
1

On the Effective Parallelization and Near-
Optimal Deployment of Service Function Chains

Jianzhen Luo, Jun Li, Lei Jiao, and Jun Cai

Abstract—Network operators compose Service Function Chains (SFCs) by tying different network functions (e.g., packet inspection,

flow shaping, network address translation) together and process traffic flows in the order the network functions are chained. Leveraging

the technique of Network Function Virtualization (NFV), each network function can be “virtualized” and decoupled from its dedicated

hardware, and therefore can be deployed flexibly for better performance at any appropriate location of the underlying network

infrastructure. However, an SFC often incurs high latency as traffic goes through the virtual network functions one after another. In this

paper, we first design an algorithm that leverages virtual network function dependency to convert an original SFC into a parallelized

SFC (p-SFC). Then, to deploy multiple p-SFCs over the network for serving a large number of users, we model the deployment

problem as an Integer Linear Program and propose a heuristic, ParaSFC, based on the Viterbi dynamic programming algorithm to

estimate each p-SFC’s occupation of the bottleneck resources and adjust the processing order of the p-SFCs in order to approximate

the optimal solution. Finally, we conduct extensive trace-driven evaluations and exhibit that, compared to the Greedy method and the

state-of-the-art CoordVNF method, ParaSFC reduces the average service latency of all the deployed p-SFCs by about 15% through

parallelization while accommodating more SFC deployment requests over resource-limited networks.

Index Terms—Network function virtualization, service function chain, parallelization, deployment, quality of service

✦

1 INTRODUCTION

WHILE conventional network functions are often im-
plemented as dedicated hardware middleboxes and

appliances, Network Function Virtualization (NFV) has
been introduced to move the functionalities of traffic flow
processing into software in the form of virtual Network
Functions (vNFs), thus decoupling the functionalities from
the underlying hardware and enabling them to run on any
general-purpose servers [1], [2]. Further, as each vNF im-
plements a distinct functionality of processing traffic flows,
such as packet inspection, traffic flow shaping, network ad-
dress translation (NAT), or virtual private network (VPN),
often many vNFs are chained altogether in order to process
traffic flows in sequence, thus forming a Service Function
Chain (SFC). SFC provides flexibility in that the vNFs in an
SFC can be replaced, reordered, upgraded, and maintained
separately without interfering with each other [3].

A critical concern with using SFC, however, is that if
an SFC is composed of many vNFs, every flow must be
processed by each vNF in order and could incur a high
latency to traverse the entire SFC [4]. A high SFC latency
is particularly detrimental to latency-sensitive applications.
While one can try to reduce a flow’s latency in traversing
an SFC, such as using routing techniques to reorder vNFs
in an SFC [5], it is subject to the minimum latency limit that
one can achieve with a single SFC. Some research began

• J. Luo and J. Cai are with the School of Cyber Security, Guangdong
Polytechnic Normal University, Guangzhou 510665, China.
E-mail: luojz@{gpnu.edu.cn, cs.uoregon.edu}, caijun@gpnu.edu.cn.

• J. Li and L. Jiao are with the Department of Computer and Information
Science, University of Oregon, Eugene, OR, 97403-1202, USA. E-mail:
{lijun, jiao}@cs.uoregon.edu.

Manuscript received 25 Feb. 2020; revised 9 Sept. 2020; accepted 25 Nov.
2020. Date of publication xx xx 2020; date of current version xx xx 2020.

(Corresponding author: Jun Cai.)

to introduce parallel SFCs, such as that in [6], but it is
essentially about making multiple copies of an SFC and
dividing flow load among them, which would require more
resources (every vNF needs to be copied multiple times)
and does not shorten the latency with any single SFC. Some
work, like ParaBox [7] and NFP [8], use order-dependency
between vNFs to identify vNFs within an SFC that can run
in parallel, distribute packets to vNFs in parallel, and then
merge the outputs. These solutions are mainly deployed in
a single server where vNFs can share memory and reduce
the overhead of copying and moving data.

We therefore design a new method to convert a tradition-
ally sequential SFC, or s-SFC, into a parallelized SFC, or
p-SFC, where the p-SFC is deployed over different servers
in a network. The p-SFC has the same number of vNFs
as the original s-SFC and has a non-linear topology in the
form of a directed acyclic graph where some vNFs process
packets in parallel. Furthermore, as many different SFCs are
often requested concurrently from different locations, it is
important to consider how to deploy a mass of concurrent
SFCs where each SFC is converted to a p-SFC. The problem
of constructing and deploying network-deployed p-SFC is
challenging, at least from the following perspectives:

(1) When converting an s-SFC into network-deployed
p-SFC, we will change the positions of vNFs in the work-
flow of packet processing and disturb the I/O relationship
between vNFs. It is critical to guarantee the processing
correctness of p-SFCs, i.e., the processing result of p-SFC
is the same as that of the original SFC.

(2) When deploying multiple concurrent p-SFCs, some
SFCs may abusively run out of resources that are critical
or the only option for other SFCs to satisfy the required
QoS. Actually, the SFCs deployed first may use some scarce
resources, while the SFCs deployed later may have poor

2

performance if they loss the only options. Thus, besides
satisfying the required resource and QoS, the allocation of
scarce resources should also be handle reasonably.

(3) SFC parallelism causes extra resource consumption.
Whenever a p-SFC graph splits up at a node, duplicated
packets are forwarded to two or more parallel nodes, so
that more traffic will go in parallel and higher burden will
be forced at the network. The question is how to bound
the proportion of the extra resource consumption and make
a trade-off between extra resource consumption and SFC
latency reduction.

(4) The p-SFC deployment problem is NP-hard [9],
[10], [11]. Due to high computational complexity, existing
algorithms aiming at optimal solution are not practical
to solve the p-SFC deployment problem [12], [13], [14].
Thus, several works [15], [16], [17], [18] proposed heuristic
algorithms with lower complexity to obtain approximate
solution. However, as lack of coordination for the behavior
of resource competition between multiple SFCs, existing
heuristic algorithms were not well designed to approach the
optimal solution.

This paper aims to fill these missing gaps. For challenge
(1), to guarantee the processing correctness of p-SFCs, we
analyze the vNF dependencies from the perspective of de-
ploying SFCs distributedly at the network level and force
the resultant p-SFCs to comply with the vNF dependencies.
Next, in response to challenge (2), a mechanism is needed to
coordinate p-SFCs’ behavior of competing critical and scarce
resources. Specifically, we estimate each p-SFC’s occupation
of bottleneck resources and adjust the processing order of
p-SFCs to approximate the optimal solution in resource-
limited networks. Towards challenge (3), the extra resource
consumption of p-SFC is mainly the bandwidth resource
consumption. To bound this overhead, when deploying a
p-SFC, we enforce the ratio of the increased bandwidth
requirement due to SFC parallelism over the bandwidth
requirement of the original SFC not to exceed a specified
threshold that can be tuned flexibly. To handle challenge (4),
we combine the resource competition coordination, the extra
resource consumption control, and the dynamic program-
ming paradigm to design a heuristic algorithm with wide
applicability and high scalability to achieve near-optimal
deployment of multiple concurrent p-SFCs.

In this work, we first propose several rules for paralleliz-
ing SFCs, and design a light-weight approach based on such
rules to convert s-SFCs into p-SFCs. Then, we formulate an
ILP-based p-SFC deployment problem while bounding the
extra resource utilization and minimizing the average SFC
latency. To solve the p-SFC deployment problem in accept-
able execution time, we design a dynamic-programming-
based approach [19] that deploys p-SFCs one after another
while searching the optimal deployment path for each p-
SFC. As scarce resource may be used up by the previously
deployed p-SFCs, the subsequent p-SFCs may be unable to
provide required QoS due to lack of sufficient resources.
Thus, the processing order of the p-SFCs to be deployed
will affect the overall average SFC latency. To obtain a
good processing order of p-SFCs, we estimate each p-SFC’s
occupation of the bottleneck resources and identify the p-
SFC abusiveness, i.e., the degree to which each p-SFC needs
the scarce resources, and the node competitiveness, i.e., the

degree to which each node is needed by the p-SFCs. To
obtain an approximate optimal solution in resource-limited
networks, we adjust the processing order of the p-SFCs via
two policies: (1) the most abusive p-SFC first drop policy;
(2) the least competitive node first allocate policy.

We implement the proposed algorithm as a tool called
ParaSFC and conduct a series of trace-driven simulations
to evaluate its performance. We also implement two com-
parison algorithms, i.e., the Greedy algorithm and the
CoordVNF [15], [16] algorithm. The Greedy algorithm cal-
culates the shortest path from the ingress to the egress of a
p-SFC and selects nodes as close to the shortest path as pos-
sible to deploy the p-SFC. The CoordVNF algorithm exploits
backtracking: it recursively tries to select valid nodes for the
VNF instances step by step, and if it fails at some steps, it
discards the last deployment steps and iteratively tries to
select alternative nodes. We generated a range of synthetic
SFC requests and run 100 simulations on three real-world
network topologies: Internet2, an Indian network, and a
German national research and education network. We found
the following evaluation results: (1) ParaSFC can reduce the
average SFC latency by about 15% through parallelization;
(2) compared to Greedy and CoordVNF, ParaSFC achieves
the average SFC latency closer to the optimal solution
achieved by standard ILP solvers, deploying 70%∼90% of
the p-SFCs in their optimal paths; (3) while the execution
time of the ILP solvers is much longer, i.e., more than
one day, ParaSFC finishes execution within a few seconds,
comparable to Greedy and CoordVNF; (4) as the link capac-
ity increases, ParaSFC can accommodate more p-SFCs and
reduce the average latency to a larger extent accordingly.

In summary, our main contribution are as follows.

• We design an algorithm based on the vNF depen-
dency to convert s-SFCs into p-SFCs that are adapt-
able for network deployment. The resulted p-SFCs
can guarantee the processing correctness and shorten
the SFC latency.

• We formulate the problem of deploying concurrent
p-SFCs in networks. The problem formulation uses
the objective of minimizing the overall SFC latency
and is able to control the extra resource consumption.

• We propose a heuristic algorithm to near-optimal
deployment of many multiple p-SFCs of concurrent
users. The proposed algorithm is based on dynamic
programming and is scale well in different size of
network.

• We conduct simulations to evaluate the effective-
ness and efficiency of our proposed algorithm.
The proposed algorithm outperforms Greedy and
CoordVNF algorithms in term of SFC latency reduc-
tion, closeness to the optimal solution and acceptance
rate of SFC requests.

The paper is organized as follows. The related works are
studied in Section 2. The system models are presented in
Section 3. The SFC parallelization algorithm is introduced in
Section 4. An ILP-based formulation for p-SFC deployment
problem is provided in Section 5 and an heuristic solution
to the p-SFC deployment problem is proposed in Section 6.
The proposed method is evaluated in Section 7. Finally,
conclusion is made in Section 8.

3

2 RELATED WORK

In this section, we review literatures related to SFC paral-
lelization and deployment problem. We first discuss recent
efforts aiming at improving the performance of SFCs. Then,
we review the early studies of SFC parallelization. Next, we
present the works making contribution to SFC deployment.
Lastly, we study the related problem of resource scheduling
in cloud computing. Besides, we summarize the related
works as shown in TABLE 1.

