Online Request Scheduling for Quality-Aware
Diffusion-Based AIGC Services

Han Yang, Ying Zheng, Lei Jiao, Yuedong Xu, Zongpeng Li

Abstract—Artificial Intelligence-Generated Content (AIGC)
has been gaining significant traction for automatic generation
of diverse content. Due to the GPU-intensive generation process
and the high costs associated with purchasing and operating
GPUs, users often prefer to submit requests to a nearby edge
cloud, maintained by an AIGC cloud service provider. Effi-
ciently scheduling AIGC requests in the edge cloud faces non-
trivial challenges. First, AIGC requests emphasize the quality
of generated content, yet conventional scheduling algorithms
often overlook this aspect. Second, when the volume of incoming
requests exceeds the capacity of the cloud, the AIGC service
provider needs to select appropriate requests to execute, which
is further complicated by the online arrival pattern of requests
and the constraints imposed by request deadlines. Third, users
dynamically submit multiple requests at different times. To
manage costs, each user operates within a pre-allocated budget
for a given time period. For the AIGC cloud service provider, it
is highly non-trivial to identify valuable requests and judiciously
balance different user budgets. To tackle the above challenges,
we target the online AIGC request scheduling problem with
the new objective of maximizing the overall content generation
quality. We first conduct real experiments to establish the quality
model between inference steps and the quality of generated
content. Then, based on this quality model, we formulate the
problem into an integer linear program, which is proven NP-
hard. Under a primal-dual framework, we carefully design
the update of multiple dual variables, to flexibly control the
consumption of edge resources and user budgets. We rigorously
analyze the performance of the proposed algorithm and prove
a theoretical performance guarantee on its competitive ratio.
Extensive real-world trace-driven experiments manifest that our
proposed method improves the state-of-the-art by up to 25.3%
in overall content generation quality.

Index Terms—AIGC, Online optimization, scheduling algo-
rithms

I. INTRODUCTION

Artificial Intelligence-Generated Content (AIGC) refers to
content that is generated by advanced machine learning mod-
els, especially deep neural networks [1]. A user request,

This work was supported in part by the Quan Cheng Lab (QCL20250108,
QCL20250202 and QCL20250205), in part by Shandong Provincial Natural
Science Foundation (ZR2024LZHO011, ZR2025LZH008), in part by the U.S.
National Science Foundation (CNS-2047719, CNS-2225949), and in part by
the Natural Science Foundation of China under Grant Grant 62472103.

Han Yang and Zongpeng Li are with the Institute for Network Sciences
and Cyberspace, Tsinghua University, Beijing 100084, China, and with
the Quancheng Laboratory, Jinan, Shandong 250103, China (e-mail: h-
yang23 @mails.tsinghua.edu.cn; zongpeng @tsinghua.edu.cn).

Ying Zheng is with the School of Computer Science, Fudan University,
Shanghai 200438, China (e-mail: zhengy18@fudan.edu.cn).

Lei Jiao is with the Center for Cyber Security and Privacy, University of
Oregon, Eugene, OR 97403, USA (e-mail: ljiao2@uoregon.edu).

Yuedong Xu is with the Artificial Intelligence Innovation and In-
cubation Institute, Fudan University, Shanghai 200438, China (e-mail:
ydxu@fudan.edu.cn).

AIGC Service Provider (ASP)

Edge Cloud
Limited
resources

Quality
requirements
Online Results: [g J
scheduler ﬁ 3 T

DDL constraints
| | | | | |

Time

Fig. 1: AIGC request serving in an edge cloud.

referred to as a “prompt”, is fed into the neural network as
input, and the desired content is generated through a model
inference process. Recent years have witnessed a widespread
use of AIGC in various domains [2]-[4]. Despite the promises,
it is impractical for most users to directly deploy and utilize
these models locally, due to the substantial computational and
storage resources required by AIGC models. For instance, the
popular Stable Diffusion model requires 20 GB of memory to
generate results. Furthermore, the inference process is highly
GPU-intensive. It takes only 30 seconds to run the inference
process with 20 steps on an Nvidia A100 GPU, while it
requires nearly 8 minutes on an Intel Xeon Gold 6348 CPU. As
aresult, it is more cost-effective for users to offload their AIGC
requests to a cloud service provider who provides AIGC-as-
a-Service (AaaS) over GPUs.

AaaS represents a new computing paradigm that promise
on-demand access to powerful computation resources
equipped with a variety of AIGC models [5], [6]. As shown
in Figure 1, in the AaaS ecosystem, an AIGC service provider
(ASP) deploys models on the edge cloud, offering online
services to users over edge networks, often wireless. Users
dynamically submit AIGC requests to the ASP for processing,
willing to pay monetary remuneration for the service. For the
service provider, an efficient request scheduling algorithm is of
crucial importance, since it directly impacts the AIGC service
provisioned. Such a scheduling algorithm is challenging to
design, due to the following challenges.

First, AIGC requests emphasize content generation qual-
ity, while existing scheduling algorithms are often quality-
agnostic. These algorithms are developed to optimize the
commonly-adopted Quality of Service (QoS) metrics, such
as job completion time and throughput, and hence are inca-
pable of addressing user requirements on generation quality.
Furthermore, measuring generation quality is a challenging
problem in it own right, given to the subjective nature of
user preferences. For text-to-image tasks based on diffusion
models, the number of inference steps affects the quality of the
generated result. Typically, the more inference steps, the higher
the computational cost, and the better the generated results.
Unfortunately, the relationship between generation quality and
number of inference steps is not simply linear. This requires
us to dive into the AIGC system, establish new quality-aware
models, and design new scheduling algorithms that work in
concert with it.

Second, resources in an edge cloud are limited. When
incoming requests exceed the service capacity of the edge
cloud, the ASP can only admit and execute a subset of the
submitted requests. If the scheduling algorithm admits requests
aggressively, it might prematurely exhaust resources, unable to
accommodate later requests with potentially high valuation;
if the algorithm behaves too conservatively, it faces the risk
of wasting resources instead. The challenge further escalates
when we consider the strict deadlines imposed on AIGC
requests. We aim to design an online scheduling algorithm
that strikes a judicious balance between immediate and future
system welfare in an AIGC-as-a-Service ecosystem.

Third, users dynamically submit multiple requests at dif-
ferent times, hoping to keep monetary expenses in a given
period within a predefined budget [7]-[9]. However, users
are not clear about the quality of the generated results until
they receive them. Therefore, the ASP should help users
identify more valuable requests through the admission control
mechanism, and maximize overall quality of the generated
results while ensuring budget compliance.

To our knowledge, existing studies fail to address the
aforementioned challenges to satisfaction. Xu et al. [10], Liu
et al. [11] and Du et al. [12] target optimizing the QoS
of AIGC services. They focus on the deployment of AIGC
models and fail to consider the request scheduling problem.
Zheng et al. [13], Lyu et al. [14] and Xu et al. [15] investigate
the AIGC request scheduling problem, while ignoring the
issue of generation quality. Du ef al. [16] leverage a Deep
Reinforcement Learning (DRL) method to tackle the quality-
aware AIGC service provider selection problem. However,
they ignore the constraints imposed by user budgets and
request deadlines.

In this work, from the perspective of the AIGC service
provider, we study how to schedule dynamically arrived AIGC
requests in an online manner, with the goal of maximizing the
overall content generation quality. Specifically, our contribu-
tions are as follows

o« We explore various text-to-image AIGC models with

advanced image quality assessment (IQA), and discover

a mathematical relation between the number of inference
steps and generation quality. Then we establish quality
perception models for the relationship via real-world
deployment and extensive testing.

o We formulate a long-term optimization problem to maxi-
mize content generation quality of the AIGC ecosystem.
This problem is an integer linear program, computation-
ally intractable even in the offline setting. Our formulation
grasps all the aforementioned challenges and is general,
with only mild assumptions on input dynamics and het-
erogeneity.

e As an important algorithmic step, we reformulate the
optimization problem into an equivalent form amenable
to primal-dual optimization. Then, we derive the dual
problem and design an online algorithm through online
primal-dual theory. Our primal-dual algorithm dynami-
cally conducts admission control and decides the schedule
for each request as it arrives at the AIGC-as-a-Service
system.

o We rigorously prove multiple theoretical results, includ-
ing the NP-hardness of the problem, the feasibility of
our approach, the polynomial-time complexity of our
algorithm, as well as its competitive performance against
the offline optimum.

o« We conduct extensive experiments, in which our pro-
posed approach outperforms competing alternatives in
various settings. Specifically, in the common scheduling
scenario, our approach improves total generation quality
by 25.3%, 32.7%, 50.8% and 52.1% compared to four
baseline algorithms and achieves a significant algorithm
runtime speedup compared to the state-of-the-art DRL-
based approach.

