IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021

runData: Re-distributing Data via Piggybacking
for Geo-distributed Data Analytics over Edges

Yibo Jin, Zhuzhong Qian, Member, IEEE, Song Guo, Fellow, IEEE,
Sheng Zhang, Member, IEEE, Lei Jiao, Member, IEEE, and Sanglu Lu, Member, IEEE,

Abstract—Efficiently analyzing geo-distributed datasets is emerging as a major demand in a cloud-edge system. Since the datasets are
often generated in closer proximity to end users, traditional works mainly focus on offloading proper tasks from those hotspot edges to
the datacenter to decrease the overall completion time of submitted jobs in a one-shot manner. However, optimizing the completion time
of current job alone is insufficient in a long-term scope since some datasets would be used multiple times. Instead, optimizing the data
distribution is much more efficient and could directly benefit forthcoming jobs, although it may postpone the execution of current one.
Unfortunately, due to the throwaway feature of data fetcher, existing data analytics systems fail to re-distribute corresponding data out of
hotspot edges after the execution of data analytics. In order to minimize the overall completion time for a sequence of jobs as well as to
guarantee the performance of current one, we propose to re-distribute the data along with task offloading, and formulate corresponding
e-bounded data-driven task scheduling problem over wide area network under the consideration of edge heterogeneity. We design an
online schema runData, which offloads proper tasks and related data via piggybacking to the datacenter based on delicately calculated
probabilities. Through rigorous theoretical analysis, runData is proved concentrated on its optimum with high probability. We implement
runData based on Spark and HDFS. Both testbed results and trace-driven simulations show that runData re-distributes proper data via

piggybacking and achieves up to 37% reduction on average response time compared with state-of-the-art schemas.

Index Terms—Cloud-edge System, Data Re-distribution, Heterogeneity, Online Schema

1 INTRODUCTION

Tens of datacenters [2] as well as thousands of nearby
edges [3] have already been deployed all over the world by
many global companies and organizations, like Google [4],
Microsoft [5] and Alibaba [6], in order to provide high-
quality services for end users [7]. These nearby edges con-
tinuously produce large volume of data, including trillions
of user clicks [8], TB-sized logs during the daily usage of di-
verse applications [9] as well as massive videos recorded for
surveillance purposes [10], which is widely used for various
timely data analytics [11] and commercial decisions [12].

Aggregating [13] such volume of data from nearby edges
to the datacenter over wide area network (WAN) [12] easily
incurs long transmission delays. As a result, previous works
mainly focus on those network-aware strategies to shorten
the transmission delay over WAN [9], [12], [14]. That is, in
order to decrease the volume of data transmissions, those
works prefer to queuing adequate data analytics tasks at
nearby edges [15], [16], [17] while offloading the rest to the
datacenter. Since a submitted job often contains multiple
tasks [15], [18] and only the completion of the straggliest one
decides its termination [9], these works essentially minimize

e YB. Jin, ZZ. Qian, S. Zhang and S.L. Lu are with the State Key
Laboratory for Novel Software Technology, the Department of Computer
Science and Technology, Nanjing University, Nanjing 210023, China. E-
mail: yibo.jin@smail.nju.edu.cn, {qzz, sheng, sanglu}@nju.edu.cn.

o S. Guo is with the Department of Computing, The Hong Kong Polytechnic
University, and with The Hong Kong Polytechnic University Shenzhen
Research Institute. E-mail: song.guo@polyu.edu.hk.

o L. Jino is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403. E-mail: jino@cs.uoregon.edu.

o The preliminary version of this work entitled "Run Data Run! Re-
distributing Data via Piggybacking for Geo-distributed Data Analytics”
was presented in part at IEEE ISPA 2019 [1].

the maximal completion time of all tasks for each submitted
job, but the optimization is conducted in a one-shot manner.

However, optimizing the completion time for each sub-
mitted job in a one-shot manner or an on-demand manner
is insufficient. Firstly, since some datasets generated would
be used multiple times [19], [20], offloading those hot data
from edges to the datacenter directly benefits forthcoming
jobs. Unfortunately, those one-shot or on-demand strategies
are unwilling to re-distribute the hot data because it would
postpone the execution of current jobs. Secondly, as shown
in our system analysis later, due to the throwaway feature
of the data fetchers in existing data analytics systems [21],
transferred data stored in memory is discarded during the
execution of the task, and the data distribution is essentially
unchanged. Thirdly, the data is often generated unevenly
across geo-distributed edges [18], skewed data distribution
easily overloads those edges with poor computing capaci-
ties [16], [17] repeatedly, or even leads to the outages [22].
Therefore, for the overall performance of the data analytics
system, we prefer to re-distribute the data from heteroge-
nous geo-distributed edges to the datacenter, in order to
minimize the overall completion time for a sequence of jobs.

Unfortunately, re-distributing hot data out of hotspot
edges as early as possible is non-trivial. On the one hand,
traditional approaches, like detecting the hot data upon the
number of their accesses heuristically, are unable to classify
those target candidates until the access counter reaches to
a pre-defined threshold. Then, hot data has to be crowded
within hotspot edges before the actual data re-distribution.
On the other hand, the bandwidth over WAN is often costly
and limited [18]. Aggregating large volume of data from
edges to the datacenter is unrealistic for timely commercial

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 2

data analytics. Furthermore, there is a conflict between re-
distributing hot data as early as possible and postponing a
little on the execution of the job currently submitted.

Inspired by the fact that each task has to fetch its re-
quired data before execution, in order to avoid discarding
already transferred data in existing data analytics systems,
we propose to keep it and validate it in the datacenter along
with task offloading and execution, i.e., data re-distribution
via piggybacking in this paper. As a result, on the one hand,
thanks to hot data re-distribution, instead of being crowded
in hotspot edges, forthcoming tasks can be directly executed
within the datacenter, leading to a lower completion time.
On the other hand, edges have less opportunities to be over-
loaded since the data required by those computing-intensive
tasks is more likely to be offloaded to the datacenter.