2.1 SFC Improvement

As the problem of chaining and deploying SFCs has been
widely studied in recent years [20], [21], the problem of
SFC performance improvement is drawing more and more
attention from both the academic and industrial area. Sev-
eral works have proposed to leverage the advantages of
flexible SFC structures to promote SFC QoS such as SFC
delay and throughput. Ayoubi et al. [5] relaxed the order
of vNFs inside the SFCs and adjusted the relative order
of vNFs in each SFC so as to avoid the packet detouring
among different servers. The simulation results showed that
the flexible SFCs can increase about 10% revenue per unit
cost compared with the traditional SFCs with fixed order of
vNFs. Mehraghdam et al. [22] and Dräxler et al. [23] repre-
sent the SFC service graphs based on the YANG model [24]
and calculate several vNF composition options for the SFCs.
Additionally, they design an novel algorithm for the service
composition selection and achieve near-optimal placement
of flexible SFCs. Usually, the throughput of the deployed
SFCs is limited to that of the physical machines provisioning
the SFCs, which may not be adaptable for accommodating
services that demand large data rates. In order to address
this problem, Ghaznavi et al. [6] proposed distributed ser-
vice function chaining to place duplicated vNF instances of
the same function in a distributed manner.

2.2 SFC Parallelism

Although existing works have greatly enhanced the per-
formance of SFCs and improved the throughput of SFCs,
the essence of sequential processes in the traditional SFCs
may still produce risk of degrading the quality of service
of some latency sensitive applications. For example, as the
SFC length increases, the SFC latency grows up linearly.
To address this problem, some works proposed to apply
the SFC parallelism in the SFC deployment by converting
the sequential SFCs with linear structure into the graph-
based SFCs with graph structure, and thus enable parallel
processing across NFs within the SFC. For instance, Zhang
et al. [7] implemented a prototype called ParaBox on top of
the DPDK-enabled Berkeley Extensible Software Switch to
exploit opportunities for parallel packet processing across
vNFs. Sun et al. [8] presented a policy specification scheme
to describe sequential or parallel NF chaining intents and
proposed a vNF orchestrator called NFP to perform light-
weight packet copying for vNF parallelism. ParaBox and
NFP investigated the feasibility, the effectiveness and the ef-
ficiency of SFC parallelism for service latency reduction and
realized SFC parallelism at the server level, i.e., the parallel
vNFs are deployed upon one single server. Nevertheless, the

SFC parallelism can also be realized at the network level by
deploying parallel vNFs over a network such that SFCs can
exploit service diversity provided by multiple servers and
maintain high stability in case of single point of failure.

The technique of SFC parallelism shares commonalities
with parallel graph composition of workflows. For instance,
to address the problem of parallelizing activities in scientific
workflows in datacenters, Ogasawara et al. [25] proposed
an algebraic approach to model the parallel execution of
activities and took into account the dependency between
activities within a workflow when representing the parallel
computational graph. The algebraic could also be used to
represent the computational graph of p-SFCs. However, the
vNFs of network-level p-SFCs were deployed at multiple
servers, and it is not practical to facilitate data access
among different vNFs by saving intermediate results on
disk or in memory, as what is done for workflows in the
cloud environment. Since vNFs often read and write the
processing results directly through network packets [26],
the dependencies of vNFs are determined not only by the
input/output data schema but also by the position in a
particular SFC.

2.3 SFC Deployment

Previous works [27], [28] presented several mathematical
formulations for the SFC deployment problem and lever-
aged optimization algorithms to solve the problem by con-
sidering different objective functions. Li et al. [29] applied
the ILP model to formulate the VNF placement problem
and used the objective function of minimizing the resources
consumption. Zhang et al. [30] jointly optimized SFC de-
ployment and request scheduling by minimizing the total
latency of all requests. Liu et al. [10] formulated an ILP
model to solve the joint optimization problem of deploying
new users’ SFCs and readjusting in-service SFCs while
considering the trade-off between resource consumption
and operational overhead. However, due to the massive
consumption of computation and memory, the optimization
algorithms are limited in scalability for large-scale networks.

Aiming to provide with practical solutions for time-
sensitive applications, heuristic algorithms [31], [32] were
designed to obtain approximate results within less time.
Unlike optimization-based algorithms, heuristics run faster
and often consume much less memory. Bari et al. [33]
provided a dynamic-programming-based heuristic to solve
the SFC deployment problem with large instances. Beck et
al. [34] proposed a heuristic method called as CoordVNF
to coordinate the composition of SFCs and the embedding
into the networks. CoordVNF was able to quickly solve
the allocation problem even in the network topologies with
hundreds of nodes. Tomassilli et al. [11] designed two ap-
proximation algorithms that achieved a logarithmic approx-
imation factor to solve the SFC deployment problem with
the goal of minimizing the total setup cost. In this paper,
we solve the problem of composing network-deployed p-
SFCs and deploying concurrent p-SFCs in networks. We
approximately provide minimal overall SFC delay for the
concurrent SFCs by coordinating the resource competition
between the concurrent SFCs.

The SFC deployment is also related to the topic of
resource-optimal scheduling investigated in other areas,

4

such as resource scheduling in cloud computing [35], [36],
[37]. Waibel et al. [38], [39] developed a resource schedul-
ing technique called GeCo based on genetic algorithms
to achieve fine-granular task scheduling and resource al-
location optimization. Gawali et al. [40] utilized Bipar-
tite graphs to map tasks to appropriate virtual machines
and proposed divide-and-conquer methods to perform task
scheduling and resource allocation. Alhubaishy et al. [41]
formulated the task-scheduling problem in the cloud envi-
ronment based on the adoption of the Best-Worst Method
and provided a consumer-based task-oriented model for
resource allocation to a prioritized set of tasks. Nevertheless,
the problem of SFC deployment at the network level is
beyond that of resource scheduling. The routing of packets,
the locations of servers, and the diversity of resources in the
underlying networks all need to be considered.

3 SYSTEM MODEL

In this section, we introduce the network model and vir-
tual network functions, and establish the joint problem of
parallelization and deployment of SFCs.

3.1 Network Setup

We represent the network topology as an undirected graph
G = (V, L), where V is the set of network nodes and L is
the set of links connecting the network nodes. Each network
node can be a router, a software-defined networking (SDN)
switch, a proxy, or a general-purpose server with NFV
resources such as CPU, memory, and disk. Every network
node can forward every incoming packet to one or multiple
outgoing ports toward the destination of the packet.

We further assume that there is an NFV orchestrator for
the entire network that has a full view of the resource uti-
lization and flow status in the whole network. (We discuss
relaxing this assumption later in the paper.) Furthermore, it
processes input from users regarding an SFC to be deployed
in the network. It determines how to have vNFs to shape
and monitor user flows, installs and configures different
vNFs at selected network nodes, and steers flows toward
one or more different directions to be shaped and monitored
by vNFs en route.

3.2 vNF

Let F = {F1, F2, ..., FK} be a set of vNFs, where Fk,
∀k = 1, 2, ...,K is the k-th vNF and K is the total num-
ber of vNFs. Some commonly-used vNFs are presented in
TABLE 2. A vNF is either a monitor that monitors traffic
flows without modification, or a shaper that processes and
modifies traffic flows. As vNFs are organized in a pre-
defined order in an SFC and process traffic flows in that
order, they form a dependency relationship. If one vNF f
provides its output to another vNF g, denoted as f ≺ g or
g ≻ f , we say that g depends on f , where f is the input vNF
of g and correspondingly g is the output vNF of f . Each vNF
also requires some amount of resources when instantiated.
We denote the amount of resources required to instantiate
vNF f as r(f).

Ingress Egress vNF

(a) Sequential SFC

Main chain Branch chainIngress Egress

(b) Parallelized SFC

Fig. 1: The illustration of SFC parallelization. Fig. 1a shows
a sequential SFC with eight ordered vNFs. The vNFs as
well as their usage purposes are defined in TABLE 2.
Fig. 1b shows the corresponding parallelized SFC that is
converted from the sequential SFC in Fig. 1a. It includes a
main chain NAT→TZ→TE as well as five branch chains:
ingress→PHI→NAT, ingress→DPI→NAT, NAT→DS→TZ,
NAT→TV→egress, and TZ→TL→egress, where the first
and last vNFs of the branch chains are their ingresses and
egresses, respectively.

3.3 SFC Parallelization

The primary job of the NFV orchestrator of any network
is to process and deploy the requested SFCs from users.
The requested SFC from any user is usually a traditional
SFC with all the necessary vNFs ordered in sequence, as
shown in Fig. 1a. We call this SFC a sequential SFC, or
s-SFC in short. In order to improve the performance, the
NFV orchestrator can parallelize the sequential SFC into
a directed acyclic graph with a main chain and multiple
branch chains of vNFs, as shown in Fig. 1b. Every branch
chain merges into the main chain either at a shaper or the
egress. We call the main chain, together with its branch
chains, a parallelized SFC, or p-SFC in short. Note for every
vNF on the main chain of a p-SFC, it may have more than
one input vNF; in this case, the vNF will not process an
incoming packet until all its input vNFs have processed the
packet. Moreover, assuming the user specifies that the NAT
vNF is dependent on the DPI vNF and PHI vNF, the TZ vNF
is dependent on the NAT vNF, and the TE vNF is dependent
on the TZ vNF, Fig. 1b shows it preserves all the dependency
relationships between the vNFs in Fig. 1a, as the DPI vNF
and the PHI vNF go before the NAT vNF, the NAT vNF
before the TZ vNF, and the TZ vNF is before the TE vNF.

4 SFC PARALLELIZATION

In this section, we present three important principles to con-
duct the SFC parallelism, and further design an algorithm
to convert s-SFCs into p-SFCs based on the rules.

4.1 Parallelization Principles

As we convert an s-SFC into a p-SFC composed of a main
chain and multiple branch chains, not only will every packet

5

TABLE 1: Summary of relevant literatures

Literatures SFC
acceleration

SFC
parallelism

SFC
placement

SFC
routing

Resource
usage

SFC
priority

Algorithms

[6] X X heuristic
[7], [8] X X heuristic
[10] X X ILP
[11] X ILP and greedy algorithm
[12] X X heuristic ILP
[13] X X MILP
[14], [20] X X heuristic
[15], [16] X X ILP
[17] X heuristic
[18] X X Markov approximation
[21] X ILP
[22], [23] X X X heuristic
[28] X X heuristic
[29] X ILP
[30] X heuristic
[31] X dynamic programming
[32] X congestion game
[33] X X X dynamic programming
[42] X X X heuristic MILP

ParaSFC X X X X X X heuristic

TABLE 2: vNF Examples.