II. RELATED WORKS

Recently, there have emerged studies that aim at improving
the QoS of AIGC services. Xu et al. [10] propose a least
context algorithm for managing cached models at edge servers,
meticulously balancing among latency, energy consumption
and accuracy. Similarly, Liu ef al. [11] develop a compre-
hensive conceptual model to integrate AIGC with semantic
communication, offering a more comprehensive approach to
system design. In the context of text-to-image tasks, Du et al.
[12] introduce three architectures for joint inference between
edge computing nodes and user devices, successfully reducing
the consumption of inference resources by sharing inference
steps among users. Meanwhile, Feng et al. [17] propose a
novel framework to optimize service delay, network resource
usage, and computing resources of user devices in AIGC
services. While these studies make significant contributions,
they primarily concentrate on the model deployment or service
delivery schemes, without considering the scheduling chal-
lenges in the AIGC service system.

Deng et al. [18] study joint AIGC request scheduling
and model deployment in wireless edge networks, aiming to
minimize the total system cost during task execution and the
accuracy loss of generated results. However, they focus on

an offline problem, assuming a fixed number of AIGC tasks
rather than accounting for the dynamic nature of online task
arrivals. To address the problem of scheduling online AIGC
requests, Zheng et al. [13] propose an AIGC DAG scheduling
algorithm in an edge-cloud environment, while Lyu er al.
[14] explore the challenge of selecting appropriate ASPs in
a collaborative AIGC framework. Similarly, Xu et al. [15]
investigate an online text-to-image AIGC request scheduling
problem in a heterogeneous edge computing scenario. They
first formulate the problem into an integer program, and then
leverage deep learning methods to balance request latency with
the computation resources. They overlook the constraints of
user budgets and do not sufficiently investigate the quality of
content generation. To improve the quality of generated results,
D2SAC [16] focuses on the AIGC service provider selection
problem, with the aim of maximizing the overall quality
of generated content. This work introduces an innovative
mathematical model to evaluate quality, and employs deep
reinforcement learning to select service providers for executing
AIGC requests. Despite its strengths, the proposed method also
fails to consider the constraints imposed by strict deadlines and
user budgets, and hence is not applicable to our problem.

For studies on designing online scheduling algorithms,
the primal-dual framework offers valuable insights for our
algorithm design. Zhou et al. [19] develop an efficient social
welfare approximation algorithm using the classic primal-dual
framework, leveraging both LP duals and Fenchel duals. This
approach provides a useful reference for addressing resource
constraints and managing both soft and hard deadline limita-
tions in online scheduling scenarios. Similarly, Shi et al. [9]
demonstrate the application of online optimization algorithms
to handle budget constraints. They propose a binary search
algorithm to improve average-case performance and enhance
the online auction framework by ensuring a minimum budget
spending fraction, resulting in a better competitive ratio. How-
ever, these approaches, along with other related works [20],
[21], primarily focus on cost and resource constraints, while
neglecting the quality of the generated results. This omission
makes them unsuitable for addressing the unique challenges of
the diffusion-based AIGC request scheduling problem, where
ensuring the quality of generated content is necessary.

Therefore, none of the existing works address the online
request scheduling problem for quality-aware diffusion-based
AIGC services under pre-defined user budget constraints. Both
a new formulation and an online solution are needed.

ITI. BACKGROUND
A. Diffusion Model

Mainstream models for text-to-image generation tasks, e.g.,
Stable Diffusion [22] and DALL-E [23], are trained over
diffusion models [24]. Diffusion models consist of a diffusion
process and a denoise process, also referred to as the inference
process. As shown in Figure 2, during the diffusion process,
Gaussian noise is progressively added into the original image,
eventually transforming it into a completely noisy image after
T steps. The sequence from x to xr represents the images

18p029Q

m
>
Input [, 8
a
@
=

Noise
Predictor

Diffusion

Fig. 2: Illustration of how a diffusion-based AIGC model
works: the lower half of the image depicts the overall work-
flow, while the upper half focuses on a specific denoising step.

generated throughout the diffusion process, each containing
varying degrees of noise. Specifically, xy corresponds to the
original image without any added noise while xr corresponds
to the completely noisy image.

The training process of a diffusion model is designed to train
a noise predictor, typically implemented as a neural network,
which estimates the noise added to the image based on the
noisy image and its corresponding noise step. Let € denote the
parameters of the noise predictor. For each sampled original
image data point, the parameters of the predictor network are
trained and updated using the equation

Vo |le —eo (Varxo+VI—ase)|, (1)

where € ~ N(0,I) represents the sampled random noise; ¢
denotes the number of noising step during sampling. The core
idea of Equation (1) is to add the sampled random noise € into
the original image xg, producing a noisy image x defined as

x=+a;xo+V1—ae. 2)

The noisy image x, along with the noise step t, is then fed
into a noise predictor neural network, which produces the
predicted noise €y(x,t). The training objective is to minimize
the difference between the predicted noise and the true noise
label, to ensure the predicted noise is sufficiently accurate.
The denoising process progressively reconstructs the origi-
nal image from a noisy image using the trained model [25]. In
a specific text-to-image generation task, the Stable Diffusion
algorithm begins by randomly sampling a Gaussian noise im-
age. Simultaneously, a text encoder is adopted to process user
textual input, encoding it into a latent vector. This encoded
vector, combined with the current number of inference step
t, is passed to the noise predictor to estimate the noise at
that step. By iteratively removing the predicted noise, the
model gradually synthesizes the final image that aligns with
user input [26], [27]. Notably, to enhance efficiency, Stable
Diffusion does not operate directly on the original image or

2SN RN

(a) CLIP-IQA Score:0.829 (b) CLIP-IQA Score:0.835 (e) CLIP-IQA Score:0.159

(c) CLIP-IQA Score:0.494 (d) CLIP-IQA Score:0.284

Fig. 3: Examples of generation results and their corresponding CLIP-IQA scores. From left to right, the prompts are: (a) “A
towering waterfall surrounded by green forests”; (b) “A snowy landscape stretching to the horizon”; (c) “Multicolored blocks
spread out on a table”; (d) “A juicy orange on the wooden desk™; (e) “A patterned kitten with soft fur playing in the courtyard”.

its noisy counterpart. Instead, it processes their representations
in a compressed latent space. For instance, a 512x512 pixel
image is reduced to a 4x64x64 representation in the latent
space, drastically reducing computational and storage demands
during training and inference [22].

Specifically, as shown in Figure 2, each inference step
brings an improvement to the current image. As the number
of steps increases, the image becomes progressively clearer
and more refined. After T steps, the final result in the latent
space is decoded into the final image by the image decoder.
Consequently, in typical inference tasks of large text-to-image
models, the number of inference steps (i.e., denoising steps)
directly affects the computational resource consumption and
the quality of the generated results.

B. Image Quality Assessment

In an AIGC ecosystem, users submit requests to the server to
generate desired images. Throughout this process, in addition
to traditional QoS metrics like latency and cost, a primary
concern for users is the quality of the generated images.
Apparently, users are more likely to pay for generated results
that meet their expectations.

However, evaluating the quality of generated images has
been a persistent challenge in the field of computer vision
[28]. Various mathematical models have been developed to
evaluate image quality [29], [30]. The Fréchet Inception Dis-
tance (FID) metric [31] and Inception Score (IS) [32] metrics
quantify the quality of generated images by measuring the
similarity between the high-level features of generated images
and those of real-world reference images. However, these
IQA metrics primarily focus on evaluating sets of generated
images, whereas our generation objective mandates a focus on
the evaluation of individual, specific image produced by the
inference service. BRISQUE [29] is a no-reference method for
assessing the quality of individual images by extracting mean
subtracted contrast normalized (MSCN) coefficients from the
image and fitting them to an asymmetric generalized Gaus-
sian distribution (AGGD). Features derived from the fitted
Gaussian distribution are then extracted and fed into a support
vector machine (SVM) for regression, ultimately producing an
image quality assessment score based on objective metrics like
texture, clarity, and smoothness. However, the quality we seek

to evaluate must also encompass the user’s overall perception,
i.e., subjective “feel”, of the image. In this regard, traditional
methods such as BRISQUE and similar approaches [33] often
fall short.

