
Online Request Scheduling for Quality-Aware

Diffusion-Based AIGC Services

Han Yang, Ying Zheng, Lei Jiao, Yuedong Xu, Zongpeng Li

Abstract—Artificial Intelligence-Generated Content (AIGC)
has been gaining significant traction for automatic generation
of diverse content. Due to the GPU-intensive generation process
and the high costs associated with purchasing and operating
GPUs, users often prefer to submit requests to a nearby edge
cloud, maintained by an AIGC cloud service provider. Effi-
ciently scheduling AIGC requests in the edge cloud faces non-
trivial challenges. First, AIGC requests emphasize the quality
of generated content, yet conventional scheduling algorithms
often overlook this aspect. Second, when the volume of incoming
requests exceeds the capacity of the cloud, the AIGC service
provider needs to select appropriate requests to execute, which
is further complicated by the online arrival pattern of requests
and the constraints imposed by request deadlines. Third, users
dynamically submit multiple requests at different times. To
manage costs, each user operates within a pre-allocated budget
for a given time period. For the AIGC cloud service provider, it
is highly non-trivial to identify valuable requests and judiciously
balance different user budgets. To tackle the above challenges,
we target the online AIGC request scheduling problem with
the new objective of maximizing the overall content generation
quality. We first conduct real experiments to establish the quality
model between inference steps and the quality of generated
content. Then, based on this quality model, we formulate the
problem into an integer linear program, which is proven NP-
hard. Under a primal-dual framework, we carefully design
the update of multiple dual variables, to flexibly control the
consumption of edge resources and user budgets. We rigorously
analyze the performance of the proposed algorithm and prove
a theoretical performance guarantee on its competitive ratio.
Extensive real-world trace-driven experiments manifest that our
proposed method improves the state-of-the-art by up to 25.3%
in overall content generation quality.

Index Terms—AIGC, Online optimization, scheduling algo-
rithms

I. INTRODUCTION

Artificial Intelligence-Generated Content (AIGC) refers to

content that is generated by advanced machine learning mod-

els, especially deep neural networks [1]. A user request,

This work was supported in part by the Quan Cheng Lab (QCL20250108,
QCL20250202 and QCL20250205), in part by Shandong Provincial Natural
Science Foundation (ZR2024LZH011, ZR2025LZH008), in part by the U.S.
National Science Foundation (CNS-2047719, CNS-2225949), and in part by
the Natural Science Foundation of China under Grant Grant 62472103.

Han Yang and Zongpeng Li are with the Institute for Network Sciences
and Cyberspace, Tsinghua University, Beijing 100084, China, and with
the Quancheng Laboratory, Jinan, Shandong 250103, China (e-mail: h-
yang23@mails.tsinghua.edu.cn; zongpeng@tsinghua.edu.cn).

Ying Zheng is with the School of Computer Science, Fudan University,
Shanghai 200438, China (e-mail: zhengy18@fudan.edu.cn).

Lei Jiao is with the Center for Cyber Security and Privacy, University of
Oregon, Eugene, OR 97403, USA (e-mail: ljiao2@uoregon.edu).

Yuedong Xu is with the Artificial Intelligence Innovation and In-
cubation Institute, Fudan University, Shanghai 200438, China (e-mail:
ydxu@fudan.edu.cn).

Time

“…a dog on bed…” “…a boy walking in the rain…”

Users

𝐵! 𝐵" 𝐵#… User budgets

Edge Cloud

Online

scheduler

Results:
…

AIGC Service Provider (ASP)

DDL constraints

Quality

requirements

Limited

resources

Fig. 1: AIGC request serving in an edge cloud.

referred to as a “prompt”, is fed into the neural network as

input, and the desired content is generated through a model

inference process. Recent years have witnessed a widespread

use of AIGC in various domains [2]–[4]. Despite the promises,

it is impractical for most users to directly deploy and utilize

these models locally, due to the substantial computational and

storage resources required by AIGC models. For instance, the

popular Stable Diffusion model requires 20 GB of memory to

generate results. Furthermore, the inference process is highly

GPU-intensive. It takes only 30 seconds to run the inference

process with 20 steps on an Nvidia A100 GPU, while it

requires nearly 8 minutes on an Intel Xeon Gold 6348 CPU. As

a result, it is more cost-effective for users to offload their AIGC

requests to a cloud service provider who provides AIGC-as-

a-Service (AaaS) over GPUs.

AaaS represents a new computing paradigm that promise

on-demand access to powerful computation resources

equipped with a variety of AIGC models [5], [6]. As shown

in Figure 1, in the AaaS ecosystem, an AIGC service provider

(ASP) deploys models on the edge cloud, offering online

services to users over edge networks, often wireless. Users

dynamically submit AIGC requests to the ASP for processing,

willing to pay monetary remuneration for the service. For the

service provider, an efficient request scheduling algorithm is of

crucial importance, since it directly impacts the AIGC service

provisioned. Such a scheduling algorithm is challenging to

design, due to the following challenges.

First, AIGC requests emphasize content generation qual-

ity, while existing scheduling algorithms are often quality-

agnostic. These algorithms are developed to optimize the

commonly-adopted Quality of Service (QoS) metrics, such

as job completion time and throughput, and hence are inca-

pable of addressing user requirements on generation quality.

Furthermore, measuring generation quality is a challenging

problem in it own right, given to the subjective nature of

user preferences. For text-to-image tasks based on diffusion

models, the number of inference steps affects the quality of the

generated result. Typically, the more inference steps, the higher

the computational cost, and the better the generated results.

Unfortunately, the relationship between generation quality and

number of inference steps is not simply linear. This requires

us to dive into the AIGC system, establish new quality-aware

models, and design new scheduling algorithms that work in

concert with it.

Second, resources in an edge cloud are limited. When

incoming requests exceed the service capacity of the edge

cloud, the ASP can only admit and execute a subset of the

submitted requests. If the scheduling algorithm admits requests

aggressively, it might prematurely exhaust resources, unable to

accommodate later requests with potentially high valuation;

if the algorithm behaves too conservatively, it faces the risk

of wasting resources instead. The challenge further escalates

when we consider the strict deadlines imposed on AIGC

requests. We aim to design an online scheduling algorithm

that strikes a judicious balance between immediate and future

system welfare in an AIGC-as-a-Service ecosystem.

Third, users dynamically submit multiple requests at dif-

ferent times, hoping to keep monetary expenses in a given

period within a predefined budget [7]–[9]. However, users

are not clear about the quality of the generated results until

they receive them. Therefore, the ASP should help users

identify more valuable requests through the admission control

mechanism, and maximize overall quality of the generated

results while ensuring budget compliance.

To our knowledge, existing studies fail to address the

aforementioned challenges to satisfaction. Xu et al. [10], Liu

et al. [11] and Du et al. [12] target optimizing the QoS

of AIGC services. They focus on the deployment of AIGC

models and fail to consider the request scheduling problem.

Zheng et al. [13], Lyu et al. [14] and Xu et al. [15] investigate

the AIGC request scheduling problem, while ignoring the

issue of generation quality. Du et al. [16] leverage a Deep

Reinforcement Learning (DRL) method to tackle the quality-

aware AIGC service provider selection problem. However,

they ignore the constraints imposed by user budgets and

request deadlines.

In this work, from the perspective of the AIGC service

provider, we study how to schedule dynamically arrived AIGC

requests in an online manner, with the goal of maximizing the

overall content generation quality. Specifically, our contribu-

tions are as follows

• We explore various text-to-image AIGC models with

advanced image quality assessment (IQA), and discover

a mathematical relation between the number of inference

steps and generation quality. Then we establish quality

perception models for the relationship via real-world

deployment and extensive testing.

• We formulate a long-term optimization problem to maxi-

mize content generation quality of the AIGC ecosystem.

This problem is an integer linear program, computation-

ally intractable even in the offline setting. Our formulation

grasps all the aforementioned challenges and is general,

with only mild assumptions on input dynamics and het-

erogeneity.

• As an important algorithmic step, we reformulate the

optimization problem into an equivalent form amenable

to primal-dual optimization. Then, we derive the dual

problem and design an online algorithm through online

primal-dual theory. Our primal-dual algorithm dynami-

cally conducts admission control and decides the schedule

for each request as it arrives at the AIGC-as-a-Service

system.

• We rigorously prove multiple theoretical results, includ-

ing the NP-hardness of the problem, the feasibility of

our approach, the polynomial-time complexity of our

algorithm, as well as its competitive performance against

the offline optimum.