Category Virtual Network Function Dependency Rules Purpose

Monitor Traffic Logger (TL) ≻ {prec-shapers} Record packets and their statistics

Monitor Traffic Visualizer (TV) ≻ {prec-shapers} Visualize the statistics of traffic flows

Monitor Packet Header Inspector (PHI) ≻ {prec-shapers}, ≺ {succ-shapers} Check packet headers and decide to for-
ward or drop any packet

Monitor Deep Packet Inspector (DPI) ≻ {prec-shapers}, ≺ {succ-shapers} Check packet contents and decide to
forward or drop any packet

Monitor DDoS Scrubber (DS) ≻ {prec-shapers}, ≺ {succ-shapers} Identify and remove malicious traffic
flows

Shaper Network Address Translator
(NAT)

≻ {prec-shapers, PHI, DPI, DS}, ≺ {succ-
shapers}

Modify IP header to map one IP address
space into another

Shaper Traffic Zipper (TZ) ≻ {prec-shapers, PHI, DPI, DS}, ≺ {succ-
shapers}, ≺ TU

Compress packets to shrink the traffic
volume

Shaper Traffic Unzipper (TU) ≻ {prec-shapers, PHI, DPI, DS}, ≺ {succ-
shapers}

Uncompress the compressed packets
into the original format

Shaper Traffic Encryptor (TE) ≻ {prec-shapers, PHI, DPI, DS}, ≺ {succ-
shapers}, ≺ TD

Convert packets into cipher text

Shaper Traffic Decryptor (TD) ≻ {prec-shapers, PHI, DPI, DS}, ≺ {succ-
shapers}

Recover the cipher text into plain text

Note: “prec-shapers” stands for preceding shapers in original SFC, while “succ-shapers” stands for succeeding shapers in original SFC.

of a traffic flow travel along the main chain and get pro-
cessed by vNFs on the main chain, a copy of the packet will
also be forwarded to every branch chain to be processed by
vNFs on the branch chain.

The SFC parallelization follows three principles:

(1) Parallel processing equivalency principle.

The most important principle of SFC parallelization is
to guarantee the parallel processing equivalency between a
p-SFC and the corresponding original s-SFC. The results of
processing any traffic flow with a p-SFC should be the same
as processing the same flow with the original s-SFC. To this
end, we define every s-SFC as having a modification vector
that is only composed of its shaper vNFs in the order of their
appearance in the s-SFC (note that vNFs of an SFC is either
a monitor or a shaper, but the monitor vNFs will not modify
any packet in the traffic flow). When converting an s-SFC to
a p-SFC, if the main chain of the p-SFC maintains the same

modification vector as the s-SFC, the SFC parallelization will
guarantee the parallel processing equivalency.

(2) vNF dependency preserving principle.

The dependency relationship between vNFs can be iden-
tified by (i) inspecting vNF documentation, (ii) utilizing
vNFs’ actions on packets derived from other studies [43],
[44], [45] and analyzing extracting the vNF dependen-
cies [7], [8] and (iii) systematically instrumenting test traffic
by sending testing packets to vNF pairs and monitoring the
results [46], [47].

The s-SFCs themselves, which are inputs to our algo-
rithms, are supposed to already have dependency relation-
ships accessible to us. Traditionally, network operators chain
s-SFCs by assigning orders for vNFs, just as the workflow
developers decide the ordering and the dependency of
activities [8], [25]. For instance, when orchestrating an s-SFC
“NAT-TZ-TE”, network operators could do the following

6

assignments: Assign(NAT, 1), Assign(TZ, 2) and Assign(TE,
3), where “Assign(X, Y)” stands for assigning vNF X to
position Y in the resulted s-SFC. Obviously, the resulted
s-SFC has already contained with the desired dependency
relationship between vNFs.

When converting an s-SFC to a p-SFC, the p-SFC must
preserve the vNF dependency relationship implied in each
original s-SFC. The third column of TABLE 2 in our
manuscript shows the rules used to guarantee the preser-
vation of such vNF dependency relationship. For instance,
one of the dependency rules for the PHI vNF is “≺ {succ-
shapers}” which denotes that PHI should stay before its
succeeding shapers. Thus, as we convert an s-SFC that
contains the PHI vNF as shown in Figure 1 to a p-SFC, the
PHI vNF in the resulted p-SFC must be before the NAT vNF.
Also, since a monitor vNF will not modify traffic flow, one
monitor will not be dependent on another monitor.

(3) Shortest critical path principle.
Often there are multiple deployed paths from the ingress

of a p-SFC to the egress of the p-SFC, each path is defined
as a service path of the p-SFC, and the service path that has
the largest delay is then the critical path of the p-SFC. The
parallelization of an SFC should make the critical path of
the p-SFC to be shortest. Note that the main chain may not
necessarily be the critical path.

4.2 SFC Parallelization Algorithm

We design Algorithm 1 to convert an s-SFC, denoted as
s = f1 → f2 → ... → fn) into a parallelized SFC (i.e., p-
SFC, denoted as Gs). The algorithm takes an s-SFC and vNF
dependency relationship as input and outputs a p-SFC with
a main chain m and a set of branch chains B.

Algorithm 1 defines two variables to track the progress
of parallelization: Q to track a set of outstanding monitor
vNFs from the s-SFC and a to track the last vNF in the main
chain. In the initialization phase (line 1), it initializes the
main chain m to take the ingress of the s-SFC as its first
element, B to be empty, Q to be empty, and a to be the
ingress of the s-SFC.

Algorithm 1 then enters a loop that traverses the vNFs
on the s-SFC one by one (line 4 to 21). For each current vNF
fi (i = 1, 2, ..., n) being processed, if it is a monitor vNF,
the algorithm creates a new branch chain that starts at the
last vNF in the main chain (i.e., m) and points to the current
monitor vNF fi, adds the branch chain to B, and also adds
the current monitor vNF fi to Q that tracks outstanding
monitor vNFs. Otherwise, if the current vNF fi is a shaper
vNF, then the algorithm appends it to the main chain m
and updates a to be fi as well. After that, the algorithm
searches Q for monitor vNFs that fi is dependent on. For
each such monitor vNF, say q, we have a branch chain
currently ending at q; the algorithm then connects q to fi,
thus extending the branch chain to end at fi. The algorithm
also removes q from Q since q is no longer outstanding.

Once out of the loop, Algorithm 1 wraps up its process-
ing by connecting the last vNF to the egress of the original
s-SFC (line 19 to 22).

Algorithm 1 satisfies the principles from Section 4.1. First
of all, the algorithm keeps all shaper vNFs on the main
chain of the resulted p-SFC (line 10) such that the p-SFC

Algorithm 1: SFC Parallelization Algorithm

Input: an s-SFC: s = f1 → f2 → ...→ fn and the
dependency relationship of vNFs.

Output: a p-SFC composed of a main chain m and a
set of branch chains B = {bi}, i = 1, 2, ...

1 B ← φ, m← ingress of s;
2 Q← φ; // Q is a set of outstanding monitor vNFs

3 a← ingress of s; // a is the last vNF on the main chain

4 for i = 1 : n do
5 if fi is a monitor then
6 Create a branch chain b starting at a;
7 Append fi to b;
8 B ← B ∪ {b};
9 Q← Q ∪ {fi};

10 end
11 else if fi is a shaper then
12 Append fi to main chain;
13 a← fi; // Record the last shaper of main chain

14 for any monitor q in Q do
15 if fi depends on q then
16 Connect q to fi;
17 Remove q from Q;
18 end
19 end
20 end
21 end
22 Connect a to egress of s;

meets the parallel processing equivalency principle. Recall
that this principle is followed if the p-SFC maintains the
modification vector of the input s-SFC, which is completely
defined by shaper vNFs on the s-SFC. Since Algorithm 1
keeps all the shaper vNFs in the main chain of the p-SFC
in the same order as in the original s-SFC, it preserves
the modification vector and thus adheres to the parallel
processing equivalency principle.

Also, Algorithm 1 meets the vNF dependency preserving
principle that the output p-SFC maintains all the depen-
dency relationships between the vNFs as the original s-SFC
does. Specifically: (1) The relative order of shapers deter-
mine their dependency. Algorithm 1 keeps all the shaper
vNFs in the main chain of the p-SFC (line 12) and maintains
the relative order of the shaper vNFs the same as that in the
original s-SFC. Thus, if a shaper vNF depends on another
shaper vNF, the former will continue to depend on the latter
in the p-SFC. (2) If a monitor vNF depends on a shaper vNF,
the shaper vNF must be the last vNF in the main chain and
Algorithm 1 will append the monitor vNF to the shaper
vNF by creating a new branch chain that starts at the shaper
vNF and connects to the monitor (line 5 to 10), such that
the monitor will continue to depend on the shaper vNF
in the p-SFC and Algorithm 1 preserves the dependency
between them as that in the original s-SFC. (3) If a shaper
vNF depends on a monitor vNF, Algorithm 1 connects the
monitor vNF to the shaper to make sure the monitor vNF
will continue to provide input for the shaper(line 14 to 19).
(4) Note that no monitor depends on another monitor.

Finally, Algorithm 1 generates the shortest critical path
for each p-SFC. When building the main chain, the algo-

7

rithm separates all of monitor vNFs that cause no modifi-
cation on any flow from shaper vNFs and only keeps the
shaper vNFs in the main chain, so that the resulted main
chain is shortened at the most. Meanwhile, only if any two
vNFs have dependency will the algorithm concatenate them
according to their dependency relationship (line 12 to 17).
Otherwise, the algorithm puts the two vNFs in separate
new branch chains. Therefore, each branch chain is also
most shortened. Since any service path between ingress
and egress of p-SFC comprises the some branch chains or
segments of the main chain, the resulting critical path is
consequently shortest.

5 PROBLEM FORMULATION OF P-SFC DEPLOY-

MENT

In this section, we firstly formulate the problem of deploy-
ing parallelized SFCs based on the ILP technique, and after-
wards discuss the computational complexity of the problem.

5.1 Objective Function Formulation

We represent each p-SFC as a directed acyclic graph. Recall
that there are multiple service paths within a directed acyclic
graph of any p-SFC, which start from the ingress of the p-
SFC and sink at the egress of the p-SFC. Each service path
of any p-SFC has the same ingress and egress as that of the
s-SFC, respectively. For any s-SFC, let’s say s, we denote the
directed acyclic graph of the corresponding p-SFC as gs and
the set of service paths of p-SFC as Ps.

In order to formulate the problem of deploying p-SFCs,
we define two variables for each service path p as follows.

• αp
v(i): A binary decision variable that indicates

whether the i-th vNF of any service path p, denoted
as f

p
i , is deployed on a specific node v. Here, the

integer i varies from 1 to Ip, and Ip is the number
of vNFs in service path p. The value of αp

v(i) is
determined by

αp
v(i) =

{

1, if fp
i is deployed on v;

0, otherwise.
(1)

• β
p
l (i): A binary decision variable that indicates

whether the segment from the i-th to (i+1)-th vNF
of service path p, denoted as pi:i+1, goes through a
particular link l. The integer i ranges from 0 to Ip.
The value of βp

l (i) is determined by

β
p
l (i) =

{

1, If pi:i+1 goes through link l;

0, Otherwise.
(2)

Particularly, the variable β
p
l (0) indicates whether the

selected path from the ingress of service path p to the first
vNF of service path p goes through link l. While β

p
l (Ip)

indicates whether the selected path from the last vNF to the
egress of p goes through link l.