To address the aforementioned challenge and provide a
more comprehensive evaluation of the quality of generated
images, we introduce an advanced and effective image quality
assessment (IQA) method, CLIP-IQA [34]. This approach
leverages a Contrastive Language-Image Pre-training (CLIP)
model to assess both the appearance (quality perception) and
feel (abstract perception) of images, all without requiring ex-
plicit task-specific training. Specifically, the generated images
are processed through the CLIP model for feature extraction.
These extracted features are then compared with a pre-defined
set of quality-related keywords (e.g., “high quality,” “low
quality”) using cosine similarity shown below

YOt

Iyl [l
where y represents the image feature representation extracted
using the CLIP model; t; and t, denote the feature vectors of
a pair of antonym prompts (e.g., “high quality,” “low quality”).
The quality score of image 5 is then computed as

ie{1,2}, 3)

%

e™
The value of 5 ranges from O to 1, with larger values indicating
better overall image quality.

The existing literature has demonstrated that CLIP-IQA
achieves high precision in visual perception assessments and
maintains strong consistency with human perception across
various tasks [34]. We also conduct real experiments to
further validate the effectiveness of CLIP-IQA in text-to-image
generation scenarios. As illustrated in Figure 3, we present five
generated images using the SDXL model [35]. Figure 3(a) and
3(b) illustrate high-quality images produced through sufficient
inference steps, exhibiting excellent image texture features
and leaving a positive impression, thus receiving high scores.
The objective quality of Figure 3(c), reflected in its color
and texture, is also high; however, it leaves only an average
subjective impression, leading to a moderate score. In contrast,
Figure 3(d) and 3(e), generated with insufficient inference

0.7

g
=N

=]
W
—

CLIP-IQA Score
(=}
N <

o
w
1
~
=
=

0.2

1234567 89101112131415161718192021222324252627282930
The Number of Inference Steps

Fig. 4: Relation between number of inference steps and CLIP-
IQA scores. Dashed line represents the quality model and the
stars mark two important turning points.

steps, exhibit significant discrepancies from the prompts and
poor overall quality, resulting in low scores.

CLIP-IQA allows for a holistic assessment covering both
technical coherence and subjective impression, providing an
accurate quality assessment for individual images without
requiring reference images. By adopting the method, we
successfully transform the abstract metric of image quality into
numerical scores that can be used for subsequent modeling.

IV. MODELING AND PROBLEM FORMULATION

In this section, we first introduce the quality-aware model of
generated results in Section IV-A. Then, we present the system
models of AIGC services within the edge cloud environment
in Section IV-B. Finally, the overall problem formulation is
provided in Section I'V-C.

A. Quality Model of Generated Results

In traditional image quality assessment methods, including
CLIP-IQA, a specific image is essential as input to generate
a quality score. However, in our online scheduling task, the
system receives user requests rather than images. The image
for quality evaluation can only be obtained after the request
is processed and the inference task has been completed. By
that stage, computation resources have already been consumed,
making the quality evaluation ineffective for decision-making.
To address this limitation, it is necessary to establish a proac-
tive quality-aware model capable of estimating generation
quality in advance, relying solely on the parameters of the
user’s request. As discussed in Section III-A, the number of
inference steps has a direct impact on generation quality. On
this basis, literature [5S] demonstrates that, the relationship
between the inference process and image quality can be
approximately characterized using a mathematical function in
image restoration context. We further extend to the text-to-
image generation scenario and introduce Equation (5) as our
quality-aware model represented by the red dashed line in
Figure 4.

Ay, if 2 < A,
fla) = B=at@—A) + Ay, it A, e <B., (5

In this equation, = denotes the number of inference steps;
A, represents the minimum number of inference steps where
the quality of the generated image starts to improve; B, serves
as the threshold beyond which additional inference steps no
longer result in significant improvements in image quality. A,
and B, represent the lower and upper bounds of the quality
of the generated images, respectively, reflecting the model’s
inherent ability to generate images. They are closely tied to the
intrinsic properties of the model deployed on the AIGC server,
with better-performing and more effective models generally
having higher values of A, and B,.

The values of A;, Ay, B,, and B, can be obtained through
real experiments. Specifically, we set up an experimental
platform on an Ubuntu 20.04 server equipped with an NVIDIA
RTX A100 (80GB) GPU and an Intel(R) Xeon(R) Gold
6348 CPU @ 2.60GHz. On this platform, we deploy the
OpenDalleV1.1 [23] for image generation. To derive the four
parameters of this model, we utilize it for image generation
tasks, keeping the input prompt fixed while varying the number
of inference steps. The generated images are then sent to the
evaluation module to be scored using CLIP-IQA method [34]
as we have introduced. For each inference step, the model
repeatedly generates multiple images for quality evaluation.
We then compile the results into a box plot as shown in
Figure 4. According to the box plot, we fit the red dashed
line and obtain the values of the turning points, corresponding
to Ay, Ay, B, and B,. On this basis, we can establish a
quality-aware model in the system. When subsequent AIGC
requests arrive, the quality-aware model can estimate the
quality of the generation result through Equation (5) and the
number of inference steps specified by the user. The calculated
quality value will serve as our optimization target, enabling
more informed and effective decision making. Notably, the
quality-aware model can be equipped with different methods
to calculate the generation quality, including conducting any
tuning, re-fitting, or probing, for different AIGC requests.

We expand the testing framework on the experimental
platform to incorporate additional diffusion-based text-to-
image models, such as stable-diffusion-xi-base-1.0 [35], and
stable-diffusion-2-1 [22]. Quality-aware models can also be
constructed utilizing the method described above. At the same
time, we test whether the prompts provided by users would
impact the quality of the generated content, as users in real-
world scenarios rarely make identical requests all the time. We
select several specific inference steps and randomly choose 15
types of real user prompts from the DiffusionDB dataset [36]
for evaluation. The results as Figure 4 indicate that the content
of the prompt does not affect the quality of the generated
images. This is primarily due to the presence of the encoder

o
0

Number of inference steps = 4
Number of inference steps = 8
Number of inference steps = 12

t44

o
o

CLIP-IQA Score

0.4
03 WM\%\/& N
0.2)
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prompt Type

Fig. 5: Relation between prompt types and CLIP-IQA scores.
Each point is calculated as the average of 20 generated images.

module in diffusion-based text-to-image models, where dif-
ferent prompts will be encoded into latent space vectors of
the same dimension for subsequent diffusion. Although the
above conclusion holds true in our tests, we do not rule out the
possibility that certain hard prompts may lead to results that
deviate from the curve shown in Figure 5. We remark that such
cases does not impact our scheduling models, algorithms, and
analysis, as long as we are provided with the generation quality
of each AIGC request. Additionally, Since our algorithm is
designed for AIGC service providers, a practical enhancement
for real deployments is to update the step-to-quality curve
online. This does not affect our scheduling model or theoretical
analysis. The curve can be dynamically adapted based on the
evolving distribution of user prompts observed in the system,
allowing it to better fit real-time user demand and further
mitigate the impact of hard prompts.

B. System Models

AIGC Service Provider (ASP): The ASP deploys its AIGC
model on an edge server. Continuous maintenance and updates
are required to ensure that the AIGC model remains accurate
and effective in generating high-quality content. Users submit
requests for content generation and receive the generated
content from the ASP. Without loss of generality, assume that
the entire system operates in slotted time [T] = {1,2,--- ,T'}.
Due to resource constraints, the services that can be provided
in a specific time slot are limited. We extract this upper-bound
as resource capacity C, representing the maximum number of
inference steps the ASP can process in a single time slot.

AIGC Users and Requests: We use [I] = {1,2,---,I} to
refer to the set of AIGC service users. Each user submits its
AIGC requests to the ASP at different time slots. Each user
also has a budget B;, hoping the total monetary expenses do
not exceed the pre-defined limit within a certain period [7]-
[9]. We use M; = {M;1, M;a,--- , M;j,- -} to represent the
requests submitted by user ¢, and the total number of which
is J; = |M;|. Note that the number of requests may vary for
different users. We use M;; = {a;j,d;j,si;} to represent user
©’s j-th request, where a;; is the arrival time of the request;

AIGC Service Provider (ASP)

step (i) T
: Perception model !
1

' Scheduling '}
! algorithm
1
1
1
1
1
1

IStep|
__________________________ (iv)

Step (v) ' Pay

Return generated

2 results ’i

| | | | |
==— S~ 7 Time
]
[
Fig. 6: The system workflow of the request scheduling system.

Step (i) f Submit requests

Users
B, B, 000 B,

d;; is the deadline for completing the request; s;; refers to the
number of inference steps required for executing the request.
We use 7;; to represent the required computation resources by
user ¢’s j-th request, whose value is a linear function of s;;
as stated in [16]. If the ASP executes a submitted request, the
corresponding user needs to make a payment of e, to the ASP
to attain the result.