• We conduct extensive experiments, in which our pro-

posed approach outperforms competing alternatives in

various settings. Specifically, in the common scheduling

scenario, our approach improves total generation quality

by 25.3%, 32.7%, 50.8% and 52.1% compared to four

baseline algorithms and achieves a significant algorithm

runtime speedup compared to the state-of-the-art DRL-

based approach.

II. RELATED WORKS

Recently, there have emerged studies that aim at improving

the QoS of AIGC services. Xu et al. [10] propose a least

context algorithm for managing cached models at edge servers,

meticulously balancing among latency, energy consumption

and accuracy. Similarly, Liu et al. [11] develop a compre-

hensive conceptual model to integrate AIGC with semantic

communication, offering a more comprehensive approach to

system design. In the context of text-to-image tasks, Du et al.

[12] introduce three architectures for joint inference between

edge computing nodes and user devices, successfully reducing

the consumption of inference resources by sharing inference

steps among users. Meanwhile, Feng et al. [17] propose a

novel framework to optimize service delay, network resource

usage, and computing resources of user devices in AIGC

services. While these studies make significant contributions,

they primarily concentrate on the model deployment or service

delivery schemes, without considering the scheduling chal-

lenges in the AIGC service system.

Deng et al. [18] study joint AIGC request scheduling

and model deployment in wireless edge networks, aiming to

minimize the total system cost during task execution and the

accuracy loss of generated results. However, they focus on

2

an offline problem, assuming a fixed number of AIGC tasks

rather than accounting for the dynamic nature of online task

arrivals. To address the problem of scheduling online AIGC

requests, Zheng et al. [13] propose an AIGC DAG scheduling

algorithm in an edge-cloud environment, while Lyu et al.

[14] explore the challenge of selecting appropriate ASPs in

a collaborative AIGC framework. Similarly, Xu et al. [15]

investigate an online text-to-image AIGC request scheduling

problem in a heterogeneous edge computing scenario. They

first formulate the problem into an integer program, and then

leverage deep learning methods to balance request latency with

the computation resources. They overlook the constraints of

user budgets and do not sufficiently investigate the quality of

content generation. To improve the quality of generated results,

D2SAC [16] focuses on the AIGC service provider selection

problem, with the aim of maximizing the overall quality

of generated content. This work introduces an innovative

mathematical model to evaluate quality, and employs deep

reinforcement learning to select service providers for executing

AIGC requests. Despite its strengths, the proposed method also

fails to consider the constraints imposed by strict deadlines and

user budgets, and hence is not applicable to our problem.

For studies on designing online scheduling algorithms,

the primal-dual framework offers valuable insights for our

algorithm design. Zhou et al. [19] develop an efficient social

welfare approximation algorithm using the classic primal-dual

framework, leveraging both LP duals and Fenchel duals. This

approach provides a useful reference for addressing resource

constraints and managing both soft and hard deadline limita-

tions in online scheduling scenarios. Similarly, Shi et al. [9]

demonstrate the application of online optimization algorithms

to handle budget constraints. They propose a binary search

algorithm to improve average-case performance and enhance

the online auction framework by ensuring a minimum budget

spending fraction, resulting in a better competitive ratio. How-

ever, these approaches, along with other related works [20],

[21], primarily focus on cost and resource constraints, while

neglecting the quality of the generated results. This omission

makes them unsuitable for addressing the unique challenges of

the diffusion-based AIGC request scheduling problem, where

ensuring the quality of generated content is necessary.

Therefore, none of the existing works address the online

request scheduling problem for quality-aware diffusion-based

AIGC services under pre-defined user budget constraints. Both

a new formulation and an online solution are needed.

III. BACKGROUND

A. Diffusion Model

Mainstream models for text-to-image generation tasks, e.g.,

Stable Diffusion [22] and DALL·E [23], are trained over

diffusion models [24]. Diffusion models consist of a diffusion

process and a denoise process, also referred to as the inference

process. As shown in Figure 2, during the diffusion process,

Gaussian noise is progressively added into the original image,

eventually transforming it into a completely noisy image after

T steps. The sequence from x0 to xT represents the images

Latent space

Input

E
n
c
o
d
e
r

Noise

Predictor
D
e
c
o
d
e
r

Output

Denoising / Inference

Subtract

Diffusion

𝒙𝑻 𝒙𝒕#𝟏 𝒙%𝒙& 𝒙𝟏 𝒙𝟎…

…

𝒙𝟑 𝒙𝟐

∈𝜽

𝑡

Fig. 2: Illustration of how a diffusion-based AIGC model

works: the lower half of the image depicts the overall work-

flow, while the upper half focuses on a specific denoising step.

generated throughout the diffusion process, each containing

varying degrees of noise. Specifically, x0 corresponds to the

original image without any added noise while xT corresponds

to the completely noisy image.

The training process of a diffusion model is designed to train

a noise predictor, typically implemented as a neural network,

which estimates the noise added to the image based on the

noisy image and its corresponding noise step. Let θ denote the

parameters of the noise predictor. For each sampled original

image data point, the parameters of the predictor network are

trained and updated using the equation

∇θ

∥

∥

ϵ− ϵθ

(√
ᾱt x0 +

√
1− ᾱt ϵ, t

)∥

∥

2
, (1)

where ϵ ∼ N (0, I) represents the sampled random noise; t
denotes the number of noising step during sampling. The core

idea of Equation (1) is to add the sampled random noise ϵ into

the original image x0, producing a noisy image x defined as

x =
√
ᾱt x0 +

√
1− ᾱt ϵ. (2)

The noisy image x, along with the noise step t, is then fed

into a noise predictor neural network, which produces the

predicted noise ϵθ(x, t). The training objective is to minimize

the difference between the predicted noise and the true noise

label, to ensure the predicted noise is sufficiently accurate.

The denoising process progressively reconstructs the origi-

nal image from a noisy image using the trained model [25]. In

a specific text-to-image generation task, the Stable Diffusion

algorithm begins by randomly sampling a Gaussian noise im-

age. Simultaneously, a text encoder is adopted to process user

textual input, encoding it into a latent vector. This encoded

vector, combined with the current number of inference step

t, is passed to the noise predictor to estimate the noise at

that step. By iteratively removing the predicted noise, the

model gradually synthesizes the final image that aligns with

user input [26], [27]. Notably, to enhance efficiency, Stable

Diffusion does not operate directly on the original image or

3

(a) CLIP-IQA Score:0.829 (b) CLIP-IQA Score:0.835 (c) CLIP-IQA Score:0.494 (d) CLIP-IQA Score:0.284 (e) CLIP-IQA Score:0.159

Fig. 3: Examples of generation results and their corresponding CLIP-IQA scores. From left to right, the prompts are: (a) “A

towering waterfall surrounded by green forests”; (b) “A snowy landscape stretching to the horizon”; (c) “Multicolored blocks

spread out on a table”; (d) “A juicy orange on the wooden desk”; (e) “A patterned kitten with soft fur playing in the courtyard”.

its noisy counterpart. Instead, it processes their representations

in a compressed latent space. For instance, a 512×512 pixel

image is reduced to a 4×64×64 representation in the latent

space, drastically reducing computational and storage demands

during training and inference [22].

Specifically, as shown in Figure 2, each inference step

brings an improvement to the current image. As the number

of steps increases, the image becomes progressively clearer

and more refined. After T steps, the final result in the latent

space is decoded into the final image by the image decoder.

Consequently, in typical inference tasks of large text-to-image

models, the number of inference steps (i.e., denoising steps)

directly affects the computational resource consumption and

the quality of the generated results.

B. Image Quality Assessment

In an AIGC ecosystem, users submit requests to the server to

generate desired images. Throughout this process, in addition

to traditional QoS metrics like latency and cost, a primary

concern for users is the quality of the generated images.

Apparently, users are more likely to pay for generated results

that meet their expectations.

However, evaluating the quality of generated images has

been a persistent challenge in the field of computer vision

[28]. Various mathematical models have been developed to

evaluate image quality [29], [30]. The Fréchet Inception Dis-

tance (FID) metric [31] and Inception Score (IS) [32] metrics

quantify the quality of generated images by measuring the

similarity between the high-level features of generated images

and those of real-world reference images. However, these

IQA metrics primarily focus on evaluating sets of generated

images, whereas our generation objective mandates a focus on

the evaluation of individual, specific image produced by the

inference service. BRISQUE [29] is a no-reference method for

assessing the quality of individual images by extracting mean

subtracted contrast normalized (MSCN) coefficients from the

image and fitting them to an asymmetric generalized Gaus-

sian distribution (AGGD). Features derived from the fitted

Gaussian distribution are then extracted and fed into a support

vector machine (SVM) for regression, ultimately producing an

image quality assessment score based on objective metrics like

texture, clarity, and smoothness. However, the quality we seek

to evaluate must also encompass the user’s overall perception,

i.e., subjective “feel”, of the image. In this regard, traditional

methods such as BRISQUE and similar approaches [33] often

fall short.