The objective of p-SFC deployment is to minimize the
overall average SFC latency for all of the SFCs. We note that
the SFC latency of a p-SFC is determined by the critical path

that has the largest delay among all of the paths of the p-
SFC. Therefore, for any p-SFC gs, the SFC latency can be
represented as

max
p∈Ps

(Ip
∑

i=1

∑

v∈V

αp
v(i)τ

F
f
p

i
+

Ip
∑

i′=0

∑

l∈L

β
p
l (i

′)τLl

)

, (3)

where Ps is the set of service paths of gs.
Accordingly, the objective function is defined as

min
∑

s∈S

max
p∈Ps

(Ip
∑

i=1

∑

v∈V

αp
v(i)τ

F
f
p

i
+

Ip
∑

i′=0

∑

l∈L

β
p
l (i

′)τLl

)

, (4)

where τF
f
p

i

is the processing latency of fp
i and τLl is the trans-

porting latency of link l. The first term in Eq.(4) represents
the summation of vNF processing latency, and the second
term is the summation of transporting latency over all links
of service path p.

5.2 Constraints Formulation

5.2.1 Node Constraint

For any service path p, each vNF in p should be deployed
once and only once. Thus, we have

∑

v∈V

αp
v(i) = 1, ∀s ∈ S, p ∈ Ps, i ∈ [1, Ip]. (5)

The total resources consumed by all vNFs deployed in
any node should not be greater than the resource capacity
of the node. In order to accommodate vNFs, the summation
of requested resources submitted to any node cannot exceed
the residual resource in the node. Thus, we have

∑

s∈S

∑

p∈Ps

Ip
∑

i=1

αp
v(i)r(f

p
i) ≤ R(v), ∀v ∈ V, (6)

where R(v) is the residual resource in node v.

5.2.2 Link Constraint

In order to avoid network congestion due to lack of band-
width resource in any links, the amount of bandwidth
requirements for all SFCs whose flows go through link l
should not be greater than the residual bandwidth of l,
denoted as U(l). That is

∑

s∈S

∑

p∈Ps

Ip
∑

i=0

β
p
l (i)w(p) ≤W (l), ∀l ∈ L, (7)

where w(p) is the bandwidth requirement for service path
p. Note that the bandwidth requirement for each service
path in the p-SFC of any s-SFC s is equal to the bandwidth
requirement of s.

5.2.3 Flow Constraint

We have two flow constraints as follows to guarantee that
the selected links for each service path in a p-SFC can be
concatenated together to form a service path in the network
topology, we say routing path, starting from the ingress of
the p-SFC, through all of the selected nodes, and sinking at
the egress of the p-SFC.

8

First of all, for each routing path, the amount of traffic
that arrives at a node on the routing path should be equal
to the amount of traffic that leaves the node. In order to
formulate the problem, we defined two variables as follows.

• I
p
v(l): A binary variable that indicates whether a

particular link l delivers traffic of any service path p
to a specific node v. The value of Ipv(l) is determined
by

I
p
v(l) =

{

1, If l delivers p’s traffic into v;

0, Otherwise.

• O
p
v(l): A binary variable that indicates whether the

traffic of any service path p leaves a specific node
v through a particular link l. The value of O

p
v(l) is

determined by

O
p
v(l) =

{

1, If p’s traffic leaves v through l;

0, Otherwise.

For each service path p of a p-SFC gs, we have the
following constraint,

∑

l∈L

Ip
∑

i=0

β
p
l (i)

(

I
p
v(l)−O

p
v(l)

)

= 0,

∀s ∈ S, p ∈ Ps, v ∈ V, i ∈ [1, Ip]. (8)

Secondly, for each selected node v that deploys a vNF of
any service path p, let say the i-th vNF of p, there must be at
least one link that delivers traffic of p to the node v. Thus,
we have

∑

l∈L

Ip
∑

i=1

β
p
l (i)I

p
v(l) + ϕp(v) ≥ αp

v(i),

∀s ∈ S, p ∈ Ps, v ∈ V, i ∈ [1, Ip], (9)

where ϕp(v) = 1 if v is the ingress of p, otherwise ϕp(v) = 0.

5.2.4 Bounding Extra Bandwidth Consumption

To bound the extra bandwidth consumption, we have
to obtain the bandwidth consumption of deploying the cor-
responding s-SFC requests using existing algorithms such
as [10], [48] and then add the following constraint for each
p-SFC:

∑

p∈Ps

Ip
∑

i=0

β
p
l (i)w(p) ≤ (1 + κ)Υ(s), ∀s ∈ S, l ∈ L, (10)

where κ is the bound rate of extra bandwidth consumption
and Υ(s) is the bandwidth requirement of s-SFC s.

5.3 Problem Complexity

The ILP-based approach has a limitation of scalability due to
its high computation complexity. Similar with many tradi-
tional SFC deploying problems [48], [49] as well as some
other combinatorial network optimization problems [50],
the problem of deploying p-SFCs has been proved to be
NP-hard [48].

6 DEPLOYMENT ALGORITHM

Since the ILP-based solution has high complexity and un-
scalability in large scale problems, we propose a heuristic
algorithm with low complexity and good scalability to
achieve a near-optimal solution. Inspired by the observation
that the SFC latency of a specific SFC is mainly deter-
mined by the performance of the critical path. The proposed
method is designed to guarantee the optimal deployment
for critical paths and shorten the latency of the critical path
as much as possible. Thus, we divide our heuristic solution
into two steps: critical path deployment and residual path
deployment. All of the critical paths are deployed at the first
step so that the critical paths can select preferable deploy-
ment nodes to make the SFC latency as low as possible.

6.1 p-SFC Deployment

6.1.1 Path Identification

We firstly design a recursive algorithm to identify the set
of service paths within each p-SFC. Algorithm 2 presents the
detail procedures of path identification. Algorithm 2 takes
the service graph of a p-SFC as input, i.e., gs, and outputs
the set of service paths identified in the p-SFC, Ps.

The algorithm needs some auxiliary variables as follows.

• p: a link structure (a type of data structure) that is
used to track the service path,

• v: a variable to record the current node being pro-
cessed by the algorithm,

• w: a variable to denote a successor node of current
processing node v,

• W : the set of successor nodes of current node v.

In the initialization procedure, Algorithm 2 sets the first
member of the service path p as the ingress of the service
graph gs, sets the value of current processing node u as the
ingress of service graph gs and assigns the set of successor
node of u as empty (line 7 to 9 in Algorithm 2).

The main part of Algorithm 2 is a recursive function as
defined in line 10 of Algorithm 2. The recursive function,
named PathFinder, takes three parameters as input, i.e., the
directed acyclic graph of the p-SFC being processed (gs),
the identified path (p) and the node (u) being processed
currently. The PathFinder firstly finds out all successor
nodes of current node (u) in gs, and puts them in the set
W . For each successor node w in the set W , the PathFinder
appends w to the tail of path p. Further, if w is not the egress
of gs, the PathFinder sets the value of node u as a successor
node w and calls itself to proceed with recursion, as shown
in line 14 to 17 of Algorithm 2. Otherwise, w is the egress
of gs, which implies the current path p approaches its sink
node and a complete path is identified. Thus, the PathFinder
copies the path p to the path set of gs, i.e., Ps and returns to
the preceding node to find other paths.

Afterwards, we select the path with largest vNF pro-
cessing time within the set of the paths belonging to the
service graph gs as the potential critical path of the p-SFC.
In practice, we never know which is the critical path until all
paths have been deployed, however, the path with largest
vNF processing time among the path set of service graph
gs is probably the critical path of the p-SFC. Thus, we sum

9

Algorithm 2: Path identification

Input: The service graph of a p-SFC: gs
Output: The set of paths in the service graph gs: Ps

1 Variable:
2 p: a link to track any path,
3 v: current node being processed.
4 w: denotes a successor node of node v,
5 W : the set of successor nodes of node v.
6 Initialization:
7 p← the ingress of gs;
8 v ← the ingress of gs;
9 W ← φ;

10 Function PathFinder(gs, p, v) begin
11 W ← get all successor nodes of v in gs;
12 foreach w in W do
13 Append w to p;
14 if w is not the egress of gs then
15 v ← w; // Set w as current node

16 PathFinder(gs, p, v); // Call the recursive

function

17 end
18 else if w is the egress of gs then
19 Copy current path p to Ps;
20 Return;
21 end
22 end
23 end

up the vNF processing time of all vNFs for each path of a
particular p-SFC, and sort the paths according to the amount
of processing time. Then the path with maximal amount of
processing time is the potential critical path.

6.1.2 Candidate Critical Path Deploying

We model the problem of deploying a service path in a
p-SFC as a multi-stage task that deploys one vNF in each
stage, and leverage the dynamic programming algorithm
to deploy such vNFs iteratively. When deploying multiple
service paths of a p-SFC, we first deploy the candidate
critical path and then deploy all the remaining paths, so that
the candidate critical path has higher priority in selecting
preferable resources.

First, we construct a directional acyclic multi-stage
graph [48], shown in Fig. 2, to model the multi-stage task.
We denote a multi-stage graph as H, and present the pro-
cedure to construct such a graph as follows. The ingress
and the egress of the service path p are in the “start” and
the “end” stage of the multi-stage graph, respectively. The
nodes in any of the remaining stages of the graph H, say,
the i-th stage, are the NFV servers that have capability
and capacity to deploy the i-th vNF of service path p.
Specifically, we denote the “start” and the “end” stage as
the 0-th and the (Ip+1)-th stage, respectively. Any node in
one stage is connected to every node in the next stage via
directed edges, and each edge is associated with a latency
cost. For each edge, if the two endpoints of the edge are
directly connected by a link, e.g., l, in the network topology,
the latency cost of the edge is the transporting latency of link

61

forwarding path

1 NAT TZ TE 6

2

3

4

5

2 3

5

Ingress Egress

vNF NFV server

1

2
3

4 5

6

Network Topology

Multi-stage Graph

11

41

15

0

20

30

40

26

25

30

20

40

0

10

30

(11,3)

(20,7)

(11,3)

(11,3)

(20,7)

11

15
25

30

20

10

30

start stage Stage 1 Stage 2 Stage 3 end stage

(20,7)

(20,7)

[8]

[10]

[12]

[10]

[8] [10]

[10]

Fig. 2: Illustration of the multi-stage graph. Values over
edges represent the transporting latency; values over
hexagons represent the resource capacity (as in “[]”), the
processing latency (i.e., the first value in the tuple “(x, y)”),
and the resource requirement (i.e., the second value in the
tuple “(x, y)”).

l; otherwise, the latency cost is the transporting latency of
the shortest routing path between the two endpoints in the
network topology. Note that, there is no connection between
any nodes within the same stage.

In Fig. 2, we construct the multi-stage graph from the
network topology. Given a service path “1 → NAT → TZ
→ TE → 6”, where the nodes 1 and 6 are the ingress
and the egress, respectively, the corresponding multi-stage
graph is constructed as follows. First, the nodes 1 and 6
are designated as the “start” stage and the “end” stage,
respectively. Next, suppose only the nodes 2, 3, and 4 are
able to host “NAT”, then these three nodes are placed in
“Stage 1” of the multi-stage graph. Suppose only the nodes
2 and 5 can host “TZ”, then these two nodes are placed
in “Stage 2”. Finally, suppose only the nodes 3 and 5 can
host “TE”, then they are placed in “Stage 3”. Now, note that
each node in one stage of the multi-stage graph is connected
to every node in the next stage, and each edge is labeled by
the transporting latency of the shortest path between its two
endpoints, which may consist of one link or multiple links
in the network topology. For instance, the edge from 3 to 2 is
labeled by 30, since 3 and 2 are directly connected by a link
whose transporting latency is 30 in the network topology;
in contrast, the edge from Node 3 in Stage 1 to Node 5 in
Stage 2 is labeled by 40, since the transporting latency of the
shortest path from 3 to 5 in the network topology, i.e., “3→
6→ 5”, is 40. The transporting latency of a path is the sum
of that of each link in the path.