Inference Quality: As mentioned in Section III-B, we
select the CLIP-IQA as our image quality assessment method
due to its superior performance in assessing image quality.
Denote u;; as the quality of the generated image in terms
of user ¢’s j-th request. Based on the CLIP-IQA method, we
are able to establish the mathematical relationship between the
quality of the generated image w;; and the number of inference
steps s;;. This also serves as a part of our optimization goal.

Control Decisions: Upon each AIGC request M;; arrival,
i.e., user ¢’s j-th request, the ASP responds immediately and
makes the following control decisions: (i) Whether to admit
the user ’s j-th request for execution, denoted by x;;; (ii)
Whether to execute the user ¢’s j-th request at time slot ¢,
Vt > a;j, denoted by y;;¢.

System Workflow: The overall system workflow is shown
in Figure 6, consisting of the following steps: (i) Users submit
their AIGC requests to the ASP. Note that each user may
submit multiple requests, across different time slots; (ii) Upon
each request arrival, the ASP conducts quality perception
based on the pre-measured perception model; (iii) The ASP
makes the scheduling decisions, including whether to execute
the current request and, if so, the time slots of execution; (iv)
The ASP returns the result to the corresponding user; (v) The
user makes a payment to the ASP for executing its request.

C. Optimization Problem Formulation

Optimization Objective: We define the overall generation
quality as our optimization objective, which is calculated as

U= Z Z Ui T, (6)
i€[I) jE[Ji]

where z;; is a control decision, whose value is 1 if the ASP
accepts the user ¢’s j-th request, and O otherwise. The value

of u;; depends on the number of required inference steps (i.e.,
5;;) and the established quality model (Equation (5)).

Optimization Problem: We aim to maximize the overall
generation quality, subject to deadline, resource and budget
constraints. Some deployments may consider jointly optimize
multiple objectives, such as latency, diversity, and safety filters.
To handle this, we can perform the weighted sum of the
multiple different objectives and use this sum as the single
objective for optimization. Such weights can always be tuned
and controlled, e.g., depending on the importance of each
objective, in order to navigate the final optimization results.
This way, our proposed approach still applies.

The diffusion-based AIGC request scheduling problem can
be formulated as

maximize Z Z Ui T (7

]JE[J]
subject to -t —di; <0,Vi € [I],5 € [J],t € [T], (Ta)
— Yy <OV € [I],j € [, (7b)
t>ai;
Z > rijyije < C V€ [T], (7c)
I1j€[Ji]
Z > eie < BiVi € (1, (7d)
te[T] je[J;]
Tij, Yijt € {07 1}7VZ € [I]7J € [Jl]’t € [T] (7e)

Constraint (7a) ensures each request is executed before its
deadline. Constraint (7b) ensures that for each request, at
least one time slot will be used to execute it once selected.
Constraint (7c) ensures sufficient computation capacity of ASP
to complete the inference request. Constraint (7d) guarantees
total expenses do not exceed user budgets. Constraint (7e)
specifies the domains of the decision variables. Unless oth-
erwise noted, the scopes for our indices are i € [I],j € [Ji],
and ¢ € [T]. Our problem is provably intractable; see Section
VI-A for more details.

V. ONLINE ALGORITHM DESIGN

In this section, we describe how to design our online
algorithm. We first introduce the overall idea in Section V-A.
In Section V-B, we reformulate the optimization problem.
Then, the online algorithm is presented in Section V-C.

A. Overview and Rationale

The original problem (7) is an integer linear program, which
contains a standard 0-1 knapsack problem and hence is NP-
hard. To solve problem (7), we first reformulate and simplify
it into problem (8). However, we are still unable to obtain
the solution directly due to the unknown job information,
i.e., the coefficients of problem (8) are unknown until the
corresponding requests appear. In other words, problem (8) is
an online problem and we need to develop an online algorithm
to solve it based only on current and past information.

To design such an online algorithm with provably-
guaranteed performance, we leverage the online primal-dual

TABLE I: Main Notations.

1 number of users

T number of time slots

Ji number of requests submitted by user ¢

B; user 4’s budget

C computation resource capacity of the edge cloud
ep payment to ASP for executing an AIGC request
a;j arrival time of user ¢’s j-th request
dij deadline specified by user ¢’s j-th request
Ujj quality of user ¢’s j-th request

Tij required computation resources of user ¢’s j-th request
Sij number of required inference steps

of user ¢’s j-th request
total amount of resource consumption after scheduling
user 4’s j-th request

)\E”) value of dual variable A; after processing
user 7’s j-th request
%(j) value of dual variable ¢; after processing
user 4’s j-th request
Decisions | Descriptions
Tij whether to execute(1) user 4’s j-th request or not(0)
Yijt whether to execute(1) user i’s j-th request

at time slot ¢ or not(0)

framework. The core idea is that, as the task arrives and
the constraints in problem (8) appear dynamically, we always
keep a feasible solution for the primal problem (8) and a
feasible solution for the dual problem (9) through a carefully-
designed request scheduling mechanism and update rules of
dual variables. Specifically, we introduce dual variable \; to
track the computation resource consumption and implicitly
reflect the marginal price of computation resources in the
system. Based on the value of dual variable A;, the ASP
is able to strategically identify and admit valuable requests
among incoming requests. Meanwhile, we also introduce dual
variable (; for each user ¢ to manage its budget consumption.
Our goal is to maximize each user’s dwell time in the system,
thereby increasing the likelihood of occurring more valuable
requests. To achieve this, we design an update mechanism of
; such that when user ¢’s budget consumption is relatively
low, the ASP is more inclined to execute tasks submitted by
the user. In contrast, when user ¢’s budget consumption is high,
the ASP is more inclined to reject the requests submitted by
the user.

In addition, we also keep the objective values incurred by
the primal feasible solution and the dual feasible solution
satisfying a certain relationship. The weak duality indicates
that the objective value incurred by a dual feasible solution
always serves as an upper bound for the optimal objective
value of the primal problem. Therefore, the performance of
the online solution is guaranteed.

B. Problem Reformulation

Primal Problem: We first reformulate the optimization
problem (7) into an equivalent yet simpler integer linear
program (ILP) as

maximize Z Z Z Wi Yijt 3

ZE[I}JE[JJtE[al,dT]

subject to Z yije < L,Vi e [I],j € [Ji], (8a)
te[T]
> Z rijyije < C,Vt € [T, (8b)
iell] je[J.
> Z epyije < Bi,Vi € [I], (8¢)
te[T] je[J;]
vije € {0,1},Vie [I],j € [J;],t € [T]. (8d)

In problem (8), we eliminate the variable x;; by incorporat-
ing the constraint (7b) into the objective function. Constraint
(8a) ensures that each request can be executed at most once.
Constraints (8b) and (8c) are equivalent to (7c) and (7d), re-
spectively. Constraint (8d) specifies the domain of the control
variable y;;;. We remark that a feasible solution to problem
(8) has a corresponding feasible solution to problem (7), and
the optimal objective value of problem (8) is equal to that of
problem (7).

C. Online Scheduling

Dual Problem: To design the online scheduling algorithm,
we relax the domain of the integer variable y;;; to y;;: € [0,1].
The dual problem of (8) can be written as

minimize Z Z 0ij + Z CA + Z Bipi ©)

ielI] je[Jq] te[T) i€[1]
subject to 5ij > Uij — €pPs — T‘Z‘j)\t,VZ S [],j S [Ji},t S [T],
(9a)
(Sij >0, >0,p;, >0,Vi € [I],] S [Ji},t S [T],
(9b)

where J;;, A¢ and ¢; are the dual variables associated with
Constraints (8a), (8b) and (8c), respectively.
We define the value of dual variable \; as

)\glj) _ 1 (J)

, Vie [I],Vy € [Ji], (10)

where /\(ij) represents the value of \; after processing user
1’s j-th request; z,g ') denotes the total amount of resource
consumption at time slot t after scheduling user i’s j-th
request. Next, we explain the design principles of updating
dual variable \;. In the primal-dual theory, a dual variable
is a “shadow price” [37] representing the increment of the
objective value incurred by a unit increase in the resource of
the original problem. In other words, \;, which is associated
with Constraint (8b), can be interpreted as a marginal price
function of edge resource. At each time slot ¢, if edge resources
are sufficient, the resource price should be kept as low as
possible to encourage the ASP to execute more AIGC requests.
When resources are scarce, the resource price is high, allowing
only more valuable requests to be executed. Note that the
resource price will be updated after each request’s scheduling.
In this way, the ASP can decide whether to execute incoming

requests based on the value of)\;, enabling flexible resource
management.