To address the aforementioned challenge and provide a

more comprehensive evaluation of the quality of generated

images, we introduce an advanced and effective image quality

assessment (IQA) method, CLIP-IQA [34]. This approach

leverages a Contrastive Language-Image Pre-training (CLIP)

model to assess both the appearance (quality perception) and

feel (abstract perception) of images, all without requiring ex-

plicit task-specific training. Specifically, the generated images

are processed through the CLIP model for feature extraction.

These extracted features are then compared with a pre-defined

set of quality-related keywords (e.g., “high quality,” “low

quality”) using cosine similarity shown below

ui =
y ⊙ ti

∥y∥ · ∥ti∥
, i ∈ {1, 2}, (3)

where y represents the image feature representation extracted

using the CLIP model; t1 and t2 denote the feature vectors of

a pair of antonym prompts (e.g., “high quality,” “low quality”).

The quality score of image s̄ is then computed as

s̄ =
eu1

eu1 + eu2
. (4)

The value of s̄ ranges from 0 to 1, with larger values indicating

better overall image quality.

The existing literature has demonstrated that CLIP-IQA

achieves high precision in visual perception assessments and

maintains strong consistency with human perception across

various tasks [34]. We also conduct real experiments to

further validate the effectiveness of CLIP-IQA in text-to-image

generation scenarios. As illustrated in Figure 3, we present five

generated images using the SDXL model [35]. Figure 3(a) and

3(b) illustrate high-quality images produced through sufficient

inference steps, exhibiting excellent image texture features

and leaving a positive impression, thus receiving high scores.

The objective quality of Figure 3(c), reflected in its color

and texture, is also high; however, it leaves only an average

subjective impression, leading to a moderate score. In contrast,

Figure 3(d) and 3(e), generated with insufficient inference

4

C
LI

P-
IQ

A
 S

co
re

Fig. 4: Relation between number of inference steps and CLIP-

IQA scores. Dashed line represents the quality model and the

stars mark two important turning points.

steps, exhibit significant discrepancies from the prompts and

poor overall quality, resulting in low scores.

CLIP-IQA allows for a holistic assessment covering both

technical coherence and subjective impression, providing an

accurate quality assessment for individual images without

requiring reference images. By adopting the method, we

successfully transform the abstract metric of image quality into

numerical scores that can be used for subsequent modeling.

IV. MODELING AND PROBLEM FORMULATION

In this section, we first introduce the quality-aware model of

generated results in Section IV-A. Then, we present the system

models of AIGC services within the edge cloud environment

in Section IV-B. Finally, the overall problem formulation is

provided in Section IV-C.

A. Quality Model of Generated Results

In traditional image quality assessment methods, including

CLIP-IQA, a specific image is essential as input to generate

a quality score. However, in our online scheduling task, the

system receives user requests rather than images. The image

for quality evaluation can only be obtained after the request

is processed and the inference task has been completed. By

that stage, computation resources have already been consumed,

making the quality evaluation ineffective for decision-making.

To address this limitation, it is necessary to establish a proac-

tive quality-aware model capable of estimating generation

quality in advance, relying solely on the parameters of the

user’s request. As discussed in Section III-A, the number of

inference steps has a direct impact on generation quality. On

this basis, literature [5] demonstrates that, the relationship

between the inference process and image quality can be

approximately characterized using a mathematical function in

image restoration context. We further extend to the text-to-

image generation scenario and introduce Equation (5) as our

quality-aware model represented by the red dashed line in

Figure 4.

f(x) =



















Ay, if x < Ax,

By−Ay

Bx−Ax
(x−Ax) +Ay, if Ax ≤ x ≤ Bx,

By, if x > Bx.

(5)

In this equation, x denotes the number of inference steps;

Ax represents the minimum number of inference steps where

the quality of the generated image starts to improve; Bx serves

as the threshold beyond which additional inference steps no

longer result in significant improvements in image quality. Ay

and By represent the lower and upper bounds of the quality

of the generated images, respectively, reflecting the model’s

inherent ability to generate images. They are closely tied to the

intrinsic properties of the model deployed on the AIGC server,

with better-performing and more effective models generally

having higher values of Ay and By .

The values of Ax, Ay , Bx, and By can be obtained through

real experiments. Specifically, we set up an experimental

platform on an Ubuntu 20.04 server equipped with an NVIDIA

RTX A100 (80GB) GPU and an Intel(R) Xeon(R) Gold

6348 CPU @ 2.60GHz. On this platform, we deploy the

OpenDalleV1.1 [23] for image generation. To derive the four

parameters of this model, we utilize it for image generation

tasks, keeping the input prompt fixed while varying the number

of inference steps. The generated images are then sent to the

evaluation module to be scored using CLIP-IQA method [34]

as we have introduced. For each inference step, the model

repeatedly generates multiple images for quality evaluation.

We then compile the results into a box plot as shown in

Figure 4. According to the box plot, we fit the red dashed

line and obtain the values of the turning points, corresponding

to Ax, Ay , Bx and By . On this basis, we can establish a

quality-aware model in the system. When subsequent AIGC

requests arrive, the quality-aware model can estimate the

quality of the generation result through Equation (5) and the

number of inference steps specified by the user. The calculated

quality value will serve as our optimization target, enabling

more informed and effective decision making. Notably, the

quality-aware model can be equipped with different methods

to calculate the generation quality, including conducting any

tuning, re-fitting, or probing, for different AIGC requests.

We expand the testing framework on the experimental

platform to incorporate additional diffusion-based text-to-

image models, such as stable-diffusion-xl-base-1.0 [35], and

stable-diffusion-2-1 [22]. Quality-aware models can also be

constructed utilizing the method described above. At the same

time, we test whether the prompts provided by users would

impact the quality of the generated content, as users in real-

world scenarios rarely make identical requests all the time. We

select several specific inference steps and randomly choose 15

types of real user prompts from the DiffusionDB dataset [36]

for evaluation. The results as Figure 4 indicate that the content

of the prompt does not affect the quality of the generated

images. This is primarily due to the presence of the encoder

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prompt Type

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
LI

P-
IQ

A
 S

co
re

Number of inference steps = 4
Number of inference steps = 8
Number of inference steps = 12

Fig. 5: Relation between prompt types and CLIP-IQA scores.

Each point is calculated as the average of 20 generated images.

module in diffusion-based text-to-image models, where dif-

ferent prompts will be encoded into latent space vectors of

the same dimension for subsequent diffusion. Although the

above conclusion holds true in our tests, we do not rule out the

possibility that certain hard prompts may lead to results that

deviate from the curve shown in Figure 5. We remark that such

cases does not impact our scheduling models, algorithms, and

analysis, as long as we are provided with the generation quality

of each AIGC request. Additionally, Since our algorithm is

designed for AIGC service providers, a practical enhancement

for real deployments is to update the step-to-quality curve

online. This does not affect our scheduling model or theoretical

analysis. The curve can be dynamically adapted based on the

evolving distribution of user prompts observed in the system,

allowing it to better fit real-time user demand and further

mitigate the impact of hard prompts.

B. System Models

AIGC Service Provider (ASP): The ASP deploys its AIGC

model on an edge server. Continuous maintenance and updates

are required to ensure that the AIGC model remains accurate

and effective in generating high-quality content. Users submit

requests for content generation and receive the generated

content from the ASP. Without loss of generality, assume that

the entire system operates in slotted time [T] = {1, 2, · · · , T}.

Due to resource constraints, the services that can be provided

in a specific time slot are limited. We extract this upper-bound

as resource capacity C, representing the maximum number of

inference steps the ASP can process in a single time slot.

AIGC Users and Requests: We use [I] = {1, 2, · · · , I} to

refer to the set of AIGC service users. Each user submits its

AIGC requests to the ASP at different time slots. Each user

also has a budget Bi, hoping the total monetary expenses do

not exceed the pre-defined limit within a certain period [7]–

[9]. We use Mi = {Mi1,Mi2, · · · ,Mij , · · · } to represent the

requests submitted by user i, and the total number of which

is Ji = |Mi|. Note that the number of requests may vary for

different users. We use Mij = {aij , dij , sij} to represent user

i’s j-th request, where aij is the arrival time of the request;

AIGC Service Provider (ASP)

Edge Cloud

Online scheduler

Perception model

Scheduling

algorithm+

Step (ii)

Step

(iii)

Time

𝐵! 𝐵" 𝐵#…

Step (i) Submit requests PayStep (v)

Step

(iv)

Return generated

results

Users

Fig. 6: The system workflow of the request scheduling system.

dij is the deadline for completing the request; sij refers to the

number of inference steps required for executing the request.