Afterwards, a dynamic programming procedure based
on the Viterbi algorithm [19] is applied to search the opti-
mal path, i.e., Viterbi path, that produces the minimal SFC
latency in the multi-stage graph. The procedure starts from

10

forwarding path

backtracking path

Viterbi path

NFV server

61

2

3

4

5

2 3

5

11

41

15

0

20

30

40

26

25

30

20

40

0

10

30

(11,3)

(20,7)

(11,3)

(11,3)

(20,7)

start stage Stage 1 Stage 2 Stage 3 end stage

(20,7)

(20,7)

[8]

[10]

[12]

[10]

[8] [10]

[10]

22

52

26

72

62

122

112

132

Fig. 3: Computation of the Viterbi path. Values in the dashed
boxes represent the intermediate results of the minimal SFC
latency from the ingress.

the first stage that follows the “start” stage, and iteratively
computes the minimal latency from each node in the preced-
ing stage to every node in the current stage, and also records
the intermediate results which help compute the minimal
latency in the next stage. This procedure proceeds from one
stage to the next, until it eventually reaches the “end” stage.
At last, a backtracking procedure is used to find out the
Viterbi path that produces the minimal SFC latency.

In Fig. 3, we demonstrate how we compute the Viterbi
path in our constructed multi-stage graph. First, Node 2
of Stage 1 computes the latency from the “start” stage by
summing up the transporting latency from Node 1 of the
“start” stage to Node 2 of Stage 1 (i.e., 11, as shown over the
edge) and the processing latency of the vNF corresponding
to Stage 1 (i.e., 11, as shown over Node 2). The resultant
SFC latency is 22 and is recorded in the dashed box below
Node 2 of Stage 1. Nodes 3 and 4 of Stage 1 repeat this
process for Node 1 of the “start” stage, respectively, and
the corresponding SFC latencies are 42 and 26. Next, Node
2 of Stage 2 computes the SFC latency from each node of
previous stage, e.g., Node 4 of Stage 1, by summing up
the recorded result in the dashed box at Node 4 (i.e., 26),
the transporting latency (i.e., 26), and the processing latency
(i.e., 20). The resultant SFC latency is 72. The resultant SFC
latencies towards Node 2 of Stage 2 from Nodes 2 and 3 of
Stage 1 are 42 and 82, respectively. Here, however, suppose
if the vNF “NAT” (as in Stage 1) which requires 3 units
of resource is deployed on Node 2, then the vNF “TZ” (as
in Stage 2) which requires 7 units of resource cannot be
deployed on Node 2 due to insufficient resource (note Node
2 has the capacity of 8); thus, Node 2 of Stage 2 will only
consider the transitions from the nodes 3 and 4 of Stage 1,
while Node 5 of Stage 2 can still consider the transitions
from all the three nodes of Stage 1. Now, Node 2 of Stage
2 selects the minimal SFC latency of 72 from the nodes of
Stage 1 and records this result in its dashed box. Similarly,
every other node of Stage 2 repeats this process. We move
from one stage to the next stage until we reach the “end”
stage, where every node of each stage computes and records
the shortest latency from nodes of the previous stage. When
all nodes in the multi-stage graph finish such computation,
a backtracking procedure is applied to identify the Viterbi
path by finding the node in each previous stage that incurs

the recorded shortest latency. As the backtracking procedure
finishes, we have the Viterbi path of “1→ 2→ 5→ 3→ 6”,
where each node, except the first and the last nodes, is used
to deploy the corresponding vNF(s).

Inspired by the Viterbi computation as shown in Fig. 3,
we design a dynamic programming algorithm based on the
Viterbi algorithm, as shown in Algorithm 3, to search the
path that produces the minimal SFC latency in the multi-
stage graph. Algorithm 3 uses two auxiliary variables for
caching the intermediate results. One is the forwarding
variable ai(v) that records the minimal latency of any paths
from the ingress to a node v in the i-th stage. The other one
is the backtracking variable δi(v) that records the preceding
node of the node v in the path that produces the minimal
latency ai(v). Specifically, the value of a0(v) is 0 for any v,
and aIp+1(e) represents the minimal latency of the paths
from ingress to egress, where e is the egress of the paths.
For i ∈ [1, Ip + 1] and j ∈ [1, |V |], the variables ai(v) and
δi(v) are calculated by










ai(vi,j) = min
j′

(

ai-1(vi-1,j′) + cost(vi-1,j′ , vi,j)
)

,

δi(vi,j) = argmin
j′

(

ai-1(vi-1,j′) + cost(vi-1,j′ , vi,j)
)

,

(11)
where vi,j denotes the j-th node in the i-th stage and
cost(v, v′) is the transporting latency from v to v′.

Algorithm 3 takes a critical path p of a p-SFC and the
corresponding multi-stage graph H as inputs, and outputs
the vector of nodes, i.e., d, which are selected to deploy the
vNFs of the critical path. Algorithm 3 consists of three parts:

(1) In the initialization, it sets the value of the forward-
ing variable in the “start” stage as zero, and sets the value
in all the rest stages as a pre-defined maximum value.

(2) Then, it performs a forwarding procedure to com-
pute the minimal latency iteratively and saves the interme-
diate value in ai(v) and δi(v). The procedure proceeds from
the first stage to the last stage of any multi-stage graph. In
any stage i (1 ≤ i ≤ Ip), it computes the minimal latency
from the ingress through any node u in stage i-1 to each
node of stage i (line 20 to 27). Specifically, the algorithm
calculates the transporting latency from each node (e.g., u)
in the previous stage (let say stage i − 1) to a node (e.g.,
v) in the current stage (say, stage i), obtains the average
time for the i-th vNF of the service path p to process one
packet, accesses the intermediate value a(i−1)(u) of the
minimal latency cached at u, and sums them up according
to Eq.(11) to calculate the minimal latency from the ingress
to v through u (line 22). The algorithm caches the minimum
of the minimal latencies in ai(v) (line 24) and caches the
value of node u in the corresponding backtracking variable
δi(v) (line 25).

(3) Further, the backtracking procedure infers the best
deployment path with the minimal latency. This procedure
starts from the last stage, i.e., the “end” stage (line 32), and
searches the node u in stage Ip that yields the minimal
latency from the ingress of service path p to stage “end”
through node u in stage Ip (line 35 to 36). This operation
proceeds from one stage to another, until it reaches the
second stage. The procedure leverages a temporary variable
v∗ to cache the selected best node in each stage, and searches
the best “preceding node” of the best node selected in

11

Algorithm 3: Path Deployment Algorithm

1 PathDeploy(p, H) begin
Input: A service path of any p-SFC: p,

a multi-stage graph built from p: H.

Output: The vector of selected nodes to deploy

the vNFs of the service path p: d

2 Variables:

3 f
p
i : the i-th vNF of service path p;

4 Ip: the amount of vNFs in service path p;

5 v, u: represents a node in graph H;

6 τL(u,v): transporting delay of the link from u to

v;

7 τF
f
p

i

: average time for fp
i to process one packet;

8 ai(v): used to cache computing result;

9 δi(v): used to record backtracking information;

10 a: a variable to cache any computing result;

11 v∗: a variable to cache any selected node;

12 Initialization:

13 ∀v ∈ V : a0(v)← 0;

14 ∀i ∈ [1, Ip + 1], v ∈ V : ai(v)← +inf ;

15 Forwarding procedure:

16 for i← 1 to Ip + 1 do

17 τF
f
p

i

← Get fp
i ’s average process time;

18 foreach v in stage i of H do

19 if v is able to deploy f
p
i then

20 foreach u in stage i-1 of H do

21 τL(u,v) ← delay from u to v;

22 a←
(

τL(u,v) + τF
f
p

i

+ ai−1(u)
)

; /* To

caches the latency from ingress to v */

23 if ai(v) > a then

24 ai(v)← a; /* ai(v) caches the

minimum latency from ingress to v

*/

25 δi(v)← u; /* Record the value of u

*/
26 end

27 end

28 end

29 end

30 end

31 Backtracking procedure:

32 Assign the value of v∗ as the egress;

33 Set v∗ as the first element of d;

34 for i← Ip to 1 do

35 v∗ ← δi(v
∗); /* Backtrack to search for nodes in

the path that produces the minimum latency */

36 Append v∗ to d;

37 end

38 Reverse the orders of elements of d;

39 end

current stage (line 35). Once any node is selected as the best
one, the algorithm appends it to the vector of the selected
nodes, i.e., d (line 36). The algorithm reverses the order of
the elements in d so that they have the same order as the
vNFs of the critical path.

6.1.3 Deploying Residual Paths

We also leverage Algorithm 3 to deploy the residual
paths. We construct the multi-stage graph for each of the
residual paths, and apply Algorithm 3 to deploy all of such
paths.

The main difference between the critical path deploy-
ment and the residual path deployment is how to construct
the multi-stage graph of the paths. When constructing the
multi-stage graph for one of the residual paths, in some
stage (say, i) of the graph, if the i-vNF has been deployed
in preceding deployment procedures, either the critical path
deployment or the residual path deployment, only the node
that has been selected to deploy the vNF will appear in
the stage. The order to deploy the residual paths mainly
depends on which p-SFC the paths belong to. For each p-
SFC, Algorithm 2 has been applied to detect all the paths of
the p-SFC as well as the critical path. The identified paths of
the p-SFC, except the candidate critical path, is deployed in
the order they appear in the detection procedure. A p-SFC
will be rejected if one of its paths (critical path or residual
paths) fails to be deployed. In the end, we calculate the SFC
latency for all paths, both the critical path and the residual
paths, and identify the path with maximal SFC latency as
the real critical path, whose SFC latency is considered as the
SFC latency of the p-SFC.

6.2 Deploying Multiple Concurrent p-SFCs

As we deploy multiple concurrent p-SFCs, we have to
coordinate the resource competition so as to optimize the
overall performance for all of the concurrent p-SFCs. To this
end, we pre-deploy each p-SFC regardless of other p-SFCs
to locate the required resource and identify the bottleneck
of resources in the network. Then, we sort the p-SFCs
according to their dependency on the bottleneck resource
and process the p-SFCs according to the sorted order. If the
resource is not enough to provision all of p-SFCs, we will
drop some abusive p-SFCs that depends too much on the
bottleneck resource.

6.2.1 Pre-Deploying p-SFCs

In the phase of pre-deployment, we aim to 1) make
statistics about the resource demand on each node, and 2)
re-elect the candidate critical path.