()
after processing user i’s j-th request. The value of ¢;
computed as

Meanwhile, denote ;" as the value of dual variable <p,

(J)

o =01+

)+ﬁ() vi e [1],vj € [Ji] \ {0}.

(1)

We remark that the value of ¢; is only updated when a request
submitted by user 1s accepted and executed. Note the initial
value of <p(]) s gpl(= 0. The coefficient 3 determines the
magnitude of growth in the dual variable ¢; at each update. A
larger /3 leads to faster updates of ;, while a smaller S results
in slower updates. The value of 3 is chosen by design, and it
affects the competitive ratio of the proposed online algorithm,
as shown in Theorem 4. The rationale for designing the update
rule of dual variable ¢; is that, we try to make each user’s
budget last for as long as possible in the 7' time slots, thus
the ASP can explore more valuable requests over the entire
time span.

For ease of representation, we define the right hand side of
Constraint (9a) as

F(’L]t) = Uij — epgoi — rijAt7 VZ € [I],j S [Jl],t S [T]
(12)
We also define
t* = arg max {F(ijt)}. (13)
t€laij,dij]
Then we set the dual variable 6;; as
0ij = maX{O,mtax{F(ijt)}}, Vi e [I),7 €[] (14)

In the online scheduling process, for each arrived user i’s
j-th request M;;, if F'(ijt*) > 0, the ASP accepts the request
M;; and set §;; = F(ijt*); otherwise the ASP rejects the
request and set §;; = 0.

Algorithm 1 is our online scheduling algorithm. Line 1
initializes the decision variable x;;, v;;+ and dual variable
At, @i to zero. Upon the arrival of each request M;;, Line 3
selects the time slot ¢* in which /\) returns the minimum
value. Line 4 calculates the value of F'(ijt*) according to
(12). Line 5 checks whether F'(ijt*) > 0 and if so, line 6
updates dual variables A; and ;; otherwise, we reject user
1’s j-th request in line 11. Line 7 checks whether there are
sufficient resources to execute the request and whether the
user has a sufficient budget to be charged. Formally, we
check the capacity constraint), Zj rijYije < C,Vt, and
the budget constraint Zj doiepYije < Bi,Vi. If there are
sufficient resources and enough budget, then Line 8 admits
the request and executes it at time t*. Line 9 updates the
consumed resources and users’ budgets.

Algorithm 1: Online AIGC Request Scheduling Algo-

rithm
Input: {M;;}, C, ep,{Bi}

1 Initialize x5, Yij¢, Me, @i, V2, 4, ¢;

2 for each incoming request M;; do

// find the request allocation decision
that achieves the maximum F(ijt)

Select the time slot t* = arg minte[auyd“]{)\gijfl)} ;

Calculate F'(ijt") according to (12);

if F(ijt") > 0 then

Update A\« and ¢; according to (10) and (11);

if enough resources and user i’s budget then
Admit user ¢’s j-th request, execute it at time

slot t*, set x;; = 1;

® N o n AW

9 Update consumed resources and users’ budgets;
10 else Reject user 7’s j-th request;

11 else Reject user 7’s j-th request;

VI. PERFORMANCE ANALYSIS
A. Intractability

Theorem 1. The AIGC Request Scheduling Problem (7) is
NP-hard.

Proof. We prove by showing that problem (7) subsumes the
well-known 0-1 knapsack problem as a special case. To see
this, let z;; = Zt Yi;¢> thus Constraint (7b) always holds.
Next, we sum Constraint (7¢) over the entire horizon 7" and
obtain) . " ;7ij%ij < CT. After removing Constraints (7a)
and (7d), the remaining problem is a 0-1 knapsack problem,
where the “item” is the user ¢’s j-th request; the “weight”
is r3;; and the “value” is u;;. Therefore, the more complex
problem (7) is NP-hard.

O

B. Feasibility

Theorem 2. Our proposed approach produces a feasible
solution to the problem (7).

Proof. 1If user i’s j-th request is rejected, all constraints in
problem (7) are satisfied. If user ’s j-th request is accepted,
then we have Constraint (7a) satisfied due to the domain of
variable y;;; defined in (8). Line 8 in Algorithm 1 indicates
that if we set variable x;; = 1, then user ¢’s j-th request
would be executed at time t*, i.e., y;;~ = 1. Therefore,
Constraint (7b) holds. Line 7 in Algorithm 1 ensures that
the total processed requests would not exceed the resource
capacity and users’ budgets. Then, Constraints (7c) and (7d)
are satisfied. As a result, all constraints in problem (7) hold,
indicating our proposed approach produces a feasible solution
to problem (7).

O

C. Time Complexity

Theorem 3. Our proposed online algorithm runs in polyno-
mial time.

Proof. We consider the key steps in Algorithm 1. Let J
represent the maximum number of requests generated by a
single user. Then, Line 2 iterates at most I.J times. Line 3
iterates at most 71" times. Thus, overall, the Algorithm runs in
o(1JT). O

D. Competitive Ratio

Competitive ratio is a metric that characterizes the multi-
plicative gap between the objective function value achieved by
an online solution and that achieved by the offline optimal so-
lution. The online solution is generated by an online algorithm
on the fly without knowing future information, and the offline
optimal solution is computed by solving the problem optimally
given all the input information over the entire time horizon.
Next, we present the formal definition of the competitive ratio
in the context of our problem.

Definition 1. Competitive Ratio: Let O PT denote the offline
optimal objective value of the problem (7) and its equivalent
problem (8). Let P! be the objective value of problem (8)
incurred by our online approach after processing all requests
(either admitted or rejected). The competitive ratio of our
approach is the upper bound on the ratio of the offline optimal
objective value OPT to the objective value P! achieved
by Algorithm 1, i.e., the upper bound of OPT/P. The
competitive ratio is greater than or equal to 1 in this definition.

Theorem 4. Our proposed online approach has the competi-
tive ratio v = e(a + (), where e = 1 + %, a=1nb.
The variable [controls the magnitude of growth in the updates
of dual variable ;, as defined in (11).

Proof. To obtain the competitive ratio, we follow the roadmap
below. The related lemmas and the details of this proof
are placed in the Appendix (included in the supplemental
material).

pn s L pan

. 15)
1 1
-~ pun
= a+6D (16)
1

To assist the proof, we use P(7) to denote the objective value
of the original problem P (i.e., optimization problem (7)) after
processing the j-th request of the :-th user. Similarly, we use
DU9) to represent the objective value of the dual problem
D (i.e., optimization problem (9)) after processing the j-th
request of the i-th user. Therefore, P7) and DUY) denote
the objective values of the original problem P and the dual
problem D after processing all arrived requests, respectively.
We also use P/7) to denote the objective value of the almost-
feasible problem, which is introduced as an auxiliary problem
to facilitate the proof; The inequality in (17) holds due to weak
duality. see the Appendix for details. [

[ORSDS
[D2SAC
DDRL-ATS

CZ1 ARD
X3 EFT

[ORSDS
[D2SAC
7 DDRL-ATS

1.0 1.0

Normalized Utility Value
S

Normalized Utility Value

)

0.0

0.0

CZJ ARD
X3 EFT

[ORSDS
[D2SAC
B3 DDRL-ATS

CZ1 ARD
X3 EFT

o

o
%

Normalized Utility Value
o o
- k=)

I
o

50

720 1440

Number of Time Slots

Fig. 7: Impact of Number of Time

360

100
Number of Users

Fig. 8: Impact of Number of AIGC

0.0

V100

.A4O
Type of Computation Capacities
Fig. 9: Impact of Computation Capac-

200 A100

Slots. Users. ities.
[ORSDS CZ1 ARD [ORSDS CZ1 ARD [ORSDS CZ1 ARD
1.0{ 3 D2SAC == EFT = 1.01 3 D2SAC E=3 EFT 1.0 31 D2SAC E=m EFT |
o X7 DDRL-ATS o] DDRL-ATS o X3 DDRL-ATS
=2 = k|
< | < < -
0.8 - 0.8 Fq o o 0.8 B B
> 5 > 1 = > K
> . > bx o > e o
£ p £ - Bl £ .
= = = X
= = - = B
506 = 506 B o o6
] N] BN K 32 N
[5] (53 o .
N N N [
=04 =04 =04
g g E
=] =] =3 .
Z.02 Z02 Z02
00 Tight Medium Slack 00" spxi10 OpenDalle V1.1 SD2.1 00 Light Medium High
Type of User Budgets Type of Generation Models Type of Workloads

Fig. 10: Impact of Budgets. Fig. 11: Impact of Generation Models. Fig. 12: Impact of Workloads.
EER ORSDS [z ARD [ORSDS [Z1 ARD [ORSDS [Z1 ARD
1.0 C=3 DasAc BN EFT == 1.04 3 D2SAC == EFT 1.04 2 D2SAC =m EFT =
521 | DDRL-ATS 523 DDRL-ATS X3 DDRL-ATS
Q Q o ——
=2 = 2
S os o038 - 7 S o8 N = B
& [2 2 - 9
2 I = X o L = <5
506 506 - 5 06 -
o = g = PN o o
Q (5] jo3 — .
N N N o
=04 =04 =04
Z 02 Z 02 Z 02
00 “Original Reversed Shotfiod 00 Ave. Peak Multi. 00 Tight Medium Slack

Type of Task Sequences
. 13: Impact of Task Sequences.

