ̃kij = ϕ̃kim = 0, we obtain that
D1

D2
≤ maxi{

∑
k aki+

∑
j dij+

∑
m dmi}

mini

∑
k aki

, and define the ratio σ as

maxt
maxi{

∑
k aki+

∑
j dij+

∑
m dmi}

mini

∑
k aki

.

Based on the above,
∑

tH−M can be bounded as follows,∑
tH−M =

∑
t YSC +

∑
t Y−SC ≤ (1 + 1

ρ1
)
∑

t Y−SC ≤
(1 + 1

ρ1
)(1 + 1

ρ2
+ Dmax)

∑
t X−SC ≤ (1 + 1

ρ1
)(1 + 1

ρ2
+

Dmax)σ
∑

t minyt X−SC(Alg2(y
t)) ≤ r3 ·

∑
tH

∗
−M , where r3 =

(1+ 1
ρ1
)(1+ 1

ρ2
+Dmax)σr1. According to Theorem 2, we can

obtain
∑

tHM ≤ Γmin(
2 ln(1/θ)+2 ln(K+1)

1−θ
) = r2 · Γmin. Finally,

we exhibit the competitive ratio r as follows, H1 =
∑

t(HM +

H−M ) ≤ r2
∑

tH
t∗
M + r3

∑
tH

t∗
−M ≤ max {r2, r3}H∗

1 .

D. Proof of Theorem 4

Proof. Let ∆P and ∆D denote the increment of the

objective function in the problem (7) and (8), respec-

tively, ∆D = −(κı∗ȷ∗ + Ei∗∆ςi∗), where ∆ςi∗ =
ςi∗
Ei

+
Âı∗ȷ∗i∗+di∗/3K+

∑
m dmi∗/3K+

∑
ım dımi∗/3K

Eiϖ
stands for the incre-

ment in ςi∗ . Thus, we have ∆D = − (κı∗ȷ∗ + Ei∗∆ςi∗) =

−κı∗ȷ∗−Ei(
ςi∗
Ei

+
Âı∗ȷ∗i∗+di∗/3K+

∑
m dmi∗/3K+

∑
ım dımi∗/3K

Eiϖ
) =

(1 − 1
ϖ
)(Âı∗ȷ∗i∗ +

d∗i
3K

+
∑

m dmi∗

3K
+

∑
ı,m dımi∗

3K
) = ϖ−1

ϖ
∆P .

Let P k and Dk denote the value of the objective function

in the problem (7) and (8) after handling the offline or

online classifier. We have H7 = P 3K =
∑

k(P
k − P k−1) =

ϖ
ϖ−1

∑
k(D

k −Dk−1) = ϖ
ϖ−1

(D3K −D0) = ϖ
ϖ−1

D3K = H8 ≤
ϖ

ϖ−1
H∗

7 , followed by P 0 and D0 initialized to 0; then, due to

duality, we obtain r4 = ϖ
ϖ−1

.

E. Proof of Theorem 5

Proof. To simplify our proof, we introduce new symbols. We

use Fkn to replace the strong classifier Ft
kim, use ζk,n to replace

ζtkm, use Pk,n = ζk,n∑
k ζk,n

to denote the normalized weight of

the strong classifier, use mk,n to denote the mistakes of the

strong classifier k, which are all updated as our Algorithm 8

shows, and use qn and q̂n to denote the ground-truth label and

the inferred label for the data sample n.

Firstly, we prove that I{qn · q̂n < 0}=I{
∑

k Pk,nmk,n > 0.5}.
By assuming that there are only K1 classifiers predicting

correctly, we have q̂n = sign(qn(
∑K1

k=1 Pk,n−
∑K+1

k=K1+1 Pk,n)).

Then, based on
∑

k Pk,n = 1, we obtain qn · q̂n
< 0 ⇐⇒

∑K1

k=1 Pk,n −
∑K+1

k=K1+1 Pk,n < 0 ⇐⇒
∑K+1

k=K1+1 Pk,n

> 0.5 ⇐⇒
∑

k Pk,nmk,n > 0.5.