We address the issue of re-distributing the data between
heterogeneous geo-distributed edges and the datacenter by
formulating e-bounded data-driven task scheduling prob-
lem, to minimize the overall completion time for a sequence
of jobs, as well as to ensure the performance of currently
submitted job and WAN usage controlled by ¢. Afterwards,
we propose an online schema runData, offloading proper
tasks while re-distributing related data from the edges to the
datacenter via piggybacking based on delicately calculated
probabilities. Specifically, we use the probabilities calculated
as the preference to assign tasks and decide the distribution.

Through rigorous theoretical analysis, runData can be
proved concentrated on its optimum with high probabilities
by using Martingale analysis. Both testbed results and trace-
driven simulations show that runData reaches up to 37%
reduction regarding the average job completion time by
transferring hot data candidates as early as possible. More
specifically, the overall accesses of nearly 40% data uploaded
by runData are higher than 5 and nearby 90% of uploaded
data is transferred when their accesses are just less than 4.

To the best of our knowledge, it is the first to propose
and design data-driven task scheduling via piggybacking in
a cloud-edge system. Our contributions are summarized as

o We formulate e-bounded data-driven task schedul-
ing problem (eD-GeoTS), which essentially optimizes
the overall latency for a sequence of jobs as well as
guarantees the response time for each job and WAN
usage by re-distributing data via piggybacking.

e We design an online schema runData, which offloads
proper tasks as well as re-distributes corresponding
data to the datacenter via piggybacking. By rigorous
theoretical analysis, runData can be proved concen-
trated on its optimum with high probability.

o Weimplement a prototype based on Spark and HDFS
and evaluate runData with trace-driven simulations.
The results show that runData achieves up to 37%
reduction compared with state-of-the-art schemas.

2 RELATED WORK

We summarize prior research in three categories, and high-
light their drawbacks compared to our work, respectively.
2.1 Intra-Cluster Data Management

Previous works regarding the management of data within
a cluster focused on two aspects: 1) profiling the character-
istics of data analytics according to their usage patterns on

1.0 @ 1.0
n o
g ©
>)
Sos 209
g S
z 20.8
0 0.6 >
s &
w % 0.7
Boa4 i
(@)

o
o

0 5 10 15 20
Accesses

(a) Popularity of accessed
data (bytes) in Microsoft

o

50 100 150 200
Data Generated per Second (KB/s)

(b) Variation on generated
data sizes from Skype

Fig. 1. Preliminary case studies: (a) Popularity of accessed bytes from
Cosmos [20]; (b) Variation on generated data sizes from Skype [34]

the resources; 2) conducting the management of resources
to balance the skewed workloads over datasets.

Note that precisely predicting the data access patterns
for various data analytics was shown difficult due to their
diverse functionalities [23], [24]. Mantri [25] and Grass [26]
studied the relationship between task durations and some
dynamic factors, including the congestion of I1/0O, the infer-
ence, etc., among concurrent tasks. Graphene [23] profiled
DAGs for better packing strategy. Some works also investi-
gated on the management of data for imbalanced usage on
datasets. Datanet [27] focused on managing the datasets by
using an elastic structure. NearestFit [28] designed a novel
profile-guided progress indicator, which predicted the data
skewness and the stragglers to avoid the excessive use of
resources. SkewTune [29] balanced the usage of computing
resources for various workloads and related datasets. Chen
et al. [30] studied a hybrid approach combing data-parallel
and task-parallel optimization. Other works, like [31], [32],
[33], discussed task-parallel executions for data analytics.

Unfortunately, when large volume of data is generated at
the end of the network, previous works fail to treat the costly
transmissions over WAN and skewed data distribution via
the data re-distribution along with the task offloading.

2.2

Existing works mainly focused on reducing the transmission
of data over WAN for data analytics. JetStream [13] aimed
at aggregating the data to one site, e.g., a cluster or the dat-
acenter, under the consideration of insufficient bandwidths.
Geode [9] studied the optimization of WAN usage among
geo-distributed sites. ADP [35] used hypergraph to model
the user requests, and split it with the least cost. Iridium [12]
optimized the proportions of tasks to different sites in order
to avoid the bottleneck links, and heuristically moving the
data out of bottleneck edges in advance. Flutter [15] and
SWAG [16] studied both network transmission and compu-
tation for concurrent tasks among sites, in order to optimize
the straggliest. To deal with both heterogeneous computing
capacity and WAN bandwidth, Tetrium [18] was proposed
for speeding up overall latency of data analytics.

Although precious works have already considered both
computation and transmission, their optimization objectives
only focus on those current jobs. Instead, we design a data-
driven task scheduling for jobs in an online manner.

Inter-Cluster Management on Resources

2.3 Resource Management at Edges

Other works optimized the resource usage for data analytics
and corresponding applications at edges. Some of them tried

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 3

Data Analytics System $—>° —>| Data

In-Memory Computation App Job Fetcher
A Task Discards Data after Execution

' Z

H]M}]}]]]]I M Data Eead/Wrile Fetchgv Unchanged Data Distribution
Blocks ° APIs ~ Bach ~ Distributed File System

t >
>

€
Servers Servers
N %

Edges
Fig. 2. Throwaway data fetcher in existing system batch by batch

Split for, ~_, ”

Execution s e

Wide Area Network

Datacenter

to propose resource allocation schemas for video analytics.
DIVS [36] proposed task-level parallel and model-level par-
allel training models to accelerate the analytics of videos.
VideoStorm [10], [37] accelerated video analytics queries on
live video streams. And the rest studied the deployment of
machine learning models. DADS [38] optimally partitioned
the DNN under different network conditions. IONN [39]
designed a partitioning-based DNN offloading schema.
Those works conduct the resource management at edges
for various applications, but they fail to offload the tasks
with data re-distribution to avoid heavy workloads at edges.