VII. EXPERIMENTAL EVALUATIONS

A. Evaluation Settings

AIGC Users and Requests: We consider the scheduling
system operating in a day, which has 7' = 720 consecutive
time slots. Each time slot is of 2-minute length based on
the average inference time of service model. During this
period, a total of 50 to 200 AIGC users, with varying budgets
submit their generation requests to the service provider. Each
user has a specific budget ranging from 10 to 50, indicating
the maximum number of requests that can be executed per
day. AIGC requests of these users are generated in both
real-world and synthesized patterns. Specifically, we extract
prompts from DiffusionDB dataset [36], and request arrival
time from Azure’s public dataset [38]. DiffusionDB is a text-
to-image prompt dataset containing 14 million prompts and
hyperparameters specified by real users. We randomly select
prompts and corresponding numbers of inference steps from

Type of Task Dynamics
Fig. 14: Impact of Task Dynamics.

10

Type of Request Deadlines
Fig. 15: Impact of Request Deadlines.

the dataset to simulate user-generated requests. Azure’s public
dataset is a publicly available dataset provided by Microsoft
Azure that includes anonymized traces of real-world cloud
workloads. We analyze the dataset to collect statistical samples
of the number of requests received over a specific time period,
thereby simulating the volume of requests during that interval.
We also generate multiple synthesized request arrival patterns
based on the Possion process, which aligns with most existing
work [14] [39]. In addition to its arrival time, each request
is assigned a deadline, calculated as its arrival time plus a
random number of time slot between 1 and 100.

AIGC Service Provider: The inference server is equipped
with an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and an
NVIDIA RTX A100 (80GB) GPU. We deploy three types of
widely used diffusion-based text-to-image models including
Stable-diffusion-xl-base-1.0 [35], OpenDalleV1.1 [23], and
Stable-diffusion-2-1 [22] on the server. These models are
invoked through Diffusers 0.32.1 based on Python 3.10 to gen-

TABLE II: Parameter values of quality perception models w.r.t.
three widely-used AIGC models.

Pelzfe;‘t‘;g;erlf/lggel SDXL [35] | OpenDalleV1.1 [23] | SD2.1 [22]
A, g 4 3
A, 0.26 030 022
Ba 15 9 20
B, 0.64 057 0.53

erate images. The hyperparameters of the generation models
are set as follows: the value of batch size is set to 1, the value
of guidance scale is set to 7.5. Key parameter values of the
quality-aware models are obtained through real experiments,
as shown in Table II. In our AIGC requests serving system,
user prompts are sent to the inference server through FastAPI
[40]. Additionally, the system capacity C' is set to 10, which
corresponds to the maximum number of requests the AIGC
service provider can handle within a single time slot.

Baselines: We implement and compare our approach, ORS-
DS (Online Request Scheduling for Diffusion-based Services),
against the following alternatives:

o D2SAC [16]: D2SAC schedules AIGC requests based
on the DRL method. It combines an Al-Generated op-
timal decision algorithm with Soft Actor-Critic method,
improving overall service quality by enhancing the ef-
ficiency and effectiveness of AIGC Service Providers.
However, D2SAC targets mainly on ASP selection issues,
thus cannot be applied in our problem directly. We adjust
the reward function according to our quality-aware model,
partition the resources among multiple ASPs, and further
train a new scheduling policy tailored for our problem.
Additionally, we modify the action state to enhance the
performance of D2SAC within our experimental settings.
DDRL-ATS [15]: DDRL-ATS schedules AIGC requests
using a reinforcement learning algorithm. It incorporates
a diffusion model to prioritize requests and leverages a
DRL framework to make scheduling decisions. Similarly,
it cannot be directly applied to our problem due to
differences in the experimental setup and optimization
objectives. To address this, we modify the reward function
to ensure it operates effectively in our scenario.

EFT (Earliest Finish Time): EFT schedules AIGC
requests with the aim of minimizing the delay for each
request as much as possible. For each incoming request,
EFT attempts to find the nearest available time slot to
execute it. If all feasible time slots before its deadline
have already been occupied, EFT rejects the request. The
scheduling priorities of requests are determined based
on their order of arrival, with requests that arrive earlier
being scheduled first.

ARD (Adaptive Random Discard): ARD introduces a
random rejection mechanism when there are too many
requests waiting to be scheduled in the current system.
Incoming requests are randomly rejected when the system
is under a heavy load, while accepted requests are sched-

11

uled to the time slot with the most abundant resources
before their deadlines. ARD can effectively prevent the
system from being overwhelmed by densely arriving low-
reward requests.

Offline Optimal Algorithm: We utilize the Gurobi solver
[41] to compute the offline optimal solution. In this
scenario, it is assumed that all the values of coefficients in
problem (7) are known to the service provider in advance,
and decisions are made by solving this optimization
problem directly.

Each group of experiments is repeated 10 times, with
the basic settings unchanged while the user’s prompts and
the random seed vary. We compute the mean and standard
deviation for each group as our result.

B. Evaluation Results

Impact of System Scale: Figure 7 illustrates the impact
of the number of time slots on normalized total utility value,
i.e., quality of generated images. As the number of time slots
increases, users are able to submit more requests to the ASP,
leading to a higher utility value as more requests are scheduled
and executed. Across various experiments, Algorithm ORSDS
consistently outperforms other methods. When the number
of time slots is set to 1440, corresponding to two days, the
performance improvements over D2SAC, DDRL-ATS, EFT
and ARD are 25.3%, 32.7%, 50.8% and 52.1%, respectively.

In Figure 8, we vary the number of users submitting AIGC
requests for service. As the number of users increases, the
total number of requests grows, providing the ASP with more
options to select and execute. Consequently, the total utility
value of each scheduling algorithm increases. However, as
the number of users continues to rise, the ASP’s processing
capacity gradually reaches its limit, preventing it from han-
dling additional requests. Our algorithm slightly improve the
overall utility value by selecting and executing more high-
reward requests. In contrast, EFT schedules requests solely
based on the earliest arrival, while ARD lacks the ability to
assess the quality of requests. As a result, their total utility
values remain almost the same.

Figure 9 describes the total utility value of five algorithms
as the ASP resource capacity varies. The experiments are
conducted using different GPU configurations, including the
NVIDIA A100, A40, and Tesla V100 GPU. The computational
power of the GPU affects the maximum number of inference
steps that the scheduling system can execute within a single
timeslot, which corresponds to the system’s resource capacity.
In our experiments, the A100 demonstrates significantly better
performance than the A40 for diffusion model inference, while
the A40 performs slightly better than the V100. Among these,
Algorithm ORSDS consistently achieves the highest utility
value and shows improvements of 22.1%, 24.9%, and 23.8%
over the state-of-the-art method in the three respective cases.

Figure 10 presents the results as the user budget varies.
In the “Slack” budget scenario, the user budget is set to 10,
while it is increased to 25 and 50 in the “Medium” and “Tight”
scenarios, respectively. As the budget increases, more requests

oney eannaduwo)

360
90 440 420 ftoocsig?s
Serg 100 ag0 460 (ner of Tim

Fig. 16: Empirical Competitive Ratio.

—— ORSDS
—&— DISAC

co
25 0.20

User Bugdet
” Dualc\/ariabié]

Cumulative Distribution Function (CDF)

0.00
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time Slots

Fig. 18: Algorithm Run-
time.

Fig. 17: Relationship between
User Budget and dual variable ¢.

can be executed, resulting in a rise in the total utility value.
However, this growth eventually stabilizes due to the system’s
computational capacity limitations. Due to the incorporation
of targeted design for user budgets, our algorithm performs
well in various scenarios, particularly when the user budget
is “Tight”. In Figure 11 we change the type of AIGC model
deployed on the ASP, and the premeasured quality function
thus changes as Table II. The overall generation capability of
“SD2.17, as reflected by its parameters A, and B,, is inferior
to that of the other two models. This results in a noticeable
decline in the scheduling performance of all algorithms under
these conditions. However, our algorithm effectively adapts
to different text-to-image models and achieves improvements
of 20.7%, 21.3% when the deployed model is changed to
“OpenDalleV1.1” and “SD2.17, respectively.