We use rij to represent the required computation resources by

user i’s j-th request, whose value is a linear function of sij
as stated in [16]. If the ASP executes a submitted request, the

corresponding user needs to make a payment of ep to the ASP

to attain the result.

Inference Quality: As mentioned in Section III-B, we

select the CLIP-IQA as our image quality assessment method

due to its superior performance in assessing image quality.

Denote uij as the quality of the generated image in terms

of user i’s j-th request. Based on the CLIP-IQA method, we

are able to establish the mathematical relationship between the

quality of the generated image uij and the number of inference

steps sij . This also serves as a part of our optimization goal.

Control Decisions: Upon each AIGC request Mij arrival,

i.e., user i’s j-th request, the ASP responds immediately and

makes the following control decisions: (i) Whether to admit

the user i’s j-th request for execution, denoted by xij ; (ii)

Whether to execute the user i’s j-th request at time slot t,
∀t ≥ aij , denoted by yijt.

System Workflow: The overall system workflow is shown

in Figure 6, consisting of the following steps: (i) Users submit

their AIGC requests to the ASP. Note that each user may

submit multiple requests, across different time slots; (ii) Upon

each request arrival, the ASP conducts quality perception

based on the pre-measured perception model; (iii) The ASP

makes the scheduling decisions, including whether to execute

the current request and, if so, the time slots of execution; (iv)

The ASP returns the result to the corresponding user; (v) The

user makes a payment to the ASP for executing its request.

C. Optimization Problem Formulation

Optimization Objective: We define the overall generation

quality as our optimization objective, which is calculated as

U =
∑

i∈[I]

∑

j∈[Ji]

uijxij , (6)

where xij is a control decision, whose value is 1 if the ASP

accepts the user i’s j-th request, and 0 otherwise. The value

6

of uij depends on the number of required inference steps (i.e.,

sij) and the established quality model (Equation (5)).

Optimization Problem: We aim to maximize the overall

generation quality, subject to deadline, resource and budget

constraints. Some deployments may consider jointly optimize

multiple objectives, such as latency, diversity, and safety filters.

To handle this, we can perform the weighted sum of the

multiple different objectives and use this sum as the single

objective for optimization. Such weights can always be tuned

and controlled, e.g., depending on the importance of each

objective, in order to navigate the final optimization results.

This way, our proposed approach still applies.

The diffusion-based AIGC request scheduling problem can

be formulated as

maximize
∑

i∈[I]

∑

j∈[Ji]

uijxij (7)

subject to yijt · t− dij ≤ 0, ∀i ∈ [I], j ∈ [Ji], t ∈ [T], (7a)

xij −
∑

t≥aij

yijt ≤ 0, ∀i ∈ [I], j ∈ [Ji], (7b)

∑

i∈[I]

∑

j∈[Ji]

rijyijt ≤ C, ∀t ∈ [T], (7c)

∑

t∈[T]

∑

j∈[Ji]

epyijt ≤ Bi, ∀i ∈ [I], (7d)

xij , yijt ∈ {0, 1}, ∀i ∈ [I], j ∈ [Ji], t ∈ [T]. (7e)

Constraint (7a) ensures each request is executed before its

deadline. Constraint (7b) ensures that for each request, at

least one time slot will be used to execute it once selected.

Constraint (7c) ensures sufficient computation capacity of ASP

to complete the inference request. Constraint (7d) guarantees

total expenses do not exceed user budgets. Constraint (7e)

specifies the domains of the decision variables. Unless oth-

erwise noted, the scopes for our indices are i ∈ [I], j ∈ [Ji],
and t ∈ [T]. Our problem is provably intractable; see Section

VI-A for more details.

V. ONLINE ALGORITHM DESIGN

In this section, we describe how to design our online

algorithm. We first introduce the overall idea in Section V-A.

In Section V-B, we reformulate the optimization problem.

Then, the online algorithm is presented in Section V-C.

A. Overview and Rationale

The original problem (7) is an integer linear program, which

contains a standard 0-1 knapsack problem and hence is NP-

hard. To solve problem (7), we first reformulate and simplify

it into problem (8). However, we are still unable to obtain

the solution directly due to the unknown job information,

i.e., the coefficients of problem (8) are unknown until the

corresponding requests appear. In other words, problem (8) is

an online problem and we need to develop an online algorithm

to solve it based only on current and past information.

To design such an online algorithm with provably-

guaranteed performance, we leverage the online primal-dual

TABLE I: Main Notations.

I number of users

T number of time slots

Ji number of requests submitted by user i

Bi user i’s budget

C computation resource capacity of the edge cloud

ep payment to ASP for executing an AIGC request

aij arrival time of user i’s j-th request

dij deadline specified by user i’s j-th request

uij quality of user i’s j-th request

rij required computation resources of user i’s j-th request

sij number of required inference steps

of user i’s j-th request

z(ij) total amount of resource consumption after scheduling

user i’s j-th request

λ
(ij)
t value of dual variable λt after processing

user i’s j-th request

ϕ
(j)
i value of dual variable ϕi after processing

user i’s j-th request

Decisions Descriptions

xij whether to execute(1) user i’s j-th request or not(0)

yijt whether to execute(1) user i’s j-th request

at time slot t or not(0)

framework. The core idea is that, as the task arrives and

the constraints in problem (8) appear dynamically, we always

keep a feasible solution for the primal problem (8) and a

feasible solution for the dual problem (9) through a carefully-

designed request scheduling mechanism and update rules of

dual variables. Specifically, we introduce dual variable λt to

track the computation resource consumption and implicitly

reflect the marginal price of computation resources in the

system. Based on the value of dual variable λt, the ASP

is able to strategically identify and admit valuable requests

among incoming requests. Meanwhile, we also introduce dual

variable φi for each user i to manage its budget consumption.

Our goal is to maximize each user’s dwell time in the system,

thereby increasing the likelihood of occurring more valuable

requests. To achieve this, we design an update mechanism of

φi such that when user i’s budget consumption is relatively

low, the ASP is more inclined to execute tasks submitted by

the user. In contrast, when user i’s budget consumption is high,

the ASP is more inclined to reject the requests submitted by

the user.

In addition, we also keep the objective values incurred by

the primal feasible solution and the dual feasible solution

satisfying a certain relationship. The weak duality indicates

that the objective value incurred by a dual feasible solution

always serves as an upper bound for the optimal objective

value of the primal problem. Therefore, the performance of

the online solution is guaranteed.

B. Problem Reformulation

Primal Problem: We first reformulate the optimization

problem (7) into an equivalent yet simpler integer linear

program (ILP) as

7

maximize
∑

i∈[I]

∑

j∈[Ji]

∑

t∈[ai,di]

uijyijt (8)

subject to
∑

t∈[T]

yijt ≤ 1, ∀i ∈ [I], j ∈ [Ji], (8a)

∑

i∈[I]

∑

j∈[Ji]

rijyijt ≤ C, ∀t ∈ [T], (8b)

∑

t∈[T]

∑

j∈[Ji]

epyijt ≤ Bi, ∀i ∈ [I], (8c)

yijt ∈ {0, 1}, ∀i ∈ [I], j ∈ [Ji], t ∈ [T]. (8d)

In problem (8), we eliminate the variable xij by incorporat-

ing the constraint (7b) into the objective function. Constraint

(8a) ensures that each request can be executed at most once.

Constraints (8b) and (8c) are equivalent to (7c) and (7d), re-

spectively. Constraint (8d) specifies the domain of the control

variable yijt. We remark that a feasible solution to problem

(8) has a corresponding feasible solution to problem (7), and

the optimal objective value of problem (8) is equal to that of

problem (7).

C. Online Scheduling

Dual Problem: To design the online scheduling algorithm,

we relax the domain of the integer variable yijt to yijt ∈ [0, 1].
The dual problem of (8) can be written as

minimize
∑

i∈[I]

∑

j∈[Ji]

δij +
∑

t∈[T]

Cλt +
∑

i∈[I]

Biφi (9)

subject to δij ≥ uij − epφi − rijλt, ∀i ∈ [I], j ∈ [Ji], t ∈ [T],
(9a)

δij ≥ 0, λt ≥ 0, φi ≥ 0, ∀i ∈ [I], j ∈ [Ji], t ∈ [T],
(9b)

where δij , λt and φi are the dual variables associated with

Constraints (8a), (8b) and (8c), respectively.