3 MOTIVATION AND SYSTEM MODEL
3.1 Motivation for Re-distribution via Piggybacking

Massive data is often generated within nearby edges, easily
leading to heavy workloads on those hotspots. Since some
data would be used multiple times, offloading computing-
intensive tasks and re-distributing related hot data out of
these bottleneck edges to the datacenter as early as possible
would benefit forthcoming jobs. Unfortunately, existing data
fetchers embedded in those data analytics systems fail to re-
distribute the input data along with the task offloading since
the data is fetched batch by batch in a throwaway manner.
Frequently Used Geo-distributed Datasets. As shown
in previous studies, many datasets are accessed by multiple
analytics over time. For example, as high as 721 accesses are
achieved within 24 hours in Facebook Trace [19]. Further
shown in Fig. 1(a), 11.6% datasets are accessed for more than
10 times in Microsoft Cosmos [20]. Moreover, such datasets
are often unevenly generated across geo-distributed edges,
near to those end users. For example, based on the analysis
of Skpye logs over 126 Azure sites, relative to the site with
the minimum data generated, the median, 90th percentile
and the maximum values are 8x, 15x and 22x, respectively,
more [18]. Similar results are also illustrated in [34], where
the data volumes generated per second derived from 1249
Skype connections are quite different, as shown in Fig. 1(b).
Easily Overloaded Heterogeneous Edges. With the cu-
mulative process of data accesses, overloaded datasets are
more likely to be hot data candidates and would be accessed
by data analytics again. Restricted to limited resources [40],
[41] at edges, frequent accesses on the datasets easily incurs
heavy workloads and overloads geo-distributed edges. Fur-
thermore, the computing resources consumed by different
data analytics are quite different [15], [23]. Then, the datasets
related to computing-intensive tasks are more likely to result
in hotspots at edges, especially when the heterogeneity [17],

. . d} S0 Data
Data Analytics System App job Fetcher

In-Memory Computation . Task Re-distributes Data | HIHDI[I
/ via Piggybacking é

7777, Data ead/Write ‘ . 4. . Q
|I]]M]]M Bl g aps — Distributed File System |

t >
>

€
Servers Servers
N %

Edges
Fig. 3. Data re-distribution via piggybacking along with task offloading

Splitfor, Ay ”

Execution e v

Wide Area Network

Datacenter

[18] occurs. As a consequence, the completion time of re-
lated data analytics, executed within such overloaded edges
and hotspots, would be no doubt elongated.

Throwaway Feature of Data Fetcher in Analytics. Each
data analytics task treats the raw input data as follows [21],
as shown in Fig. 2: 1) the data fetcher connects the dis-
tributed file system, e.g., Hadoop Distributed File System
(HDFS) [42], and requires the raw input data batch by batch,
e.g., 64KB sized data for a batch; 2) the LineReader embed-
ded in the task splits each batch data into multiple lines
according to predefined line delimiters, e.g., CR ("\r’) and
LF ("\n"); 3) the TextInputFormat embedded in the task fur-
ther splits each line string into multiple <key, value> pairs
according to the data record delimiters, e.g., the comma; and
4) finally, the task treats each data record for data analytics.

Note that all of these operations are conducted in mem-
ory. As long as the batch data has already been fetched and
split for data analytics task, it would be discarded directly,
i.e., the throwaway feature of the data fetcher. Essentially,
distributed file systems are designed to support the pipeline
execution for data analytics tasks. As a result, the raw input
data, i.e., the data block, is fetched batch by batch through
Read APIs after the establishment of connections. After the
executions of all tasks, the data distribution is essentially
unchanged, i.e., the data is still stored within the edges near
to the end users, unless the distributed file system balances
the data itself according to the data volume.

Need for Re-distribution via Piggybacking. On the one
hand, re-distributing hot data candidates as early as possible
can intuitively release the heavy workload on hotspot edges,
decreasing the completion time of incoming jobs. Actually, a
task is offloaded to the datacenter means related input data
needs to be transferred either. Thus, keeping those hot data
candidates within the datacenter has no extra bandwidth
cost over WAN, as shown in Fig. 3. Data re-distribution via
piggybacking just keeps in store already transferred data in
memory batch by batch after the completion of each task,
which does little harm to the execution of data analytics. On
the other hand, those data related to computing intensive
tasks should also be transferred to the datacenter as early as
possible along with the migration of tasks.

Local Optimum versus Global Optimum. The global
objective is no doubt to improve the performance of entire
data analytics system, i.e., minimizing the overall comple-
tion time for jobs in a long-term scope. Although the data re-
distribution actually speeds up the forthcoming jobs, it may
also defer a little bit on currently submitted jobs for better
global performance based on the task offloading strategy. A

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 4

TABLE 1
Summary of Main Notations Used
Symbol | Description

g Set of all edges considered in the cloud-edge system
T; Task set of job-j, i.e., consists of multiple concurrent tasks
e Execution time of task-£ in the datacenter, k € T ;

Yi The ratio of CPU frequency at edge-i to that of DC!

S; Set of compute slots hosted by edge-i

hsi Binary variable indicates whether edge-i hosts slot-s

Ly Set of edges with required data stored for task-k, L, C G
Primary copy for each data block, i.e., |[Cg| =1

Rjs Tasks queued on slot-s in front when job-j is submitted
Gjs Queue delay for task-k if it is assigned to slot-s, k € T 5
Nji Set of tasks in job-j offloaded from edge-i to DC
o Transmission delay for one data block from edge-i to DC
by, Transmission delay of task-k from edge-i to DC, i € Ly,
Cj Completion time of job-j, depends on the straggliest task
Decision | Description
Tis Indicator of assigning task-k to slot-s

1. The term "DC’ is the abbreviation of datacenter.

typical example is that a dataset will be multiply used by
several jobs, and the global optimum solution is to transfer
the whole dataset to the datacenter at the very beginning.
As a result, the first job has to be delayed due to long data
transmission over WAN, which should be also avoided.