Impact of Task Dynamics: Besides real-world traces ex-
tracted from Azure’s public, we conduct the synthetic traces
to simulate more complicated situations. In this scenario, we
generate the number of requests for each user at the beginning
of each time slot following the Poisson process. The “Light”,
“Medium”, and “High” workloads in Figure 12 correspond
to Poisson process intensities of 0.5, 1, and 1.5, respectively,
which means the total arrival rates are 50, 100, and 150 for
100 users. The proposed ORSDS algorithm achieves greater
performance improvements as workload increases.

Figure 13 evaluates the impact of task arrival sequences on
the normalized utility value. In this experiment, we simulate
three different arrival orders for the same batch of requests.
The label “Original” corresponds to the default arrival order
of requests; ‘“Reversed” indicates that the order is inverted;

and “Shuffled” represents a randomly permuted order. Across
all three experiments, our proposed algorithm consistently
demonstrates a clear performance advantage over the base-
lines. Moreover, we observe that although different task arrival
sequences lead to slight fluctuations in the overall utility, the
impact remains limited, as the randomness in arrivals is aver-
aged out over the long term. Instead, we find that the pattern
of AIGC request arrivals, rather than their specific sequence,
exerts a more substantial influence on the results, as shown
in Figure 14. The label “Avg.” denotes a constant average
arrival rate; “Peak” represents a scenario with a single arrival
peak; and “Multi.” indicates multiple arrival peaks throughout
the process. In the “Peak” scenario, a sudden surge in request
volume poses considerable challenges to scheduling stability.
Nevertheless, our algorithm maintains strong performance,
outperforming the comparison algorithms by 25.2%, 29.2%,
52.6%, and 50.1%, respectively.

Figure 15 depicts the performance of the algorithms with
different strategies to generate deadlines. We assume the
request deadline to be its arrival time plus a random number
of time slots between 1 and 100 (inclusive) in the “Medium”
situation, indicating that the ASP must complete the request
within this time slot. In the “Tight” scenario, the upper limit
of the random range is reduced, while the lower limit is
increased in the “Slack” scenario. As the deadline becomes
tighter, the total utility value of five algorithms decreases,
as many requests cannot be executed before the deadline.
Notably, ORSDS consistently delivers the best performance
across all scenarios.

Analysis of Budget: Figure 17 visualizes the relationship
between user budget and dual variable ¢ in our proposed
algorithm. With the user budget consuming gradually, ¢ keeps
increasing, enabling the ASP to refuse requests from users
which is not so valuable judged by quality-aware model. The
“value” is related to the shadow price of the requests. For
example, requests with excessively high inference deployment
requirements but low expected returns will be deemed not
valuable. This acts as a perfect threshold as we mentioned in
V-A and is an internal reason accounting for why our ORSDS-
based scheduling system performs well.

Algorithm Runtime: Figure 18 illustrates the runtime of
ORSDS and D2SAC when scheduling 1000 requests. It shows
that ORSDS has a much shorter algorithm runtime than
D2SAC, with a latency of 1.78 ms versus 564 ms. This enables
our proposed ORSDS algorithm to respond to AIGC requests
instantly. In real-world scheduling scenarios, faster algorithm
runtime brings significant benefits.

Competitive Ratio: Figure 16 evaluates the empirical com-
petitive ratio, which is the ratio of the total utility value
achieved by the offline optimum to that achieved by our online
solution. We obtain the offline optimum via Gurobi solver [41]
as introduced in VII-A. Results demonstrate that the proposed
algorithm ORSDS achieves a good competitive ratio bounded
by 1.8 with variations in the number of time slots and users.
Furthermore, in most cases, the competitive ratio stabilizes at
approximately 1.2, indicating strong performance.

(a) Generated images from ASP with ORSDS. (b) Generated images from ASP with D2SAC.

(c) Generated images from ASP with EFT.

Fig. 19: Generated images from the ASPs adopting three different types of scheduling algorithms.

Visualization of Generated Images: To further evaluate the
performance of five different scheduling algorithms, we track
the generated results returned by each system. From these
results, we randomly selected 16 images for visualization, as
shown in Figure 19. Figure 19(a) illustrates the images gener-
ated from the ASP adopting our proposed ORSDS algorithm,
where most of the results are clear and of high quality. Figure
19(b) shows the results of D2SAC, which are generally decent
but include noticeably low quality outputs. Finally, Figure
19(c) presents the results of EFT. Due to its reliance on task ar-
rival order and the absence of a quality perception mechanism,
EFT produces outputs with inconsistent and often unreliable
quality, including multiple low-quality images. Meanwhile, we
calculate the average CLIP-IQA score of the images returned
from the three ASPs. The results of ORSDS, D2SAC and EFT
are 0.662, 0.583 and 0.465, respectively.

VIII. CONCLUSION

With the increasing number of diffusion-based AIGC re-
quests offloaded to the edge cloud, developing an efficient
scheduling algorithm is crucial for improving provisioned
AIGC services. In this work, we investigate the online request
scheduling problem for quality-aware diffusion-based AIGC
services. We formulate a long-term optimization problem to
maximize overall content generation quality of the AIGC
ecosystem, subject to the constraints of limited edge resources
and user budgets. To solve this problem, we conduct real
experiments on multiple AIGC models to establish quality
models, and carefully design the update of multiple dual
variables to flexibly control the consumption of edge resources
and user budgets. Meanwhile, we theoretically analyze the
optimization problem and the proposed method, including the
NP-hardness of the problem, the feasibility of our approach,
the polynomial-time complexity of our algorithm, as well as a
competitive ratio against the offline optimum. Extensive real-
world trace-driven experiments are conducted to validate our
proposed method.

13

[1]

[2

—

[3]

[4]
[5]

[6]

[7]

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, and L. Yu, “A Comprehensive
Survey of Al-Generated Content (AIGC): A History of Generative Al
from Gan to Chatgpt,” arXiv preprint arXiv:2303.04226, 2023.
OpenAl: Gpt-4 Technical Report. [Online]. Available: https://cdn.
openai.com/papers/gpt-4.pdf

Z. Xue, G. Song, Q. Guo, B. Liu, Z. Zong, Y. Liu, and P. Luo,
“Raphael: Text-to-image Generation via Large Mixture of Diffusion
Paths,” Advances in Neural Information Processing Systems, 2024.

J. Wu, W. Gan, Z. Chen, S. Wan, and H. Lin, “Ai-Generated Content
(AIGC): A Survey,” arXiv preprint arXiv:2304.06632, 2023.

H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, X. S. Shen, and D. I. Kim,
“Enabling AI-Generated Content Services in Wireless Edge Networks,”
IEEE Wireless Communications, 2024.

Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, A. Jamalipour, and
X. Shen, “ProSecutor: Protecting Mobile AIGC Services on Two-Layer
Blockchain via Reputation and Contract Theoretic Approaches,” IEEE
Transactions on Mobile Computing, 2024.

Y. He, L. Ma, R. Zhou, C. Huang, and Z. Li, “Online Task Alloca-
tion in Mobile Cloud Computing with Budget Constraints,” Computer
Networks, vol. 151, pp. 42-51, 2019.

N. Buchbinder, K. Jain, and J. Naor, “Online Primal-Dual Algorithms
for Maximizing Ad-Auctions Revenue,” in European Symposium on
Algorithms. Springer, 2007, pp. 253-264.

W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An Online Auction
Framework for Dynamic Resource Provisioning in Cloud Computing,”
ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 1, pp.
71-83, 2014.

M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, and Z. Mao, “Sparks
of GPTs in Edge Intelligence for Metaverse: Caching and Inference for
Mobile AIGC Services,” arXiv preprint arXiv:2304.08782, 2023.

G. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and X. Shen,
“Semantic Communications for Artificial Intelligence Generated Content
(AIGC) toward Effective Content Creation,” IEEE Network, 2024.

H. Du, R. Zhang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, X. Shen, and
H. V. Poor, “Exploring Collaborative Distributed Diffusion-based Al-
generated Content (AIGC) in Wireless Networks,” leee network, vol. 38,
no. 3, pp. 178-186, 2023.

Y. Zheng, L. Jiao, Y. Xu, B. An, X. Wang, and Z. Li, “Schedul-
ing Generative-Al DAGs with Model Serving in Data Centers,” in
IEEE/ACM International Symposium on Quality of Service, 2024.