We apply the procedures introduced in Section 6.1 to
deploy each p-SFC onto the network. For any p-SFC, we
apply Algorithm 2 to identify the paths and candidate
critical path in the p-SFC, then we leverage Algorithm 3
to deploy the candidate critical path in the network, and
finally we use Algorithm 3 to deploy all of the remaining
paths of the p-SFC. Note that, we mainly focus on statistics
when the p-SFC is deployed, but we do not really allocate
resources for any node.

12

Once a p-SFC has been deployed successfully, we collect
the information on resource scheduling. That is, we record
the nodes that are selected to deploy the vNFs of the p-SFC,
and calculate the resources demanded by the p-SFC and by
each node. The metrics to be calculated are as follows.

The total resource requested by p-SFC gs at node v:

xs(v) =
∑

p∈Ps

Ip
∑

i=1

αp
v(i)r(f

p
i), ∀v ∈ V, s ∈ S. (12)

The amount of resources requested at node v:

xv =
∑

s∈S

xs(v), ∀v ∈ V. (13)

The total amount of resource requested by all p-SFCs:

x =
∑

v∈V

xv. (14)

Meanwhile, we re-elect the candidate of the critical path
for each p-SFC. When we finish deploying a p-SFC, we
calculate the latency of each path, including vNF processing
time in each vNF and transporting latency in the passing
links, and elect the path with maximal SFC latency as the
new candidate critical path.

6.2.2 Dropping Abusive p-SFCs

We need to drop some SFCs if resource is limited.
Based on the statistical information collected in the pre-
deployment phase, we should check whether there are
enough resources to deploy all of the SFCs. If the resources
are insufficient, we should drop some of SFCs until all of the
remaining SFCs can be deployed successfully.

We define the following concepts for the description of
the SFC dropping procedure.

resource bottleneck: For each node, we compute the
amount of resources required by all of the p-SFCs in the
node and call the node a resource bottleneck if the amount of
the required resources exceeds that of the residual resource
in the node.

bottleneck degree: We also define the difference between
the amount of resources required by all p-SFCs in any node
and the residual resource of the node as the bottleneck
degree of the node. Specially, when any node is not a
resource bottleneck, the bottleneck degree is zero.

resource abusiveness: When any p-SFC selects some
nodes to instantiate its vNFs, we define the summation of
the bottleneck degrees over all of the selected nodes as the
resource abusiveness of the p-SFC.

When the resource is insufficient to provision all SFCs,
we drop the SFCs with the highest resource abusiveness.
The resource abusiveness indicates the contribution of a
p-SFC causing the bottleneck. Generally, the higher the
resource abusiveness of the p-SFC, the more vNFs of the p-
SFC are deployed in the resource bottleneck. In other words,
the p-SFC depends on the resource bottlenecks more than
others, and is referred to as more abusive. As a result, we
select the p-SFCs whose resource abusiveness are larger and
drop them preceding others so as to accept as many p-SFCs
as possible. We call this dropping policy as most abusive
p-SFC first drop policy.

6.2.3 Deploying Concurrent p-SFCs

We are prone to assign resources in nodes which are not
resource bottlenecks or whose bottleneck degree is small if
the performance of p-SFC would not degrade. We call this
resource assignment policy as least competitive node first
allocate policy.

In order to follow the deployment policy and resource
assignment policy, we adjust the processing order of p-SFCs
according to the resource abusiveness of p-SFCs. Specifi-
cally, we sort the p-SFCs in ascending order according to
the resource abusiveness and deploy the p-SFCs according
to the sorted order. Thus, since the less abusive p-SFCs have
smaller probability to cause resource bottleneck, we deploy
them preceding the abusive p-SFCs.

Meanwhile, we modify the forwarding procedure in
Algorithm 3, so that we can try best to first allocate resources
in the least competitive node. The modified forwarding
procedure is shown in Algorithm 4. When we deploy any
SFC, there is usually more than one candidate node which
can provide the SFC with the best performance. However,
the bottleneck degrees of the candidate nodes might be
different. As we want to follow the resource assignment
policy and allocate the least competitive node first, the for-
warding procedure in Algorithm 3 is modified to select the
node that is less competitive, i.e., select the node with small
bottleneck degree, as shown in line 16 to 20 of Algrithm 4.
The modified algorithm takes one more parameter, i.e., χ(v),
the bottleneck degree of every node v ∈ V , as input, and
defines one more variable w to cache any candidate node
in the forwarding procedure (as shown in line 2, 14 and
19). When we identify a node that provides with the same
performance as the candidate node, we check whether the
node is less competitive than the candidate node (line 16).
Afterward, we replace the candidate node with the node
(line 17 to 19).

According to the deployment policy and resoruce assign-
ment policy, we design procedures as shown in Algorithm 5
to deploy multiple concurrent p-SFCs to achieve minimal
overall SFC latency. We first pre-deploy every p-SFC and
collect statistical information about the resource assignment,
such as the resource requirement in each node and the
amount of resources required by the set of p-SFCs (Step 1).
Based on the statistical information, we identify the resource
bottlenecks whose resource is over-allocated and calculate
the abusiveness degree for each p-SFC (Step 2). In Step
3, we sort the p-SFCs in ascending order according to the
abusiveness degree of the p-SFCs. In the Step 4, we deploy
the p-SFCs one after another according to the sorted order
in Step 3, which implies that the p-SFC with the smallest
abusiveness degree will be deployed first. Finally, when the
resources of the network are insufficient, we stop deploying
more p-SFCs. In other words, the residual p-SFCs which are
most abusive are dropped.

6.3 Computational Complexity

Let N be the total number of NFV server nodes, Nf the
number of NFV server nodes hosting resource for deploying
vNF f , and L is the maximum length of SFC. Apparently,
we have N ≥ Nf . Since we aim to gain an upper bound

13

Algorithm 4: Modified Forwarding Procedure

Input: p: a service path of any p-SFC,
H: a directed multi-stage graph built from p,
χ(v): resource abusiveness of node v ∈ V .

1 Variables:
2 w: a variable to cache any node in forward

procedure;
3 Other variables are the same as the Algorithm 3.
4 for i← 1 to Ip + 1 do

5 τF
f
p

i

← Get fp
i ’s average process time;

6 foreach v in stage i of H do
7 if v is able to deploy f

p
i then

8 foreach u in stage i-1 of H do

9 τL(u,v) ← delay from u to v;

10 a←
(

τL(u,v) + τF
f
p

i

+ ai−1(u)
)

; /* To

cache the latency from ingress, through u, to

v */

11 if ai(v) > a then
12 ai(v)← a; /* ai(v) caches the

minimum latency from ingress, through

u, to v */

13 δi(v)← u; /* Record the value of u */

14 w ← u;
15 else

/* If u is a less competitive node. */

16 if ai(v) == a and χ(u) < χ(w)
then

17 ai(v)← a;
18 δi(v)← u;
19 w ← u;
20 end
21 end
22 end
23 end
24 end
25 end

Algorithm 5: Concurrent p-SFCs Deployment Pro-
cedures
Step 1 Pre-deploy the set of p-SFCs and collect statistic

information about the resource assignment;
Step 2 Identify the resource bottleneck and estimate the

abusiveness of each p-SFC;
Step 3 Sort the p-SFCs in ascending order according to the

abusiveness of p-SFCs;
Step 4 Deploy the set of p-SFCs one by one according to

the sorted order in Step 3.
Step 5 If the residual resource in the network is insufficient

to provision more p-SFCs, we drop the residual
p-SFCs (i.e., the most abusive p-SFCs);

of our algorithm, it still makes sense to use N instead of
Nf in computational complexity analysis according to the
property of inequality and the definition of upper bound.

In Algorithm 1, the complexity of traversing each vNF
in any SFC in line 4 is O(L). The procedure of checking
any monitor q in Q in line 14 also yields a complexity of
O(L). As a result, the total computational complexity for
Algorithm 1 to process all SFCs is O(NL2).

Since Algorithm 2 traverses all paths within any p-SFC,
the computational complexity is equal to the amount of
paths of the p-SFC. Suppose the maximum length of branch
chains is L that often is a small number, and the total paths
of the p-SFC is usually not large. Thus, the computational
complexity of Algorithm 2 is regarded as O(1).

The forwarding procedure in Algorithm 3 performs
O(Ip|S|N

2L) operations to process all SFCs. Meanwhile,
the procedure of backtracking takes Ip iterations to identify
the best Viterbi path and a few operations in each iteration.
Since the amount of paths within each p-SFC is small, we
treat Ip as a constant. Therefore, the algorithm performs
O

(

C|S|N2L
)

operations to deploy all SFC requests.

7 EVALUATION

In this section, we present numerical results to evaluate
the effectiveness of SFC parallelism and the performance
of SFC deployment algorithm. We implement the proposed
p-SFC deployment algorithm, i.e., ParaSFC, and the com-
parison algorithms, including: (1) a greedy method denoted
as “Greedy”, which calculates the shortest path from the
ingress to the egress of each p-SFC and selects nodes as
close to the shortest path as possible for deploying the p-
SFC; (2) a state-of-the-art coordinated method denoted as
“CoordVNF” [15], [16], which uses a backtracking method
to recursively deploy vNFs upon valid nodes; and (3) the
ILP-based optimization approach denoted as “Optimal”,
which solves the deployment problem to its optimum by
invoking standard ILP solvers. We implemented all of
such algorithms using C/C++. We made all our data and
source codes publicly available at our Github webpage
(https://github.com/SmileRob/paraSFC).

7.1 Simulation Setup

7.1.1 Network Topology and Flow Traces

We consider three real world network topologies from
SNDlib [51], including Abilene [52], an Indian network
(India35) and a German National Research and Education
Network (Germany50). The amounts of nodes and links
contained in the topologies are shown in TABLE 3. We ran-
domly select a set of nodes as vNF server for each network
topology as shown in the fourth column in TABLE 3.

During the simulation, we generate a set of traffic re-
quests according to the ranges as shown in the fifth column
of TABLE 3 and designate random source and destination
nodes for each flow. The range of traffic requests is approx-
imate ten to thirty times of the node number in network.

7.1.2 vNFs and SFCs

We consider 10 types of commonly-used vNFs as shown in
TABLE 2. We set the values of resource requirements and

14

TABLE 3: Parameter setting for network and traffic.

Network nodes links # vNF servers

Internet2 12 15 7

India35 35 79 18

Germany50 50 88 20

TABLE 4: Service Function Chains and Requirements.

Service Service Function Chain Data Rate

Web Service NAT-DS-TL-TV 100kbit/s

VoIP NAT-TE-PHI-TL-TD-NAT 64kbit/s

Video Streaming TL-TV-TZ-TU-PHI-DPI-NAT 4Mbit/s

Online Gaming NAT-PHI-DS-NAT 50kbit/s

processing time for each vNF following existing work [6],
[18], [33], [53], [54]. According to the complexity of vNFs,
the required resources of each vNF range from 4 to 10
units [10], [18], [33]. For a particular vNF, the required
resources and processing time are set as fixed values [9],
[10], [55]. Since the required resources and processing time
of each vNF can vary across servers in practice, we can
easily change our algorithm to adapt to any parameter
settings. We consider four types of services, i.e., web brows-
ing, VoIP, video streaming, and online gaming, as in TA-
BLE 4, and generate an SFC for each service. The data
rate in TABLE 4 represents the required bandwidth for an
SFC. More detail information about the parameter settings
can be founded in our implementation project in Github
(https://github.com/SmileRob/paraSFC).