3.2 System Model

Table 1 illustrates the main notations used. A typical cloud-
edge system, as shown in Fig. 4, consists of the datacenter
and multiple heterogeneous edges, offering various services
to users based on some commonly used big data analytics
frameworks, like Hadoop [43] and Spark [21]. Such frame-
works not only manage the resources, but also schedule
the tasks and track the status for submitted jobs, i.e., the
local manager embedded within each edge keeps tracking of
available local resources and task status [21], [43], as well as
periodically updates the global manager in the datacenter.
Job Description. For each job submitted to data analytics
system, the global manager often converts it into a Directed
Acyclic Graph (DAG) of stages [12], defined as G = (V, E),
where each edge e € € represents the dependency, and each
node v € V represents a stage containing many concurrent
tasks with similar functionality [9], [15]. Although schedul-
ing the DAGs over WAN has already been widely studied
by previous works [9], [23], most of them largely depend
on the estimation for subsequent untreated stages. Thus, for
computation feasibility, we only consider the scheduling of
concurrent tasks for each stage step by step according to
their dependencies. We denote by 7 ; the task set pending
for scheduling in current stage of job-j. Note that each stage
of original submitted jobs is a new job instead in this paper
to the data analytics system like existing systems [21], [43]
and previous works [15], [18], and Vj1, 2, T 4, N T j, = 2.
Data and Edge Description. Each task requires one data
block with uniform size, e.g., 128MB, stored in distributed
file system, e.g., HDFS [42] for execution. Note that we only
consider the primary copy for each block [16] under the con-
sideration of the overhead for maintaining the consistency
among multiple copies. To describe the computing capacity
of geo-distributed edges, e.g., cellular base stations with co-
located servers [44], we use the compute slot as the minimal
resource unit [45], including memory, CPU, etc. [21], [46],
each of which has a local queue for tasks [47] if the slot is

== A =
=EE A I cee@@o000O !
—— Wide Area | OOO0OOO0O
:@ % %: Network H Compute Slots B
:O () @: bomsomsessesessecessessesneneend
] i
.555. € > Servers
Edges Datacenter

Fig. 4. Modeling for the data analytics in a cloud-edge system

currently in use. We denote by S; the set of slots hosted by
edge-i, i € G, and denote by G the set of all edges. Then,
the variable I, indicates whether task-k, k € T ; for job-j
is assigned to slot-s, s € S; hosted by edge-i, or not.

Task Execution. Generally, the datacenter has adequate
compute slots and better computing ability, so that the tasks
deployed to the datacenter run faster than that at edges [48].
In this paper, we define the base execution time for task-k,
i.e.,, ey as its running time in the datacenter. The estimation
accuracy can reach up to 80% [26], through estimating the
task duration from those finished ones. Afterwards, we use
v: (> 1) to represent the performance difference between the
datacenter and edge-i. Note that the performance difference
is mainly caused by the difference on CPU [49], including
the number of threads per core and its basic frequency. Then,
the execution time of task-k at edge-i is ~y;e; accordingly.
If task-k is scheduled to slot-s at edge-i, its queuing time,
represented as ¢;, is the sum of all expected execution time
of all tasks queued in front, based on the FIFO strategy [14],
when job-j is submitted, k € T ;. That is

Vj»SZsté Z

k'Est,SESi,ieﬁk/

hsivier,

where R ;5 is the set of all tasks queued in front of task-%k on
slot-s after the submission of job-j, k € T j. We use hg; to
indicate whether slot-s is hosted by edge-i, ¢ € L+, and L,/
indicates the set of edges with required input data block for
task-k’. Note that hg; is the binary variable already known
before scheduling, and |Lg| = 1, L, C {G U {DC}} only
considers the primary copy for each data block stored and
used as mentioned before, where {DC'} indicates that the
related data block is stored within the datacenter.

Task Transmission. Each edge connects to the datacenter
with limited WAN bandwidth, which follows the strategy of
shared usage [50], i.e., those concurrently data transmissions
share the bandwidth equally. For the tasks offloaded to the
datacenter over WAN, they need to fetch their required
data blocks before execution, although the fetcher actually
requires related data blocks in a batch manner as mentioned
before. Here, we denote by o; the data transmission delay
for transferring only one data block with uniform size from
edge-i to the datacenter with fully use of current available
bandwidth. Due to the shared usage on the bandwidth,
the actual data transmission delay naturally relies on the
number of concurrent tasks offloaded to the datacenter.
Then, the data transmission delay b, for any offloaded task-
k, whose required data block is stored in edge-i, is

Vj,]f 2 by = |Nji|0'i7 1€ Ly, ke Tj,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 5

where N ji is the set of tasks offloaded out of edge-i.

3.3 Problem Formulation

The task scheduler embedded in the global manager assigns
all of the tasks, corresponding to submitted jobs, either at
edges or to the datacenter, to minimize the overall comple-
tion time. The overall completion time of job-j, defined as
C}, relies on the straggliest task over those ones assigned at
edges and those ones offloaded to the datacenter, i.e.,

Vj : C; = max {Local;, Remote;},

where Local; and Remote; represent the completion time
of the straggliest task assigned at edges and offloaded to the
datacenter, respectively. On the one hand, the completion
time of the straggliest task assigned at edges depends on
the queue condition and its execution, i.e.,

{qjs + Z

kET ;€L

A
= max

Vj : Local; e (X gy

Is hsi’)/iek } ’

where {US;,i € G} considers all of the slots over edges.
On the other hand, the completion time of those tasks

offloaded from edges to the datacenter also depends on the

straggliest in terms of both the transmission over WAN and
the execution in the datacenter, i.e.,

j te; £ X - (b
Vj : Remote; l?el%%{ k- (bp +ep)t,
where the variable X}, € {1,0} indicates whether task-k is

offloaded or not. Note that X}, can be represented by the
decisions. The relationship between X}, and {1} is

>

SES;IELY

Vk:Xkél— Iks~

Actually, the previous equation guarantees that a task
can only be assigned either to a slot hosted by the edge, in
which required data block is stored, or directly offloaded to
the datacenter. For those tasks offloaded to the datacenter,
i.e., X} = 1, there is no need to queue them any more since
the datacenter has better computing capacity than that of
edges as mentioned in previous subsection.