We define the value of dual variable λt as

λ
(ij)
t =

1

e
· θ

z
(ij)
t
C , ∀i ∈ [I], ∀j ∈ [Ji], (10)

where λ
(ij)
t represents the value of λt after processing user

i’s j-th request; z
(ij)
t denotes the total amount of resource

consumption at time slot t after scheduling user i’s j-th

request. Next, we explain the design principles of updating

dual variable λt. In the primal-dual theory, a dual variable

is a “shadow price” [37] representing the increment of the

objective value incurred by a unit increase in the resource of

the original problem. In other words, λt, which is associated

with Constraint (8b), can be interpreted as a marginal price

function of edge resource. At each time slot t, if edge resources

are sufficient, the resource price should be kept as low as

possible to encourage the ASP to execute more AIGC requests.

When resources are scarce, the resource price is high, allowing

only more valuable requests to be executed. Note that the

resource price will be updated after each request’s scheduling.

In this way, the ASP can decide whether to execute incoming

requests based on the value of λt, enabling flexible resource

management.

Meanwhile, denote φ
(j)
i as the value of dual variable φi

after processing user i’s j-th request. The value of φ
(j)
i is

computed as

φ
(j)
i = φ

(j−1)
i (1 +

ep
Bi

) + β(
uij

Bi

), ∀i ∈ [I], ∀j ∈ [Ji] \ {0}.
(11)

We remark that the value of φi is only updated when a request

submitted by user i is accepted and executed. Note the initial

value of φ
(j)
i is φ

(0)
i = 0. The coefficient β determines the

magnitude of growth in the dual variable φi at each update. A

larger β leads to faster updates of φi, while a smaller β results

in slower updates. The value of β is chosen by design, and it

affects the competitive ratio of the proposed online algorithm,

as shown in Theorem 4. The rationale for designing the update

rule of dual variable φi is that, we try to make each user’s

budget last for as long as possible in the T time slots, thus

the ASP can explore more valuable requests over the entire

time span.

For ease of representation, we define the right hand side of

Constraint (9a) as

F (ijt) = uij − epφi − rijλt, ∀i ∈ [I], j ∈ [Ji], t ∈ [T].
(12)

We also define

t∗ = argmax
t∈[aij ,dij]

{F (ijt)}. (13)

Then we set the dual variable δij as

δij = max{0,max
t

{F (ijt)}}, ∀i ∈ [I], j ∈ [Ji]. (14)

In the online scheduling process, for each arrived user i’s
j-th request Mij , if F (ijt∗) > 0, the ASP accepts the request

Mij and set δij = F (ijt∗); otherwise the ASP rejects the

request and set δij = 0.

Algorithm 1 is our online scheduling algorithm. Line 1

initializes the decision variable xij , yijt and dual variable

λt, φi to zero. Upon the arrival of each request Mij , Line 3

selects the time slot t∗ in which λ
(ij−1)
t returns the minimum

value. Line 4 calculates the value of F (ijt∗) according to

(12). Line 5 checks whether F (ijt∗) > 0 and if so, line 6

updates dual variables λt and φi; otherwise, we reject user

i’s j-th request in line 11. Line 7 checks whether there are

sufficient resources to execute the request and whether the

user has a sufficient budget to be charged. Formally, we

check the capacity constraint
∑

i

∑

j rijyijt ≤ C, ∀t, and

the budget constraint
∑

j

∑

t epyijt ≤ Bi, ∀i. If there are

sufficient resources and enough budget, then Line 8 admits

the request and executes it at time t∗. Line 9 updates the

consumed resources and users’ budgets.

8

Algorithm 1: Online AIGC Request Scheduling Algo-

rithm

Input: {Mij}, C, ep,{Bi}

1 Initialize xij , yijt, λt, ϕi, ∀i, j, t;

2 for each incoming request Mij do

// find the request allocation decision

that achieves the maximum F (ijt)

3 Select the time slot t∗ = argmint∈[aij ,dij]
{λ

(ij−1)
t } ;

4 Calculate F (ijt∗) according to (12);

5 if F (ijt∗) > 0 then

6 Update λt∗ and ϕi according to (10) and (11);

7 if enough resources and user i’s budget then

8 Admit user i’s j-th request, execute it at time

slot t∗, set xij = 1;

9 Update consumed resources and users’ budgets;

10 else Reject user i’s j-th request;

11 else Reject user i’s j-th request;

VI. PERFORMANCE ANALYSIS

A. Intractability

Theorem 1. The AIGC Request Scheduling Problem (7) is

NP-hard.

Proof. We prove by showing that problem (7) subsumes the

well-known 0-1 knapsack problem as a special case. To see

this, let xij =
∑

t yijt, thus Constraint (7b) always holds.

Next, we sum Constraint (7c) over the entire horizon T and

obtain
∑

i

∑

j rijxij ≤ CT . After removing Constraints (7a)

and (7d), the remaining problem is a 0-1 knapsack problem,

where the “item” is the user i’s j-th request; the “weight”

is rij ; and the “value” is uij . Therefore, the more complex

problem (7) is NP-hard.

B. Feasibility

Theorem 2. Our proposed approach produces a feasible

solution to the problem (7).

Proof. If user i’s j-th request is rejected, all constraints in

problem (7) are satisfied. If user i’s j-th request is accepted,

then we have Constraint (7a) satisfied due to the domain of

variable yijt defined in (8). Line 8 in Algorithm 1 indicates

that if we set variable xij = 1, then user i’s j-th request

would be executed at time t∗, i.e., yijt∗ = 1. Therefore,

Constraint (7b) holds. Line 7 in Algorithm 1 ensures that

the total processed requests would not exceed the resource

capacity and users’ budgets. Then, Constraints (7c) and (7d)

are satisfied. As a result, all constraints in problem (7) hold,

indicating our proposed approach produces a feasible solution

to problem (7).

C. Time Complexity

Theorem 3. Our proposed online algorithm runs in polyno-

mial time.

Proof. We consider the key steps in Algorithm 1. Let J
represent the maximum number of requests generated by a

single user. Then, Line 2 iterates at most IJ times. Line 3

iterates at most T times. Thus, overall, the Algorithm runs in

O(IJT).

D. Competitive Ratio

Competitive ratio is a metric that characterizes the multi-

plicative gap between the objective function value achieved by

an online solution and that achieved by the offline optimal so-

lution. The online solution is generated by an online algorithm

on the fly without knowing future information, and the offline

optimal solution is computed by solving the problem optimally

given all the input information over the entire time horizon.

Next, we present the formal definition of the competitive ratio

in the context of our problem.

Definition 1. Competitive Ratio: Let OPT denote the offline

optimal objective value of the problem (7) and its equivalent

problem (8). Let P I be the objective value of problem (8)

incurred by our online approach after processing all requests

(either admitted or rejected). The competitive ratio of our

approach is the upper bound on the ratio of the offline optimal

objective value OPT to the objective value P I achieved

by Algorithm 1, i.e., the upper bound of OPT/P I . The

competitive ratio is greater than or equal to 1 in this definition.

Theorem 4. Our proposed online approach has the competi-

tive ratio γ = ϵ(α+ β), where ϵ = 1 + 2umaxrmax

uminrmin
, α = ln θ.

The variable β controls the magnitude of growth in the updates

of dual variable φi, as defined in (11).

Proof. To obtain the competitive ratio, we follow the roadmap

below. The related lemmas and the details of this proof

are placed in the Appendix (included in the supplemental

material).

P (IJ) ≥ 1

ϵ
P̃ (IJ) (15)

≥ 1

ϵ

1

α+ β
D(IJ) (16)

≥ 1

ϵ(α+ β)
OPT. (17)

To assist the proof, we use P (ij) to denote the objective value

of the original problem P (i.e., optimization problem (7)) after

processing the j-th request of the i-th user. Similarly, we use

D(ij) to represent the objective value of the dual problem

D (i.e., optimization problem (9)) after processing the j-th

request of the i-th user. Therefore, P (IJ) and D(IJ) denote

the objective values of the original problem P and the dual

problem D after processing all arrived requests, respectively.

We also use P̃ (IJ) to denote the objective value of the almost-

feasible problem, which is introduced as an auxiliary problem

to facilitate the proof; The inequality in (17) holds due to weak

duality. see the Appendix for details.

9

360 720 1440
Number of Time Slots

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 U

til
ity

 V
al

ue
ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Fig. 7: Impact of Number of Time

Slots.

50 100 200
Number of Users

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Fig. 8: Impact of Number of AIGC

Users.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

A100

A40

V100

Type of Computation Capacities

Fig. 9: Impact of Computation Capac-

ities.