By convexity, it can be shown αr ≤ 1− (1− α)r for α ≥ 0

and r ∈ [0, 1]. We can get
∑K

k=1 ζk,n+1 =
∑K

k=1 ζk,nβ
mk,n

1 ≤∑K
k=1 ζk,n(1 − (1 − β1)mk,n) = (

∑K
k=1 ζk,n)(1 − (1 −

β1)
∑

k Pk,nmk,n). Applying repeatedly for n = 0, ..., N

data samples, we have
∑K

k=1 ζk,N+1 ≤
∏N

n=0(1 − (1 −
β1)

∑
k Pk,nmk,n) ≤ exp(−(1− β1)

∑
k,n Pk,nmk,n). Thus, we

further get
∑

k,n Pk,nmk,n ≤ − ln(
∑

k ζk,N+1)

1−β1
. Note ζk,N+1 =

ζk,0
∏N

n=1 β
mk,n

1 = ζk,0β
Lk
1 ,

∑K
k=1 ζk,N+1 ≥ ζk,N+1 = ζk,0β

Lk
1 ,

where Lk =
∑

n I(sign(qtnF
t
kn(pn)) < 0). Then, we have
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∑
k,n Pk,nmk,n ≤ − ln ζk,0−Lk ln β1

1−β1
, ∀k,

∑
k,n Pk,nmk,n ≤

− ln ζk,0−Lmin ln β1

1−β1
where Lmin = min{Lk}. Afterwards, we get

∑
n I{qn · q̂n < 0} ≤ 2

∑
k,n Pk,nmk,n ≤ 2

− ln ζk,0−Lmin ln β1

1−β1
. It

can be shown that ln(1/β) ≤ (1 − β2)/2β for β ∈ (0, 1]. We

can obtain
∑

k,n Pk,nmk,n ≤ − ln ζk,0−Lmin ln β1

1−β1
≤ Lmin(1+β1)

2β1
−

ln ζk,0

1−β1
We set β1 =

√
Lmin/(

√
Lmin +

√
lnK) and ζk,0 = 1/K.

We can get Lmin(1+β1)
2β1

− ln ζk,0

1−β1
≤ Lmin +

3
2

√
lnKLmin + lnK.

We obtain that
∑

n I{qn · q̂n < 0} ≤ 2
∑

k,n Pk,nmk,n ≤
2Lmin + 3

√
lnKLmin + 2 lnK.

We can also obtain Lmin ≤ 2(Υmin(1+β2)
2β2

+ ln 3
1−β2

),

where Υmin = min{Υk},Υk = min {Λk
0 ,Λ

k
1 ,Λ

k
2},Λk

ι =∑T
t=1

∑Mt

m=0 I
{
sign[qtmftιkm(ptιkm)] < 0

}
. The proof is similar

to the preceding paragraph. We set β2 =
√
Υmin/(

√
Υmin +√

ln 3) and ψ1
ιk0 = 1/3, ι ∈ {0, 1, 2}. We can get Lmin ≤

2Υmin + 3
√
ln 3Υmin + 2 ln 3 .

Finally, we can get
∑

tHHM ≤ Lmin(1+β1)
2β1

− ln ζk,0

1−β1
≤

Lmin

( (1+β1)
2β1

− ln ζk,0

1−β1

)
≤ Υmin(4(

1+β2

2β2
+ ln 3

1−β2
)( 1+β1

2β1
+

lnK
1−β1

)).

F. Proof of Theorem 6

Proof. Based on Theorem 3, we can get r6 = (1 + 1
ρ1
)(1 +

1
ρ2

+ Dmax)r4σ1, where ρ1 and ρ2 are constants in Algo-

rithms 6 and 7; r4 is the approximation ratio of Algorithm

5, as in Theorem 4; Dmax = max{maxι,i,k,t{ Bt
i

3At
ιki

K
}, 2};

and σ1 = maxt{
maxi{

∑
ι,k Aιki+

∑
j dij+2

∑
m dmi}

mini

∑
ι,k Aιki

}. According

to Theorem 5, we can obtain
∑

tHHM ≤ Υmin(4(
1+β2

2β2
+

ln 3
1−β2

)( 1+β1

2β1
+ lnK

1−β1
)) ≤ r5 · Υmin. Finally, we exhibit the

competitive ratio R as in H5 =
∑

t(HHM + H−HM ) ≤
r5

∑
tH

t∗
HM + r6

∑
tH

t∗
−HM ≤ max {r5, r6}H∗

5 .