One-shot Task Offloading. GeoTS, the Geo-distributed
Task Scheduling Problem for current job-j, similar to those
works [15], [18], essentially offloading tasks between edges
and the datacenter, is to minimize the overall task comple-
tion time, i.e., C; £ max{Local;, Remote;} as follows:

min C; [GeoTS]

st. Xp21— Y In, X, €{1,0}, Vi
SES;iELY

var. Iys € {1,0}, Vk,s.

Other works also focus on the management of tasks with
diverse objective forms. For example, some models [51], [52]
in terms of the task transmissions over wireless networks
and edge networks are studied, cumulative task completion
time is considered [53], [54], etc. However, the inner chal-
lenges for the problem in terms of the assignment of tasks
are unchanged. That is, the decisions for the assignment of
tasks are often discrete and the related problems are then
NP-hard. Note that the property of NP-hard is used to de-
scribe the decision versions of these proposed optimization

Algorithm 3

Re-distribute
Extra Data by ¢

Concentration on

Global-GeoTS

e {Ikx} €

- Optimum w.h.p.

Single Job

Solve {Pis}
Guarantee +

Round

Algorithm 1: runData Algorithm 2

Decouple

eD -GeoTS GeoTS

Domain LaCERls

Fig. 5. Relationship between proposed problems and algorithms

problem, in order to show how hard the proposed problems
are, which hampers us from efficient solutions.

We use Opt(C)) here to represent the optimum of GeoTS.
However, optimizing current job-j is sub-optimal because
each single job submitted is unwilling to spend extra time or
cost for data re-distribution according to the objective form
in the GeoTS. As a result, hot data has to be crowded within
hotspot edges, elongating the completion time of incoming
related jobs because some datasets would be used multiple
times. Therefore, in terms of the overall completion time for
a sequence of jobs, the global optimum should be achieved
by both task offloading and data re-distribution.

Task Offloading for Jobs via Piggybacking. The objec-
tive of the global optimum is to minimize the overall latency
for a sequence of jobs, via task offloading along with the
data re-distribution between the edges and the datacenter
(DQ), i.e., {Ixs} also indicates the data locations. We have

pes [Global — GeoTS]
J

s.t. L',k = {DC} if Xk =].7 Vk,

Xp21— > Ins Yk
SES;iELY

Ins € {1,0}, Vk,s.

min

var.

However, achieving the global optimum may also defer
the completion time of each single job, which is unrealistic
for timely data analytics. Hence, we try to balance the global
optimum as well as the tolerable completion time for current
job, i.e., task offloading via piggybacking should be closer
to its local optimum. Therefore, we formulate e-bounded
data-driven task scheduling problem as follows:

Definition 1. (¢ D-GeoTS) e-bounded Geo-distributed Data-
Driven Task Scheduling Problem: With the system models, we
formulate the following optimization problem:

Z C; [eD — GeoTS]
J

s.t. Remote; < F(Opt(C)),¢5), Vi, 0)

L, ={DC} if X, 21— > Ly=1, Vk
SES; €L

man

var. Ixs € {1,0}, Vk,s,

where function F takes the local optimum and e as its input.

Unfortunately, evenly the problem of solving the local
optimum Opt(C;) in eD-GeoTS, i.e., solving GeoTS first,
has already been proved as NP-hard. Due to the infeasibility
of Opt(C};), we propose to use its feasible lower bound as
the substitute shown later, which also facilitates our analysis
and system implementation, upon the monotonicity of F.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 6

Algorithm 1 Online Schema runData

Algorithm 2 LocalOpt_Based_Task_Offloading

// Triggered for each submitted job in an online manner.

// Step 1 solves proposed {p-GeoTS for submitted job-j.
1: LocalOpt_Based_Task_Offloading (Alg. 2);

// Step 2 makes the decisions for data re-distribution.
2: ¢_Bounded_Data_Driven_Task_Scheduling (Alg. 3).

F has multiple feasible forms. However, the most intu-
itive form is linear, i.e., 7(Opt(C};), e;) £ Opt(C;)+¢;, since
¢; directly shows the distance away from the local optimum
of job-j. Actually, any monotone function F respect to both
Opt(C;) and ¢; is meaningful. Note that, given Opt(C}) or
its substitute, if F is linear or quadratic respect to the second
input €, the computational complexity of solving a problem
with a linear objective and Constraint (0) is fairly low [55] in
the domain of reals, and closed-form solutions are available.
Nevertheless, if F is generally a convex function, solving
the problem with Constraint (0) alone comes with a higher
computational complexity to obtain the solutions.

Then, the linear form of F adopted in this paper is the
most suitable one for both tractability and interpretability.

4 ONLINE SCHEMA DESIGN

The proposed online data-driven schema runData in this
paper solves e D-GeoTS within polynomial time based on
two key steps, as shown in Algorithm 1:

i) Algorithm 2 generates LocalOpt-based task offloading
using the results solved from the relaxed version of GeoTS,
i.e., [pGeoTS, as well as using randomized task assignment,
which facilitates the theoretical analysis later;

ii) Algorithm 3 further conducts the e-bounded data re-
distribution upon LocalOpt-based task offloading, which re-
distributes extra data blocks via idle bandwidth before the
completion of the straggliest with controlled performance.

The relationship between all of the problems proposed
and the algorithms are illustrated in Fig. 5. Actually, balanc-
ing the workloads, controlling the network communication
overhead and fully utilizing the task synchronization in the
system are key issues involved in the assignment of tasks.
runData is a well-designed online schema for these issues.