Tight Slack
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Medium

Type of User Budgets
Fig. 10: Impact of Budgets.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

SDXL1.0

OpenDalle V1.1

SD2.1

Type of Generation Models
Fig. 11: Impact of Generation Models.

Light High
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Medium

Type of

Workloads

Fig. 12: Impact of Workloads.

Original Reversed Shuffled
Type of Task Sequences

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Fig. 13: Impact of Task Sequences.

Avg. Peak Multi.
Type of Task Dynamics

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Fig. 14: Impact of Task Dynamics.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 U
til

ity
 V

al
ue

ORSDS
D2SAC
DDRL-ATS

ARD
EFT

Tight

Medium

Slack

Type of Request Deadlines

Fig. 15: Impact of Request Deadlines.

VII. EXPERIMENTAL EVALUATIONS

A. Evaluation Settings

AIGC Users and Requests: We consider the scheduling

system operating in a day, which has T = 720 consecutive

time slots. Each time slot is of 2-minute length based on

the average inference time of service model. During this

period, a total of 50 to 200 AIGC users, with varying budgets

submit their generation requests to the service provider. Each

user has a specific budget ranging from 10 to 50, indicating

the maximum number of requests that can be executed per

day. AIGC requests of these users are generated in both

real-world and synthesized patterns. Specifically, we extract

prompts from DiffusionDB dataset [36], and request arrival

time from Azure’s public dataset [38]. DiffusionDB is a text-

to-image prompt dataset containing 14 million prompts and

hyperparameters specified by real users. We randomly select

prompts and corresponding numbers of inference steps from

the dataset to simulate user-generated requests. Azure’s public

dataset is a publicly available dataset provided by Microsoft

Azure that includes anonymized traces of real-world cloud

workloads. We analyze the dataset to collect statistical samples

of the number of requests received over a specific time period,

thereby simulating the volume of requests during that interval.

We also generate multiple synthesized request arrival patterns

based on the Possion process, which aligns with most existing

work [14] [39]. In addition to its arrival time, each request

is assigned a deadline, calculated as its arrival time plus a

random number of time slot between 1 and 100.

AIGC Service Provider: The inference server is equipped

with an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and an

NVIDIA RTX A100 (80GB) GPU. We deploy three types of

widely used diffusion-based text-to-image models including

Stable-diffusion-xl-base-1.0 [35], OpenDalleV1.1 [23], and

Stable-diffusion-2-1 [22] on the server. These models are

invoked through Diffusers 0.32.1 based on Python 3.10 to gen-

10

TABLE II: Parameter values of quality perception models w.r.t.

three widely-used AIGC models.

Parameters of
Perception Model

SDXL [35] OpenDalleV1.1 [23] SD2.1 [22]

Ax 4 4 3

Ay 0.26 0.30 0.22

Bx 15 9 20

By 0.64 0.57 0.53

erate images. The hyperparameters of the generation models

are set as follows: the value of batch size is set to 1, the value

of guidance scale is set to 7.5. Key parameter values of the

quality-aware models are obtained through real experiments,

as shown in Table II. In our AIGC requests serving system,

user prompts are sent to the inference server through FastAPI

[40]. Additionally, the system capacity C is set to 10, which

corresponds to the maximum number of requests the AIGC

service provider can handle within a single time slot.

Baselines: We implement and compare our approach, ORS-

DS (Online Request Scheduling for Diffusion-based Services),

against the following alternatives:

• D2SAC [16]: D2SAC schedules AIGC requests based

on the DRL method. It combines an AI-Generated op-

timal decision algorithm with Soft Actor-Critic method,

improving overall service quality by enhancing the ef-

ficiency and effectiveness of AIGC Service Providers.

However, D2SAC targets mainly on ASP selection issues,

thus cannot be applied in our problem directly. We adjust

the reward function according to our quality-aware model,

partition the resources among multiple ASPs, and further

train a new scheduling policy tailored for our problem.

Additionally, we modify the action state to enhance the

performance of D2SAC within our experimental settings.

• DDRL-ATS [15]: DDRL-ATS schedules AIGC requests

using a reinforcement learning algorithm. It incorporates

a diffusion model to prioritize requests and leverages a

DRL framework to make scheduling decisions. Similarly,

it cannot be directly applied to our problem due to

differences in the experimental setup and optimization

objectives. To address this, we modify the reward function

to ensure it operates effectively in our scenario.

• EFT (Earliest Finish Time): EFT schedules AIGC

requests with the aim of minimizing the delay for each

request as much as possible. For each incoming request,

EFT attempts to find the nearest available time slot to

execute it. If all feasible time slots before its deadline

have already been occupied, EFT rejects the request. The

scheduling priorities of requests are determined based

on their order of arrival, with requests that arrive earlier

being scheduled first.

• ARD (Adaptive Random Discard): ARD introduces a

random rejection mechanism when there are too many

requests waiting to be scheduled in the current system.

Incoming requests are randomly rejected when the system

is under a heavy load, while accepted requests are sched-

uled to the time slot with the most abundant resources

before their deadlines. ARD can effectively prevent the

system from being overwhelmed by densely arriving low-

reward requests.

• Offline Optimal Algorithm: We utilize the Gurobi solver

[41] to compute the offline optimal solution. In this

scenario, it is assumed that all the values of coefficients in

problem (7) are known to the service provider in advance,

and decisions are made by solving this optimization

problem directly.

Each group of experiments is repeated 10 times, with

the basic settings unchanged while the user’s prompts and

the random seed vary. We compute the mean and standard

deviation for each group as our result.

B. Evaluation Results

Impact of System Scale: Figure 7 illustrates the impact

of the number of time slots on normalized total utility value,

i.e., quality of generated images. As the number of time slots

increases, users are able to submit more requests to the ASP,

leading to a higher utility value as more requests are scheduled

and executed. Across various experiments, Algorithm ORSDS

consistently outperforms other methods. When the number

of time slots is set to 1440, corresponding to two days, the

performance improvements over D2SAC, DDRL-ATS, EFT

and ARD are 25.3%, 32.7%, 50.8% and 52.1%, respectively.

In Figure 8, we vary the number of users submitting AIGC

requests for service. As the number of users increases, the

total number of requests grows, providing the ASP with more

options to select and execute. Consequently, the total utility

value of each scheduling algorithm increases. However, as

the number of users continues to rise, the ASP’s processing

capacity gradually reaches its limit, preventing it from han-

dling additional requests. Our algorithm slightly improve the

overall utility value by selecting and executing more high-

reward requests. In contrast, EFT schedules requests solely

based on the earliest arrival, while ARD lacks the ability to

assess the quality of requests. As a result, their total utility

values remain almost the same.

Figure 9 describes the total utility value of five algorithms

as the ASP resource capacity varies. The experiments are

conducted using different GPU configurations, including the

NVIDIA A100, A40, and Tesla V100 GPU. The computational

power of the GPU affects the maximum number of inference

steps that the scheduling system can execute within a single

timeslot, which corresponds to the system’s resource capacity.

In our experiments, the A100 demonstrates significantly better

performance than the A40 for diffusion model inference, while

the A40 performs slightly better than the V100. Among these,

Algorithm ORSDS consistently achieves the highest utility

value and shows improvements of 22.1%, 24.9%, and 23.8%

over the state-of-the-art method in the three respective cases.

Figure 10 presents the results as the user budget varies.

In the “Slack” budget scenario, the user budget is set to 10,

while it is increased to 25 and 50 in the “Medium” and “Tight”

scenarios, respectively. As the budget increases, more requests

11

360380400420440460480 Number of Time Slots

50
60

70
80

90
100

Number of Users

1.2

1.3

1.4

1.5

1.6

1.7

C
om

petitive R
atio

Fig. 16: Empirical Competitive Ratio.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time Slots

0

5

10

15

20

25

30

U
se

r B
ug

de
t

User Budget
Dual Variable

0.00

0.05

0.10

0.15

0.20

D
ua

l V
ar

ia
bl

e

Fig. 17: Relationship between

User Budget and dual variable φ.

0 100 200 300 400 500

Time for Scheduling 1000 requests (unit:ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

(C
D

F) ORSDS
D2SAC

Fig. 18: Algorithm Run-

time.

can be executed, resulting in a rise in the total utility value.

However, this growth eventually stabilizes due to the system’s

computational capacity limitations. Due to the incorporation

of targeted design for user budgets, our algorithm performs

well in various scenarios, particularly when the user budget

is “Tight”. In Figure 11 we change the type of AIGC model

deployed on the ASP, and the premeasured quality function

thus changes as Table II. The overall generation capability of

“SD2.1”, as reflected by its parameters Ay and By , is inferior

to that of the other two models. This results in a noticeable

decline in the scheduling performance of all algorithms under

these conditions. However, our algorithm effectively adapts

to different text-to-image models and achieves improvements

of 20.7%, 21.3% when the deployed model is changed to

“OpenDalleV1.1” and “SD2.1”, respectively.