7.2 Results

7.2.1 Benefit of SFC parallelization

To verify the effectiveness of SFC parallelization, we con-
ducted two groups of simulations: sequential SFC deploy-
ment and parallelized SFC deployment. The number of the
sequential SFC requests for each network topology was
0.5 × |V |2, with |V | as the node number of the network,
as shown in TABLE 3. In the first group, we deployed se-
quential SFCs without parallelization. In the second group,
we converted the sequential SFCs considered in the first
group into parallelized SFCs using Algorithm 1, and then
deployed the converted p-SFCs.

We performed 100 independent simulations for each
group of simulations and obtained the average results. Fig.4
shows the benefit of decreasing the SFC latency in each net-
work topology. The average SFC latency of the parallelized
SFCs is often smaller than that of the sequential SFCs. Due
to parallelization, the average latency of SFCs deployed by
ILP-based approach can be reduced by 12% to 15% and
the average latency of SFCs deployed by ParaSFC can be
reduced by 15%. Apparently, the SFC parallelism can benefit
users from decreasing the SFC latency.

The benefit of SFC parallelism varies in different net-
work scales as shown in Fig. 5. In Internet2 that is a small
scale network, about 50% of the SFCs can reduce at least 15%
of the latency. In India35, about 40% of the SFCs can reduce
at least 15% of the latency. While in Germany50 that is much
larger in network scale, only 27% of the SFCs can reduce at
least 15% of the latency. The reason of this observation is

Internet2 India35 Germany50

0.15

0.2

0.25

S
F

C
 l
a
te

n
c
y
 (

s
e
c
o
n
d
)

(a) Average SFC latency (s−SFC v.s. p−SFC)

s−SFC by ILP
s−SFC by ParaSFC

p−SFC by ILP
p−SFC by ParaSFC

Internet2 India35 Germany50
10

15

20

R
e
d
u
c
ti
o
n
 (

%
)

(b) SFC latency reduction (ILP v.s. ParaSFC)

ILP ParaSFC

Fig. 4: average SFC latency

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Reduced Latency (%)

C
D

F
 o

f
R

e
d
u
c
e
d
 L

a
te

n
c
y
 (

%
)

Intenret2
India35
Germany50

Fig. 5: Reduced SFC latency CDF

that the SFC parallelism mainly reduces the vNF processing
time. In a large scale of network, the average transporting
latency between any two nodes is larger than that in a small
scale of network. Thus, the fraction of the reduction of vNF
processing time to the total latency of an SFC in a large scale
network is smaller than that in a small scale network. As a
result, the benefit of SFC parallelism is more significant in
the small network than that in the large network.

To explicitly consider the increased traffic (or the ex-
tra bandwidth consumption) caused by parallelization, we
added a new constraint regarding the “link capacity” to our
ILP problem formulation in Section 5.2.4. When deploying
the p-SFCs to minimize the latency, we ensured that the
total bandwidth consumption respects the link capacity.
We presented the average SFC latency reduction of p-SFCs
deployed by ParaSFC and the relation between the average
SFC latency reduction versus link capacity increment in
Fig. 6. As can be seen, the reduction of average service
latency of all the deployed p-SFCs is 14.5%∼15.7% through
parallelization. As the link capacity (which is represented in
terms of the increment compared to our original link capac-
ity) increases, more p-SFCs can be hosted and accordingly
the average latency reduction grows.

15

2 4 6 8 10
14.5

15

15.5

16

Link Capacity Increment (%)

S
F

C
 l
a
te

n
c
y
 R

e
d
u
c
ti
o
n
 (

%
)

Internet2

India35
Germany50

Fig. 6: SFC latency reduction v.s. link capacity increment

0 5 10 15 20
120

140

160

180

200

220

Data Rate (Mbps)

S
F

C
 l
a

te
n

c
y
 (

m
ili

s
e

c
o

n
d

)

p−SFC in Internet2

p−SFC in India35

p−SFC in Germany50

s−SFC in Internet2

s−SFC in India35

s−SFC in Germany50

Fig. 7: SFC latency v.s. data rates

Fig. 7 shows how the data rates can affect the SFC
latency. If the link capacity of the underlying network is
largely sufficient, then data rates will not have any obvious
effect on the SFC average latency. In contrast, if the link
capacity is not large, i.e., just enough to host all s-SFCs, (as in
Fig. 7), then, as the data rates increase, the SFCs that need to
be deployed later may not be able to be deployed on shorter
paths, because such links have already been occupied by
SFCs that are deployed earlier and thus have no residual
capacity. In this case, the SFC average latency will increase,
since some SFCs have to choose paths of longer delay.

7.2.2 Comparison with Related Algorithms

In order to evaluate the performance of our algorithm, we
compare our results with benchmark and the comparison
algorithms, i.e., CoordVNF and Greedy.

Firstly, we present the average SFC latency for differ-
ent network topologies in Fig.8. The average SFC latency
produced by ParaSFC is often closest to the optimal solu-
tion among the three algorithms, which implies that the
proposed solution outperforms the other two comparison
algorithms in term of average SFC latency. As can be seen,
ParaSFC is close to Greedy for small-scale evaluations; yet,
for large-scale evaluations, ParaSFC differs from Greedy
more apparently. While the Greedy algorithm splits the
problem of deploying an SFC into multiple subproblems
and selects the best solution for each subproblem, ParaSFC
searches for the optimal solution for deploying SFCs via
the Viterbi dynamic programming algorithm, estimates each
SFC’s occupation of bottleneck resources, and then adjusts
the processing order of the SFCs in order to approximate
the optimal solution. For small-scale evaluations, it is thus
true that the results of both approaches could be close to
optimum, because the solution space is small. However, for
large-scale evaluations, the advantage of ParaSFC becomes
more apparent. In this new figure, we run 100 simulations

using inputs of larger sizes, i.e., the number of SFCs in each
simulation is now 0.5 ∗ |V |2 versus a random selected size
ranging from 0 to 30 ∗ |V | previously, where |V | is the
number of nodes of the underlying network. The results
show that the average SFC latency of ParaSFC is much better
than that of Greedy.

Secondly, we present Fig.9 to show the closeness be-
tween the results produced by each method and the results
of the optimal solution. In Fig.9, the X-axis is the closeness
that is defined as the difference between the SFC latency of
each deployed p-SFC and that of the corresponding optimal
result, and the Y-axis is the cumulative probability of each
SFC latency difference, e.g., the cumulative distribution
function (CDF) of closeness. The closeness of most p-SFCs
are zero, which means that most of the p-SFCs are deployed
in the optimal shortest path between the ingress and egress
of each SFC. As shown in Fig.9, by using the proposed
method, almost 90% of p-SFCs in Internet2 are deployed
in optimal path, more than 70% of p-SFCs in both India35
and Germany50 are also deployed in their optimal paths.
The results also show that the closeness of ParaSFC is often
better than other methods. It implies that the proposed
ParaSFC method is more probable to deploy the p-SFCs in
optimal path than the comparison methods.

Next, we present the acceptance rate of p-SFCs when the
virtualization resource is limited, as shown in Fig.10. We
set the amount of CPU cores within each network topology
as 2000 cores, and increase the amount of SFC requests
from 1 to 200. We found that each algorithm produced
100% acceptance of p-SFCs at the beginning since the re-
sources in the network is enough to deploy all requests.
But the acceptance drops gradually as the amount of SFC
requests increases. However, the acceptance rate produced
by ParaSFC is never less than the other two algorithms.
The reason is that ParaSFC adjusts the processing order
of SFCs and selects a better processing order. Meanwhile,
the ParaSFC also drops some SFCs that causes resource
bottlenecks in the network.

At last, we provide comparison results about the algo-
rithm execution time in Fig. 11. Although ILP outputs the
optimal solution, its execution time is much longer than
those of the other algorithms. Note the exponential growth
in the vertical axis of the figure. Thus, ILP is not suitable for
practical use due to bad scalability. The algorithm execution
time of ParaSFC, Greedy, and CoordVNF are close. Despite
ParaSFC is a little slower, it vastly outperforms Greedy and
CoordVNF in terms of the SFC latency, much close to the
optimal solution of ILP, with higher acceptance rates.

8 CONCLUSION

SFC is a key technique to the success of the NFV paradigm.
Composed of a sequence of vNF, an SFC, however, is subject
to a high latency in processing traffic flows. In this paper,
we studied how to reduce the latency through parallelism,
and further introduced a near-optimal heuristic approach
to deploying many concurrent parallelized SFCs over net-
works, which has a polynomial computational complexity.
Our simulation shows that the SFC parallelization can re-
duce the average SFC latency by 12∼15%, and compared to
greed-based algorithm and CoordVNF approach, our SFC

16

Internet2 India35 Germany50
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2
S

F
C

 l
a
te

n
c
y
 (

s
e
c
o
n
d
)

Optimal
ParaSFC

Greedy
CoordVNF

(a) Smaller number of SFCs

Internet2 India35 Germany50
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

S
F

C
 l
a
te

n
c
y
 (

s
e
c
o
n
d
)

Optimal
ParaSFC

Greedy
CoordVNF

(b) Larger number of SFCs

Fig. 8: Average SFC latency.

0 100 200

50

60

70

80

90

100

Latency (second)

C
D

F
 (

%
)

Internet2

0 100 200

50

60

70

80

90

100

Latency (second)

C
D

F
 (

%
)

India35

0 100 200

50

60

70

80

90

100

Latency (second)

C
D

F
 (

%
)

Germany50

ParaSFC
Greedy
CoordVNF

Fig. 9: Closeness to the optimal solution

0 50 100
20

40

60

80

100
Internet2

Amount of Requests

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
)

0 50 100
20

40

60

80

100
India35

Amount of Requests

0 50 100
20

40

60

80

100
Germany50

Amount of Requests

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
)

ParaSFC
Greedy
CoordVNF

Fig. 10: Acceptance rate. The amount of CPU cores within
each network topology is 2000 cores.

Internet2 India35 Germany50
10

0

10
2

10
4

10
6

10
8

A
lg

o
ri
th

m
 R

u
n
ti
m

e
 (

m
ili

s
e
c
o
n
d
)

Optimal
ParaSFC

Greedy
CoordVNF

Fig. 11: Algorithm Runtime (milisecond)

deployment approach achieves a higher rate of deployment
success and a lower SFC latency.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. The work of J. Luo and J.
Cai was supported in part by the National Key Research
and Development Program of China (SQ2019YFB180098),
the National Natural Science Foundation of China (No.
61972104, No.61902080, No.61702120), The Key Areas of
Guangdong Province (No. 2019B010118001), The science
and technology project in Guangzhou (No. 201803010081),
The National key R & D plan (No. SQ2019YFB180098, No.
2018YFB1802200), Foshan Science and Technology Innova-
tion Project, China (2018IT100283), Science and Technology
Program of Guangzhou, China (202002020035). L. Jiao was
supported in part by the Ripple Faculty Fellowship.

REFERENCES

[1] R. Mijumbi, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research
challenges,” IEEE Communications Surveys and Tutorials, vol. 18,
pp. 236–262, 09 2015.