4.1 LocalOpt-based Task Offloading

To obtain the feasible substitute for Opt(C;) in e D-GeoTS,
we rely on its relax version, i.e., [p-GeoTS shown later, and
use it to guide the scheduling of € D-GeoTS. The optimum
of Ip-GeoTS actually shows the theoretical lower bound of
GeoTS due to relaxed domains of related decisions.

Problem Transformation. Since solving GeoTS for the
optimum Opt(C}) is infeasible if NP # P, we try to relax the
domain of GeoTS from integers to reals as follows:

C [lp — GeoTS]

min C}
st Xp21— Y prs, Xp€[0,1], VE,

SES;IELY
prs € [0,1], Vk, s,
where we substitute variables I}, € {1,0} and X, € {1,0}

for reals pys, X, € [0,1], Yk in order to obtain C, as well as
conduct related changes in the definition of C; for GeoTS.

var.

Require: Set of tasks requested by job-j: T j;
Transmission delay between edges and DC: {0 };
Performance difference among edges: {v;};
Base execution time for tasks: {ey}.

1: Opt(Cj),{pks} < Solve Ip-GeoTS;

2: for each task-k € T ; do

3: {Ijs}1 = Randomized_Rounding({pxs}),

{Iis}2 = Randomized_Rounding({ps });

4: end for

5: {Cj}1 = GeoTS(Tj, {vi}, {oi}, {ex} {Lus}1),
{C 1 = GeoTS(T, {m} {ouh fexh {Troto);

6: 0 =min{{C;}1,{C;}2}; N

7: Return the values to Alg. 1: Q;, {Ixs }, Opt(C;).

Algorithm 3 ¢_Bounded_Data_Driven_Task_Scheduling
Require: Opt(C;) and €2, from Alg. 2;
LocalOpt based task offloading: {Ijs}.
g = min; x, {0, viex };
: B = 0pt(Cy) +¢; —Q;
: for each edge-i do
Re-distributing data blocks in: min {max {0, 5,},©};
Update {Ij} for re-distributing extra data blocks;
6: end for
7: Deploy tasks with data re-distribution using { Iy}

gk @ N

Correspondingly, we denote by Opt(C;) the optimum
solved from [p-GeoTS. Since the optimum of /p-GeoTS (un-
der real domain) is better than any other feasible solution
for GeoTS (under integer domain), we have

Vi Opt(C;) < Opt(C)).

Thus, we substitute Opt(C;) in e D-GeoTS for Opt(C})
due to the feasibility of Opt(C;) by using the mature lin-
ear programming techniques. Actually, Opt(é’j) shows the
lower bound of Opt(C}). Thus, we use it to control the WAN

usage and the transmission delay. Then, we have

Vj: F(Opt(Cy),e;) 2 Opt(Cy) +e5,

Vj : Remote; < F(Opt(Cj),e;) < F(Opt(Cy),¢e5).

Randomized Task Assignment. {p;,} and {X},} can be
seen as a guidance for scheduling since it actually shows the
preference on the task assignment based on current system
status. Thus, we use {pys} solved as a series of probabilities
to assign each task between the edges and the datacenter.

To apply these solved probabilities to a feasible solution
of GeoTS, shown in line 3 of Algorithm 2, we use the ran-
domized rounding strategy on {ps} and {X}} as follows:

i) Vk € T j, we randomly pick a decimal &, € (0, 1];

ii) Vs € 8;,1 € Ly, Is equals 1 if and only if &, falls
into the interval (Zs/eus Dks's Dsey, Prs], otherwise Iy
equals 0. U s contains all of the slots, whose slot indexes are
less than that of s; and V, contains all of the slots, whose
slot indexes are less than or equal to that of slot-s.

Actually, given k, a series of variables {Iys} split the
interval (0, 1] into multiple parts. And only when & falls
into the interval corresponding to slot-s, Ijs equals 1, and
the interval length for slot-s is exactly py,. Thus, we have

Vk‘,s : E[Iks] = Pks-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 7

Then, {X}s} can be directly obtained based on its defi-
nition in GeoTS. Essentially, the higher value of pjs shows
much more preference on slot-s regarding the assignment.

Power of Two Choices. Although each task is deployed
according to a series of probabilities solved based on current
system status, i.e., based on {py;}, the bad event in terms of
long completion time for a single job may still occur with
a certain probability by using rounded {Ij;}. In order to
avoid such bad event as much as possible, we conduct the
power of two choices, as shown in line 6 of Algorithm 2.
That is, we use the randomized rounding twice upon {Prs},
to obtain {Iys}1 and {Igs}2, and choose the better one in
terms of the lower completion time for GeoTS. We denote
by 2, the lower completion time after adopting the power
of two choices in our designed randomized task assignment.

Remark 1. First of all, when multiple jobs are submitted,
runData is actually triggered for each job in order of their
submitted timestamps, just like Hadoop [43] and Spark [21].
And after the assignment for a specific job, the descriptions
of related tasks are added to the queues of related slots, e.g.,
the Executors in Spark. Note that the assignment takes effect
directly after the execution of runData, like Spark, instead
of periodically updating the status, like Hadoop, since the
assignment only transfers those meta information of tasks,
i.e., task descriptions. Further transmissions regarding input
data blocks and the codes for these tasks are conducted only
after the trigger of runnable task processes by the executors.

Remark 2. Although for those computing-intensive tasks,
the memory may be insufficient, the memory kept and used
for the data re-distribution via piggybacking is essentially
fixed, i.e., the size of one data block, since a task uses one
block as its input. Such memory kept for data re-distribution
could be further compressed if the excessive part is flushed
out asynchronously, which does little harm to the execution.

4.2 c-bounded Data-driven Task Scheduling

Although LocalOpt-based task offloading actually transfers
those hot data candidates and those computing-intensive
tasks to the datacenter through the optimization of GeoTS,
the termination of a job is decided by the straggliest task.