Impact of Task Dynamics: Besides real-world traces ex-

tracted from Azure’s public, we conduct the synthetic traces

to simulate more complicated situations. In this scenario, we

generate the number of requests for each user at the beginning

of each time slot following the Poisson process. The “Light”,

“Medium”, and “High” workloads in Figure 12 correspond

to Poisson process intensities of 0.5, 1, and 1.5, respectively,

which means the total arrival rates are 50, 100, and 150 for

100 users. The proposed ORSDS algorithm achieves greater

performance improvements as workload increases.

Figure 13 evaluates the impact of task arrival sequences on

the normalized utility value. In this experiment, we simulate

three different arrival orders for the same batch of requests.

The label “Original” corresponds to the default arrival order

of requests; “Reversed” indicates that the order is inverted;

and “Shuffled” represents a randomly permuted order. Across

all three experiments, our proposed algorithm consistently

demonstrates a clear performance advantage over the base-

lines. Moreover, we observe that although different task arrival

sequences lead to slight fluctuations in the overall utility, the

impact remains limited, as the randomness in arrivals is aver-

aged out over the long term. Instead, we find that the pattern

of AIGC request arrivals, rather than their specific sequence,

exerts a more substantial influence on the results, as shown

in Figure 14. The label “Avg.” denotes a constant average

arrival rate; “Peak” represents a scenario with a single arrival

peak; and “Multi.” indicates multiple arrival peaks throughout

the process. In the “Peak” scenario, a sudden surge in request

volume poses considerable challenges to scheduling stability.

Nevertheless, our algorithm maintains strong performance,

outperforming the comparison algorithms by 25.2%, 29.2%,

52.6%, and 50.1%, respectively.

Figure 15 depicts the performance of the algorithms with

different strategies to generate deadlines. We assume the

request deadline to be its arrival time plus a random number

of time slots between 1 and 100 (inclusive) in the “Medium”

situation, indicating that the ASP must complete the request

within this time slot. In the “Tight” scenario, the upper limit

of the random range is reduced, while the lower limit is

increased in the “Slack” scenario. As the deadline becomes

tighter, the total utility value of five algorithms decreases,

as many requests cannot be executed before the deadline.

Notably, ORSDS consistently delivers the best performance

across all scenarios.

Analysis of Budget: Figure 17 visualizes the relationship

between user budget and dual variable φ in our proposed

algorithm. With the user budget consuming gradually, φ keeps

increasing, enabling the ASP to refuse requests from users

which is not so valuable judged by quality-aware model. The

“value” is related to the shadow price of the requests. For

example, requests with excessively high inference deployment

requirements but low expected returns will be deemed not

valuable. This acts as a perfect threshold as we mentioned in

V-A and is an internal reason accounting for why our ORSDS-

based scheduling system performs well.

Algorithm Runtime: Figure 18 illustrates the runtime of

ORSDS and D2SAC when scheduling 1000 requests. It shows

that ORSDS has a much shorter algorithm runtime than

D2SAC, with a latency of 1.78 ms versus 564 ms. This enables

our proposed ORSDS algorithm to respond to AIGC requests

instantly. In real-world scheduling scenarios, faster algorithm

runtime brings significant benefits.

Competitive Ratio: Figure 16 evaluates the empirical com-

petitive ratio, which is the ratio of the total utility value

achieved by the offline optimum to that achieved by our online

solution. We obtain the offline optimum via Gurobi solver [41]

as introduced in VII-A. Results demonstrate that the proposed

algorithm ORSDS achieves a good competitive ratio bounded

by 1.8 with variations in the number of time slots and users.

Furthermore, in most cases, the competitive ratio stabilizes at

approximately 1.2, indicating strong performance.

12

(a) Generated images from ASP with ORSDS. (b) Generated images from ASP with D2SAC. (c) Generated images from ASP with EFT.

Fig. 19: Generated images from the ASPs adopting three different types of scheduling algorithms.

Visualization of Generated Images: To further evaluate the

performance of five different scheduling algorithms, we track

the generated results returned by each system. From these

results, we randomly selected 16 images for visualization, as

shown in Figure 19. Figure 19(a) illustrates the images gener-

ated from the ASP adopting our proposed ORSDS algorithm,

where most of the results are clear and of high quality. Figure

19(b) shows the results of D2SAC, which are generally decent

but include noticeably low quality outputs. Finally, Figure

19(c) presents the results of EFT. Due to its reliance on task ar-

rival order and the absence of a quality perception mechanism,

EFT produces outputs with inconsistent and often unreliable

quality, including multiple low-quality images. Meanwhile, we

calculate the average CLIP-IQA score of the images returned

from the three ASPs. The results of ORSDS, D2SAC and EFT

are 0.662, 0.583 and 0.465, respectively.

VIII. CONCLUSION

With the increasing number of diffusion-based AIGC re-

quests offloaded to the edge cloud, developing an efficient

scheduling algorithm is crucial for improving provisioned

AIGC services. In this work, we investigate the online request

scheduling problem for quality-aware diffusion-based AIGC

services. We formulate a long-term optimization problem to

maximize overall content generation quality of the AIGC

ecosystem, subject to the constraints of limited edge resources

and user budgets. To solve this problem, we conduct real

experiments on multiple AIGC models to establish quality

models, and carefully design the update of multiple dual

variables to flexibly control the consumption of edge resources

and user budgets. Meanwhile, we theoretically analyze the

optimization problem and the proposed method, including the

NP-hardness of the problem, the feasibility of our approach,

the polynomial-time complexity of our algorithm, as well as a

competitive ratio against the offline optimum. Extensive real-

world trace-driven experiments are conducted to validate our

proposed method.

REFERENCES

[1] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, and L. Yu, “A Comprehensive
Survey of AI-Generated Content (AIGC): A History of Generative AI
from Gan to Chatgpt,” arXiv preprint arXiv:2303.04226, 2023.

[2] OpenAI: Gpt-4 Technical Report. [Online]. Available: https://cdn.
openai.com/papers/gpt-4.pdf

[3] Z. Xue, G. Song, Q. Guo, B. Liu, Z. Zong, Y. Liu, and P. Luo,
“Raphael: Text-to-image Generation via Large Mixture of Diffusion
Paths,” Advances in Neural Information Processing Systems, 2024.

[4] J. Wu, W. Gan, Z. Chen, S. Wan, and H. Lin, “Ai-Generated Content
(AIGC): A Survey,” arXiv preprint arXiv:2304.06632, 2023.

[5] H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, X. S. Shen, and D. I. Kim,
“Enabling AI-Generated Content Services in Wireless Edge Networks,”
IEEE Wireless Communications, 2024.

[6] Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, A. Jamalipour, and
X. Shen, “ProSecutor: Protecting Mobile AIGC Services on Two-Layer
Blockchain via Reputation and Contract Theoretic Approaches,” IEEE

Transactions on Mobile Computing, 2024.

[7] Y. He, L. Ma, R. Zhou, C. Huang, and Z. Li, “Online Task Alloca-
tion in Mobile Cloud Computing with Budget Constraints,” Computer

Networks, vol. 151, pp. 42–51, 2019.

[8] N. Buchbinder, K. Jain, and J. Naor, “Online Primal-Dual Algorithms
for Maximizing Ad-Auctions Revenue,” in European Symposium on

Algorithms. Springer, 2007, pp. 253–264.

[9] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An Online Auction
Framework for Dynamic Resource Provisioning in Cloud Computing,”
ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 1, pp.
71–83, 2014.

[10] M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, and Z. Mao, “Sparks
of GPTs in Edge Intelligence for Metaverse: Caching and Inference for
Mobile AIGC Services,” arXiv preprint arXiv:2304.08782, 2023.

[11] G. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and X. Shen,
“Semantic Communications for Artificial Intelligence Generated Content
(AIGC) toward Effective Content Creation,” IEEE Network, 2024.

[12] H. Du, R. Zhang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, X. Shen, and
H. V. Poor, “Exploring Collaborative Distributed Diffusion-based AI-
generated Content (AIGC) in Wireless Networks,” Ieee network, vol. 38,
no. 3, pp. 178–186, 2023.

[13] Y. Zheng, L. Jiao, Y. Xu, B. An, X. Wang, and Z. Li, “Schedul-
ing Generative-AI DAGs with Model Serving in Data Centers,” in
IEEE/ACM International Symposium on Quality of Service, 2024.