X. Lyu, S. Rani, and Y. Feng, “Optimizing AIGC Service Provider Selec-
tion Based on Deep Q-Network for Edge-enabled Healthcare Consumer
Electronics Systems,” IEEE Transactions on Consumer Electronics, pp.
1-1, 2024.

C. Xu, “Diffusion-based Task Scheduling for Efficient AI-Generated
Content in Edge Networks,” in ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN). 1EEE, 2024, pp.
333-334.

[16]

(171

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

(351

[36]

[37]

(38]

H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, H. Huang, and
S. Mao, “Diffusion-based Reinforcement Learning for Edge-enabled Al-
Generated Content Services,” IEEE Transactions on Mobile Computing,
2024.

W. Feng, R. Zhang, Y. Zhu, C. Wang, C. Sun, X. Zhu, X. Li, and
T. Taleb, “Exploring Collaborative Diffusion Model Inferring for AIGC-
enabled Edge Services,” IEEE Transactions on Cognitive Communica-
tions and Networking, 2024.

T. Deng, D. Chen, J. Jia, M. Dong, K. Ota, Z. Yu, and D. Yuan,
“Optimizing resource allocation and request routing for ai-generated
content (AIGC) services in mobile edge networks with cell coupling,”
IEEE Transactions on Vehicular Technology, 2024.

R. Zhou, Z. Li, C. Wu, and Z. Huang, “An Efficient Cloud Market
Mechanism for Computing Jobs with Soft Deadlines,” IEEE/ACM
Transactions on networking, vol. 25, no. 2, pp. 793-805, 2016.

F. Hoseiny, S. Azizi, M. Shojafar, F. Ahmadiazar, and R. Tafazolli,
“PGA: A Priority-aware Genetic Algorithm for Task Scheduling in
Heterogeneous Fog-Cloud Computing,” in IEEE conference on computer
communications workshops. 1EEE, 2021, pp. 1-6.

Y. Sun, C. Lin, J. Ren, P. Wang, L. Wang, G. Wu, and Q. Zhang, “Subset
Selection for Hybrid Task Scheduling with General Cost Constraints,”
in IEEE Conference on Computer Communications. 1EEE, 2022, pp.
790-799.

“Stable-diffusion-2-1,” 2023. [Online]. Available: https://huggingface.
co/stabilityai/stable-diffusion-2- 1

“OpenDalleV1.1,” 2024. [Online]. Available: https://huggingface.co/
dataautogpt3/OpenDalleV1.1

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840—
6851, 2020.

P. Dhariwal and A. Nichol, “Diffusion Models Beat Gans on Image
Synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780-8794, 2021.

A. Q. Nichol and P. Dhariwal, “Improved Denoising Diffusion Prob-
abilistic Models,” in International conference on machine learning.
PMLR, 2021, pp. 8162-8171.

A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and
L. Van Gool, “Repaint: Inpainting Using Denoising Diffusion Probabilis-
tic Models,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, pp. 11461-11471.

S. Cheng, H. Hu, X. Zhang, and Z. Guo, “Rebuffering but not Suf-
fering: Exploring Continuous-Time Quantitative QoE by User’s Exiting
Behaviors,” in IEEE Conference on Computer Communications, 2023.
A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference Image
Quality Assessment in the Spatial Domain,” IEEE Transactions on image
processing, vol. 21, no. 12, pp. 46954708, 2012.

J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “Musiq: Multi-
scale Image Quality Transformer,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 5148-5157.

M. Heusel, H. Ramsauer, T. Unterthiner, and S. Nessler, “Gans Trained
by A Two Time-scale Update Rule Converge to a Local Nash Equilib-
rium,” Advances in neural information processing systems, 2017.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training Gans,” Advances in neural
information processing systems, vol. 29, 2016.

X. Zhang, Y. Zhang, W. Yu, L. Nie, N. Jiang, and J. Gong, “Qs-hyper:
A Quality-sensitive Hyper Network for the No-reference Image Quality
Assessment,” in Neural Information Processing: 28th International
Conference (ICONIP). Springer, 2021, pp. 311-322.

J. Wang, K. C. Chan, and C. C. Loy, “Exploring Clip for Assessing the
Look and Feel of Images,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 2, 2023, pp. 2555-2563.
“Stable-diffusion-xl-base-1.0,” 2023. [Online]. Available:
/fhuggingface.co/stabilityai/stable-diffusion-xI-base- 1.0

Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and
D. H. Chau, “DiffusionDB: A Large-Scale Prompt Gallery Dataset
for Text-to-Image Generative Models,” arXiv:2210.14896 [cs], 2022.
[Online]. Available: https://arxiv.org/abs/2210.14896

T. Gal, “Shadow Prices and Sensitivity Analysis in Linear Pro-
gramming under Degeneracy: State-of-the-Art-Survey,” Operations-
Research-Spektrum, vol. 8, no. 2, pp. 59-71, 1986.

Azure Inference Dataset. Accessed: 2024-12-25. [Online].
Available: https://github.com/Azure/AzurePublicDataset/blob/master/
AzureLLMInferenceDataset2023.md

https:

14

[39] V. Srivatsa, Z. He, R. Abhyankar, D. Li, and Y. Zhang, “Preble: Efficient

Distributed Prompt Scheduling for LLM Serving,” in International
conference on learning representations, 2024.

[40] FastAPI. [Online]. Available: https://fastapi.tiangolo.com/
[41] T. Achterberg, “What’'s New in Gurobi 9.0, Webinar Talk url:

https://www. gurobi. com/wp-content/uploads/2019/12/Gurobi-90-
Overview-Webinar-Slides-1. pdf, vol. 5, no. 9, pp. 97-113, 2019.

Han Yang received his B.S. degree in Electronic
Engineering from Tsinghua University, in 2023. He
is currently pursuing his M.S. degree at the Institute
for Network Sciences and Cyberspace, Tsinghua
University. His research interest focuses on the
request scheduling problems and scheduling algo-
rithms related to advanced AIGC service.

Ying Zheng received her Ph.D. degree in Computer
Science from Fudan University in 2024. She is
currently a postdoctoral researcher at Inria (National
Institute for Research in Digital Science and Tech-
nology), France. Her research interests include Al
infrastructure, and machine learning for optimiza-
tion. She has published papers in INFOCOM, JSAC,
IWQoS, and ICPP.

Lei Jiao received his Ph.D in CS from the University
of Gottingen, Germany. He is with the University
of Oregon, and was a technical staff at Nokia
Bell Labs, Ireland. He researches Al infrastructures,
cloud/edge networks, energy systems, cybersecurity
and multimedia. He has published 80+ papers in
journals such as IEEE JSAC, IEEE/ACM ToN,
IEEE TMC, and IEEE TPDS, and conferences such
as INFOCOM, MOBIHOC, ICDCS, SECON, and
ICNP. He is a U.S. National Science Foundation
CAREER awardee, and a recipient of the Ripple

Faculty Fellowship, the Alcatel Lucent Bell Labs UK and Ireland Recognition
Award, and Best Paper Awards of IEEE CNS 2019 and IEEE LANMAN 2013.

Yuedong Xu received B.S. degree from Anhui
University, MSc. Huazhong University of Science &
Technology, and Ph.D from The Chinese University
of Hong Kong. From 2009 to 2012, he was a Post-
Doctoral Researcher with INRIA Sophia Antipolis
and Universite d’Avignon, France. He is currently
a Professor with the School of Information Science
and Technology, Fudan University. His research in-
terests include performance evaluation, optimization,
security, data analytics and economic analysis of
communication networks, and mobile computing.

Zongpeng Li received his BSc in CS from Tsinghua
University in 1999 and his Ph.D from University of
Toronto in 2005. His research interests include com-
puter networks, network coding, network algorithms,
and cyber security. He received the Outstanding
Young Computer Science Researcher Prize from
the Canadian Association of Computer Science, and
the Research Excellence Award from the Faculty
of Science, University of Calgary. He is a senior
member of the IEEE.

	Introduction
	Related works
	Background
	Diffusion Model
	Image Quality Assessment

	Modeling and Problem Formulation
	Quality Model of Generated Results
	System Models
	Optimization Problem Formulation

	Online Algorithm Design
	Overview and Rationale
	Problem Reformulation
	Online Scheduling

	Performance Analysis
	Intractability
	Feasibility
	Time Complexity
	Competitive Ratio

	Experimental Evaluations
	Evaluation Settings
	Evaluation Results

	Conclusion
	References
	Biographies
	Han Yang
	Ying Zheng
	Lei Jiao
	Yuedong Xu
	Zongpeng Li