Wait for the Straggliest. All of the edges, expect for the
one hosting the straggliest, can fully utilize the waiting for
re-distributing extra data blocks before the completion of a
job. Via piggybacking, current job-j uses extra but controlled
time lag, i.e., ¢; for further data re-distribution to benefit
forthcoming jobs. As shown in line 1 of Algorithm 3, current
status of the cloud-edge system can be seen as the preference
on data re-distribution. Therefore, ¢; is carefully chosen as
min; i, {04, viex}, which also facilitates the analysis later.
More specifically, for each job-j submitted in an online man-
ner, we re-distribute |min{®©, max{0, 8,}}/0;| more data
blocks from edge-i to the datacenter, as shown in lines 2 and
4 of Algorithm 3, where 3; = Opt(C;) + ¢; — Q; shows the
extra but controlled time lag for WAN usage. Note that ©
here represents the minimum inter-arrival time [16] between
two consecutive jobs. That is, if the edges are busy, extra
data re-distribution is unnecessary and cancelled.

Extra Offloaded Data. Essentially, during the extra data
re-distribution before the completion of the straggliest, we
prefer to re-distribute those hot data candidates with higher

data accesses and the data blocks related to the tasks with
longer execution delays. In this paper, we take the number
of data accesses as the first priority when extra data blocks
are considered, and take the execution delay of correspond-
ing tasks as the second priority when two data blocks have
the same accesses. Note that, when we consider the second
priority, those pending data blocks have already been used
and their accesses have already been larger than 1.

Therefore, the completion of those completed tasks can
be used as the guidance for choosing the data blocks related
to computing-intensive tasks. For those tasks assigned to
the datacenter within the extra time lag, related variables
should be changed, i.e., in line 5 of Algorithm 3.

The complexity of runData is O(Y + max; |T;|) for
each submitted job, where T is the cost for solving a linear
program over at most max; |7 ;| concurrent tasks. That is,
Algorithm 2 contains the solving part for [p-GeoTS. Given
the number of slots, the cost of the linear programming
grows with respect to the increasing number of concurrent
tasks. By using interior point method, the complexity is
T = O((max; |T;|)¥L) [56] in worst case, where @ < 3
and L is the number of input bits. And Algorithm 3 offloads
at most max; | T ;| tasks.

5 THEORETICAL ANALYSIS

Roadmap: In order to analyze the overall completion time
for a sequence of jobs, we need to analyze the completion
time of each job first. Therefore, we illustrate the theoretical
analysis on runData by two key steps: 1) subsection 5.1 is
used to bound the completion time for each job through
Martingale Analysis; 2) subsection 5.2 is used to illustrate
the relationship between the overall completion time for a
sequence of jobs and its global optimum, which is our main
theorem. The details of proofs are shown in subsection 5.3.

5.1 Analysis on LocalOpt-based Offloading

The analysis on the completion time of a single job contains
three parts: the first Lemma analyzes those tasks assigned
at edges; the second Lemma analyzes those tasks offloaded
to the datacenter; and finally the third Lemma analyzes the
overall completion time of a job. Here, for simplicity, we
define the constants: Vj, H; £ max; {|Rs|, [N jil}-

Lemma 1. Analysis on Local Tasks: The maximal completion
time of local task is concentrated on its LocalOpt, i.e., Opt(C}),
with high probability. More specifically, the following inequality
holds with the probability of at least 1 — §:

. =~ 1
Vj : Local; < Opt(Cy) + ke%{ii)él:k{%ek} 2H;In 5)
Proof. See Subsection 5.3.1, “Proof for Lemma 1”. O

Lemma 2. Analysis on Remote Tasks: The maximal comple-
tion time of remote tasks is also concentrated on its LocalOpt, i.e.,

Opt(C;), with high probability. More specifically, the following
inequality holds with the probability of at least 1 — §:

. % 1
Vj: Remote; < Opt(C;) + ke;_l}%}éﬂk{ai} 2H; In 5)
Proof. See Subsection 5.3.2, “Proof for Lemma 2”. O

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021

Task Execution: .
pairs

Spark.Executor

<key, value>

>\

runData

Update Info
In-Memory Buffer TaskScheduler
Alread gatch I Assign Task .
S S Fix Sized ¢ Spark.Driver
Batch Just Data Block
Data Fetched
Batch Data

Local File System

Block
Validation

Spark.Worker

Fetch

NameNode
HDFS

Fig. 6. Implementation overview upon Spark and HDFS

Remark. We should mention here that Lemma 2 further

implies the violation of Constraint (0) in eD-GeoTS, since
the previous inequality holds under a certain probability,
i.e., with the probability of at least 1 — §. However, since
Remote; is concentrated on the local optimum of job-j, the
violation is actually measured by the second term on the
right and ¢; with the probability of at least 1 — 4.

Lemma 3. Analysis on Entire Job: The overall latency of job-j
by using the power of two choices is concentrated on its LocalOpt
with high probability. More specifically, the following inequality
holds with the probability of at least 1 — 0:

1
pe DX {oi,vier}(/2H; In % 3)

Vj: Q; <Opt(C;) + max
Proof. See Subsection 5.3.3, “Proof for Lemma 3”. O

5.2 Analysis on A Sequence of Jobs

Theorem 1. Theoretical Analysis on A Sequence of Jobs: The
overall latency for n jobs is concentrated on its GlobalOpt with
high probability by using runData. More specifically, following
inequality holds with the probability of at least 1 — nd:

3" C; < GlobalOpt + O(¥s,,), (4)

J 1
Usn £ 4 E iy i 2HjIn — s
bn = KMMAX 0 +mjax {e; nllczzx{o viek} i 1n \fé}
where Ws ,, describes a profile of the cloud-edge system, and & is
the average number of data accesses for a sequence of jobs.