[14] X. Lyu, S. Rani, and Y. Feng, “Optimizing AIGC Service Provider Selec-
tion Based on Deep Q-Network for Edge-enabled Healthcare Consumer
Electronics Systems,” IEEE Transactions on Consumer Electronics, pp.
1–1, 2024.

[15] C. Xu, “Diffusion-based Task Scheduling for Efficient AI-Generated
Content in Edge Networks,” in ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN). IEEE, 2024, pp.
333–334.

13

[16] H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, H. Huang, and
S. Mao, “Diffusion-based Reinforcement Learning for Edge-enabled AI-
Generated Content Services,” IEEE Transactions on Mobile Computing,
2024.

[17] W. Feng, R. Zhang, Y. Zhu, C. Wang, C. Sun, X. Zhu, X. Li, and
T. Taleb, “Exploring Collaborative Diffusion Model Inferring for AIGC-
enabled Edge Services,” IEEE Transactions on Cognitive Communica-

tions and Networking, 2024.

[18] T. Deng, D. Chen, J. Jia, M. Dong, K. Ota, Z. Yu, and D. Yuan,
“Optimizing resource allocation and request routing for ai-generated
content (AIGC) services in mobile edge networks with cell coupling,”
IEEE Transactions on Vehicular Technology, 2024.

[19] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An Efficient Cloud Market
Mechanism for Computing Jobs with Soft Deadlines,” IEEE/ACM

Transactions on networking, vol. 25, no. 2, pp. 793–805, 2016.

[20] F. Hoseiny, S. Azizi, M. Shojafar, F. Ahmadiazar, and R. Tafazolli,
“PGA: A Priority-aware Genetic Algorithm for Task Scheduling in
Heterogeneous Fog-Cloud Computing,” in IEEE conference on computer

communications workshops. IEEE, 2021, pp. 1–6.

[21] Y. Sun, C. Lin, J. Ren, P. Wang, L. Wang, G. Wu, and Q. Zhang, “Subset
Selection for Hybrid Task Scheduling with General Cost Constraints,”
in IEEE Conference on Computer Communications. IEEE, 2022, pp.
790–799.

[22] “Stable-diffusion-2-1,” 2023. [Online]. Available: https://huggingface.
co/stabilityai/stable-diffusion-2-1

[23] “OpenDalleV1.1,” 2024. [Online]. Available: https://huggingface.co/
dataautogpt3/OpenDalleV1.1

[24] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[25] P. Dhariwal and A. Nichol, “Diffusion Models Beat Gans on Image
Synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[26] A. Q. Nichol and P. Dhariwal, “Improved Denoising Diffusion Prob-
abilistic Models,” in International conference on machine learning.
PMLR, 2021, pp. 8162–8171.

[27] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and
L. Van Gool, “Repaint: Inpainting Using Denoising Diffusion Probabilis-
tic Models,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2022, pp. 11 461–11 471.

[28] S. Cheng, H. Hu, X. Zhang, and Z. Guo, “Rebuffering but not Suf-
fering: Exploring Continuous-Time Quantitative QoE by User’s Exiting
Behaviors,” in IEEE Conference on Computer Communications, 2023.

[29] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference Image
Quality Assessment in the Spatial Domain,” IEEE Transactions on image

processing, vol. 21, no. 12, pp. 4695–4708, 2012.

[30] J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “Musiq: Multi-
scale Image Quality Transformer,” in Proceedings of the IEEE/CVF

international conference on computer vision, 2021, pp. 5148–5157.

[31] M. Heusel, H. Ramsauer, T. Unterthiner, and S. Nessler, “Gans Trained
by A Two Time-scale Update Rule Converge to a Local Nash Equilib-
rium,” Advances in neural information processing systems, 2017.

[32] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training Gans,” Advances in neural

information processing systems, vol. 29, 2016.

[33] X. Zhang, Y. Zhang, W. Yu, L. Nie, N. Jiang, and J. Gong, “Qs-hyper:
A Quality-sensitive Hyper Network for the No-reference Image Quality
Assessment,” in Neural Information Processing: 28th International

Conference (ICONIP). Springer, 2021, pp. 311–322.

[34] J. Wang, K. C. Chan, and C. C. Loy, “Exploring Clip for Assessing the
Look and Feel of Images,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 37, no. 2, 2023, pp. 2555–2563.

[35] “Stable-diffusion-xl-base-1.0,” 2023. [Online]. Available: https:
//huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

[36] Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and
D. H. Chau, “DiffusionDB: A Large-Scale Prompt Gallery Dataset
for Text-to-Image Generative Models,” arXiv:2210.14896 [cs], 2022.
[Online]. Available: https://arxiv.org/abs/2210.14896

[37] T. Gal, “Shadow Prices and Sensitivity Analysis in Linear Pro-
gramming under Degeneracy: State-of-the-Art-Survey,” Operations-

Research-Spektrum, vol. 8, no. 2, pp. 59–71, 1986.

[38] Azure Inference Dataset. Accessed: 2024-12-25. [Online].
Available: https://github.com/Azure/AzurePublicDataset/blob/master/
AzureLLMInferenceDataset2023.md

[39] V. Srivatsa, Z. He, R. Abhyankar, D. Li, and Y. Zhang, “Preble: Efficient
Distributed Prompt Scheduling for LLM Serving,” in International

conference on learning representations, 2024.
[40] FastAPI. [Online]. Available: https://fastapi.tiangolo.com/
[41] T. Achterberg, “What’s New in Gurobi 9.0,” Webinar Talk url:

https://www. gurobi. com/wp-content/uploads/2019/12/Gurobi-90-

Overview-Webinar-Slides-1. pdf, vol. 5, no. 9, pp. 97–113, 2019.

Han Yang received his B.S. degree in Electronic
Engineering from Tsinghua University, in 2023. He
is currently pursuing his M.S. degree at the Institute
for Network Sciences and Cyberspace, Tsinghua
University. His research interest focuses on the
request scheduling problems and scheduling algo-
rithms related to advanced AIGC service.

Ying Zheng received her Ph.D. degree in Computer
Science from Fudan University in 2024. She is
currently a postdoctoral researcher at Inria (National
Institute for Research in Digital Science and Tech-
nology), France. Her research interests include AI
infrastructure, and machine learning for optimiza-
tion. She has published papers in INFOCOM, JSAC,
IWQoS, and ICPP.

Lei Jiao received his Ph.D in CS from the University
of Göttingen, Germany. He is with the University
of Oregon, and was a technical staff at Nokia
Bell Labs, Ireland. He researches AI infrastructures,
cloud/edge networks, energy systems, cybersecurity
and multimedia. He has published 80+ papers in
journals such as IEEE JSAC, IEEE/ACM ToN,
IEEE TMC, and IEEE TPDS, and conferences such
as INFOCOM, MOBIHOC, ICDCS, SECON, and
ICNP. He is a U.S. National Science Foundation
CAREER awardee, and a recipient of the Ripple

Faculty Fellowship, the Alcatel Lucent Bell Labs UK and Ireland Recognition
Award, and Best Paper Awards of IEEE CNS 2019 and IEEE LANMAN 2013.

Yuedong Xu received B.S. degree from Anhui
University, MSc. Huazhong University of Science &
Technology, and Ph.D from The Chinese University
of Hong Kong. From 2009 to 2012, he was a Post-
Doctoral Researcher with INRIA Sophia Antipolis
and Universite d’Avignon, France. He is currently
a Professor with the School of Information Science
and Technology, Fudan University. His research in-
terests include performance evaluation, optimization,
security, data analytics and economic analysis of
communication networks, and mobile computing.

Zongpeng Li received his BSc in CS from Tsinghua
University in 1999 and his Ph.D from University of
Toronto in 2005. His research interests include com-
puter networks, network coding, network algorithms,
and cyber security. He received the Outstanding
Young Computer Science Researcher Prize from
the Canadian Association of Computer Science, and
the Research Excellence Award from the Faculty
of Science, University of Calgary. He is a senior
member of the IEEE.

14

	Introduction
	Related works
	Background
	Diffusion Model
	Image Quality Assessment

	Modeling and Problem Formulation
	Quality Model of Generated Results
	System Models
	Optimization Problem Formulation

	Online Algorithm Design
	Overview and Rationale
	Problem Reformulation
	Online Scheduling

	Performance Analysis
	Intractability
	Feasibility
	Time Complexity
	Competitive Ratio

	Experimental Evaluations
	Evaluation Settings
	Evaluation Results

	Conclusion
	References
	Biographies
	Han Yang
	Ying Zheng
	Lei Jiao
	Yuedong Xu
	Zongpeng Li