17

[2] K. Joshi and T. Benson, “Network function virtualization,” IEEE
Internet Computing, vol. 20, no. 6, pp. 7–9, 11 2016.

[3] P. Quinn and T. D. Nadeau, “Problem statement for service
function chaining,” Internet Requests for Comments, RFC
Editor, RFC 7498, April 2015. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc7498.html

[4] B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey of
network function virtualization,” Computer Networks, vol. 133, pp.
212–262, 2018.

[5] S. Ayoubi, S. R. Chowdhury, and R. Boutaba, “Breaking service
function chains with khaleesi,” in IFIP Networking Conference. IFIP,
2018.

[6] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba,
“Distributed service function chaining,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 11, pp. 2479–2489, 2017.

[7] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual
network functions in service chaining,” in Proceedings of the Sym-
posium on SDN Research. ACM, 2017, pp. 143–149.

[8] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in NFV,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 43–56.

[9] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint opti-
mization of service function chaining and resource allocation in
network function virtualization,” IEEE Access, vol. 4, pp. 8084–
8094, 2016.

[10] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service
function chain deployment and readjustment,” IEEE Transactions
on Network and Service Management, vol. PP, no. 3, pp. 543–553,
2017.

[11] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably
efficient algorithms for placement of service function chains with
ordering constraints,” in IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, 2018, pp. 774–782.

[12] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,”
in 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2015, pp. 98–106.

[13] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th
International Conference on Cloud Networking (CloudNet), 2015, pp.
171–177.

[14] R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, and T. Ahmed,
“Scheduling wireless virtual networks functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 2, pp. 240–252,
2016.

[15] M. T. Beck and J. F. Botero, “Coordinated allocation of service
function chains,” in 2015 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2015, pp. 1–6.

[16] ——, “Scalable and coordinated allocation of service function
chains,” Computer Communications, vol. 102, pp. 78–88, 2017.

[17] S. Khebbache, M. Hadji, and D. Zeghlache, “Scalable and cost-
efficient algorithms for VNF chaining and placement problem,” in
2017 20th Conference on Innovations in Clouds, Internet and Networks
(ICIN), 2017, pp. 92–99.

[18] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-
aware and energy-efficient VNF placement for service chaining:
Joint sampling and matching approach,” IEEE Transactions on
Services Computing, to be published.

[19] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, 1973.

[20] R. Riggio, A. Bradai, T. Rasheed, J. Schulz-Zander, S. Kuklinski,
and T. Ahmed, “Virtual network functions orchestration in wire-
less networks,” in 2015 11th International Conference on Network and
Service Management (CNSM), 2015, pp. 108–116.

[21] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5g,” in Pro-
ceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft), 2015, pp. 1–6.

[22] S. Mehraghdam and H. Karl, “Placement of services with flexible
structures specified by a yang data model,” in NetSoft Conference
and Workshops (NetSoft), 2016 IEEE. IEEE, 2016, pp. 184–192.

[23] S. Dräxler and H. Karl, “Specification, composition, and placement
of network services with flexible structures: Specification, compo-

sition, and placement of flexible services,” International Journal of
Network Management, vol. 27, no. 2, p. e1963, 2017.

[24] M. Bjorklund, “Yang - a data modeling language for the
network configuration protocol (netconf),” Internet Requests
for Comments, RFC Editor, RFC 6020, October 2010. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6020.txt

[25] E. S. Ogasawara, D. D. Oliveira, P. Valduriez, J. Dias, and M. Mat-
toso, “An algebraic approach for data-centric scientific work-
flows,” Proceedings of the Vldb Endowment, vol. 4, no. 12, pp. 1328–
1339, 2011.

[26] J. Halpern and C. Pignataro, “Service function chaining
(sfc) architecture,” Internet Requests for Comments, RFC
Editor, RFC 7665, October 2015. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc7665.html

[27] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in IEEE International Confer-
ence on Cloud Networking, 2014.

[28] T. W. Kuo, B. H. Liou, C. J. Lin, and M. J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and
server usage,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, 2016.

[29] X. Li and C. Qian, “The virtual network function placement
problem,” in 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2015, pp. 69–70.

[30] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, and T. Wang, “Joint opti-
mization of chain placement and request scheduling for network
function virtualization,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017.

[31] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in 2015 IEEE Conference
on Computer Communications (INFOCOM), 2015, pp. 1346–1354.

[32] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploit-
ing congestion games to achieve distributed service chaining in
NFV networks,” IEEE Journal on Selected Areas in Communications,
vol. 35, no. 2, pp. 407–420, 2017.

[33] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Transactions on Network and Service Management, vol. 13, no. 4, pp.
725–739, 2016.

[34] M. T. Beck and J. F. Botero, “Scalable and coordinated allocation
of service function chains,” Comput. Commun., vol. 102, pp. 78–88,
2017.

[35] S. S. Gill and I. Chana, “A survey on resource scheduling in cloud
computing: Issues and challenges,” Journal of Grid Computing,
vol. 14, 02 2016.

[36] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed on-
line resource allocation in multi-tier distributed cloud networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 2556–2570,
2017.

[37] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang, and M. R. Lyu, “Delay-
aware cost optimization for dynamic resource provisioning in
hybrid clouds,” in IEEE International Conference on Web Services,
2014.

[38] P. Waibel, A. Yeshchenko, S. Schulte, and J. Mendling, “Optimized
container-based process execution in the cloud,” in On the Move
to Meaningful Internet Systems. OTM 2018 Conferences, H. Panetto,
C. Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, and
R. Meersman, Eds. Cham: Springer International Publishing,
2018, pp. 3–21.

[39] P. Waibel, C. Hochreiner, S. Schulte, A. Koschmider, and
J. Mendling, “Viepep-c: A container-based elastic process plat-
form,” IEEE Transactions on Cloud Computing, in press, 2019.

[40] M. B. Gawali and S. K. Shinde, “Task scheduling and resource
allocation in cloud computing using a heuristic approach,” Journal
of Cloud Computing, vol. 7, no. 1, p. 4, 2018.

[41] A. Alhubaishy and A. Aljuhani, “The best-worst method for
resource allocation and task scheduling in cloud computing,” in
2020 3rd International Conference on Computer Applications Informa-
tion Security (ICCAIS), 03 2020, pp. 1–6.

[42] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type vnf
forwarding graphs in inter-dc elastic optical networks,” Journal
of Lightwave Technology, vol. 34, no. 14, pp. 3330–3341, 2016.

[43] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet
inspection as a service,” in Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’14. New York, NY, USA: Association for Computing
Machinery, 2014, pp. 271–282.

18

[44] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in
Presented as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). San Jose, CA: USENIX, 2012,
pp. 323–336.

[45] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, ser. SIGCOMM ’12.
New York, NY, USA: Association for Computing Machinery, 2012,
p. 13???24.

[46] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.
Wang, “WebProphet: Automating performance prediction for web
services,” in 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 10). San Jose, CA: USENIX Association,
Apr. 2010.

[47] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “Demystifying page load performance with WProf,”
in 10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 13). Lombard, IL: USENIX Association, Apr.
2013, pp. 473–485.

[48] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Transactions on Network and Service Management, vol. 13, no. 4, pp.
725–739, 2016.

[49] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service
chain provisioning,” IEEE/ACM Transactions on Networking, vol. 26,
no. 3, pp. 1320–1333, June 2018.

[50] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation
for combinatorial network optimization,” IEEE transactions on
information theory, vol. 59, no. 10, pp. 6301–6327, 2013.

[51] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib
1.0–Survivable Network Design Library,” Networks, vol. 55, no. 3,
pp. 276–286, April 2010.

[52] Y. Zhang, “Abilene dataset,” 2004. [Online]. Available: http:
//www.cs.utexas.edu/∼yzhang/research/AbileneTM

[53] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM Computer
Communication Review, vol. 38, pp. 63–74, 10 2008.

[54] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualiza-
tion,” in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation. Berkeley, CA, USA: USENIX
Association, 2014, pp. 459–473.

[55] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency-
aware service function chain placement in 5g mobile networks,”
in 2019 IEEE Conference on Network Softwarization (NetSoft). IEEE,
2019, pp. 133–141.

Jianzhen Luo received his B.S. and Ph.D. De-
gree from Sun Yat-Sen University in 2009 and
2015, respectively. He is currently an Asso-
ciate Professor with School of Cyber Secu-
rity, Guangdong Polytechnic Normal University,
China. Since 2018, he is a Visiting Scholar at
University of Oregon, USA. His research inter-
ests include virtual network functions chaining
and deployment, future network performance im-
provement, network behavior modeling and net-
work vulnerability analysis.

Jun Li received the B.S. degree from Peking
University in 1992, the M.E. degree from the
Chinese Academy of Sciences in 1995 (with a
Presidential Scholarship), and the Ph.D. degree
(with Outstanding Doctor of Philosophy honor)
from UCLA in 2002, all in computer science. He
is currently a Professor with the University of
Oregon, where he also directs the Network and
Security Research Laboratory, Department of
Computer and Information Science, and serves
as the Founding Director of the Center for Cyber

Security and Privacy. He has authored a research book on dissemi-
nating security updates over the Internet and over 100 peer-reviewed
research papers. Currently, he is researching Internet monitoring and
forensics, Internet privacy, software-defined networking, social network-
ing, cloud computing, Internet of things, and various network security
topics. His research is focused on computer networks, distributed sys-
tems, and network security. He has served on U.S. National Science
Foundation research panels and 70 international technical program
committees, including chairing several of them.

Lei Jiao received the Ph.D. degree in computer
science from University of Göttingen, Germany.
He is currently an assistant professor at the
Department of Computer and Information Sci-
ence, University of Oregon, USA. Previously he
worked as a member of technical staff at Alcatel-
Lucent/Nokia Bell Labs in Dublin, Ireland and
also as a researcher at IBM Research in Beijing,
China. He is interested in exploring optimization,
control, learning, mechanism design, and game
theory to manage and orchestrate large-scale

distributed computing and communication infrastructures, services, and
applications. He has published papers in journals such as JSAC, TON,
TMC, and TPDS, and in conferences such as MOBIHOC, INFOCOM,
ICNP, ICDCS, SECON, and IPDPS. He served as a guest editor for
IEEE JSAC Series on Network Softwarization and Enablers. He was
on the program committees of many conferences including MOBIHOC,
INFOCOM, ICDCS, and IWQoS, and was the program chair of multiple
workshops with INFOCOM and ICDCS. He was also a recipient of the
Best Paper Awards of IEEE CNS 2019 and IEEE LANMAN 2013, and
the 2016 Alcatel-Lucent Bell Labs UK and Ireland Recognition Award.

Jun Cai received the B.S degree from Hunan
Normal university, Changsha, China, the M.S de-
gree from Jinan University, Guangzhou, China,
and the Ph.D. degree from Sun Yat-Sen Univer-
sity, China in 2003, 2006 and 2012, respectively.
He is currently a professor with the School of
Cyber Security, Guangdong Polytechnic Normal
University, Guangzhou, China. He is interested
in the research of network function virtualization
(NFV), software-defined networks (SDN) and

complex network.