Proof. See Subsection 5.3.4, “Proof for Theorem 1”. O

We should mention here that: 1) Although the probabil-
ity in the main theorem contains the term of ¢, the value
of the term In %S is acceptable in realistic settings. Here, we
take 1000 jobs as a simple example. If the desired probability
is 0.9, then § equals 0.0001, and In %5 equals 4.6; 2) x and
max; H; in the theorem illustrate the peak workload and
the average workload for a sequence of jobs, respectively.
As illustrated in the trace of Microsoft Cosmos, the average
number of data accesses is 3.2, although the whole datasets
are accessed in an unbalanced manner; 3) Although ¥s ,
may be large in terms of a large job number 7, in the tight
version of the theorem, i.e., in subsection 5.3.4, ¥ ,, actually
shows the maximal distance between the result of runData
and the lower bound of the global optimum. As a result,
5., just decides a range, instead of the exact performance.

8
Spark.Worker
-==-» Control Flow
~——> DataFI
ata How Spark.Executor
runData Request | | Launch Task Task Execution
along with TaskRunner — e — e— e e—
Cluster Message runData Flag <Key, Value> Pairs \/\
from Spark.Driver * HDFS
Request runData TextInputFormat NameNode
9 ~
HDFS . I | Input Stream_ runData LineReader :
DataNode '
Decompressor '
“ jpl J runData Fe!ched Ill” I Flushed after,
Batch Data ;]|Mcmnx) Buffer I Execution
(a) Implementation workflow in details
’ H
runData Request Task taskld (Long), attemptNumber (Int), executorld :
L, alongwith 4 f -‘r‘ ion | (String), name (String), index (Int), dependencies { Spark.
Cluster Message escriptic (ByteBuffer), runDataFlag (Boolean) !--)Executor
from Spark.Driver i Actor
Serializable Data: Launch Task Message K
N ~ \‘/
Preparation for Akka Communication with Spark.Executor Overhead

(b) Overhead for launching tasks

Fig. 7. Implementation details (workflow and message) over Spark

5.3 Details on Proofs
5.3.1 Proof for Lemma 1

Proof. Given task-k with required data block stored in edge-
i, a variable A¥ is defined as ; Y wskUos—Das) €, Vs € S,
where v; >, < Izses describes the workload incurred on
slot-s by all considered tasks. Here, the consider tasks are
those whose submission timestamps are smaller than task-
k (in other jobs) or task IDs are smaller than task-k (in the
same job). Then, 7; Y . ;. Pzs€, describes the expectation of
such workload on slot-s, since Vk, E[I)s] = pks. Thus, given
task-k, we have E[A¥] = 0, and we also have

Vs, ko |AIR) — AR = 5| (Tr s — Prows) - ern] < viesn),

where f(k) is the successor of task-k in terms of the submis-
sion timestamp and task ID over considered tasks. And the
partial inequality is defined based on the standard just men-
tioned. Since Vs € S;, {A¥} is a Martingale sequence [57].
Applying the Azuma’s Inequality [58] on {A*}, we have

52
b
2 Zk‘jg(s) (vier)?

where ¢g(s) denotes the “maximal” task ID over considered
tasks already assigned on slot-s, i.e., those queued tasks on
slot-s based on the partial order exactly mentioned before.
Inequality (5) equals that the following inequality holds Vs,
with the probability of at least 1 — 4:

Vs : PrlAI®) > 6] < exp{—

©)

Is — prs)er < 2 Rjs|}Ini
(ke = pron < ma {eu), [2 max (1R} n

< maxy{ex}y/2H; In %.

Since the slot with the maximal completion time among
the edges also holds the previous inequality, we suppose
that task-k is the straggliest task on slot-s without loss of
generality. As a result, we have the equation regarding the
straggliest task of job-j as follows:

>

k'€T j,s€8;,4€Ly

(6)

Vi : Local; = qjs + i Iy sepr,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 9

. . Optical Fibre == TABLE 2
g Spine Switch CN12904 Gigabit Cable ----- Results (Seconds) under Various Workloads over Testbed.
Locality | Delay | Aggregation | LocalOpt | runData
High 50 47 59 35 32
8 T IIIII_ HITT IIIII_ [TTEI] IIIII_ Middle 35 37 58 30 2
ToR Switch 4 ! ! low 35 24 37 23 18
0 .
— Piggyvacking | -
Slavel0 :
Inspur Dell Power Dell Power Dell C6320 N 6 0.6
SN5160M4 Edge R740 Edge R730 e &0 § s
Rackl Rack2 Rack3 Rack4 g 4 “o4
2 0.2
Fig. 8. Testbed topology deployed over four racks with 11 VMs
0 0.0
0 20 40 60 80 100 0 20 40 60 80 100 120 140
Timestamps Cost for runData (ms)

as well as the fact that the following inequality holds with
the probability of at least 1 — §, i.e., Vj:

Local; < y; Zk,gg(s) Prrsek + v maxy {ex }1/2H; In %

< Opt(Cy) + maxpeT; ice,, {View }y/2H; In 3,

where Opt(C}) is larger than the maximal completion time
regarding the tasks on slots, as defined in Ip-GeoTS. O

5.3.2 Proof for Lemma 2

Proof. By using the similar technique in Lemma 1, given
task-k with required data stored in edge-i, Ay is defined as

VE: AR 20y (X, — X)) +ep - (Xp — Xi).
y=<k

Similarly, we have E[A;] = 0 and |[Afp) — Ax| < 03
As a result, {A;} is also a Martingale sequence. By apply-
ing Azuma'’s Inequality on {A}, assuming task-k is the
straggliest one as well as |Ni| = }5;/ <), ;) X Where h(i)
denotes the “maximal” task ID among those tasks offloaded
from edge-i to the datacenter, V3, k, we have

Remote; < oy Zk’jh(i) Xy + Xper + oi\/2|Nji| In %. (7)

Since |Nj;| < H; upon the definition and the value of
Opt(Cj) is the maximal completion time of task in Ip-GeoTS,

Opt(C}) is actually larger or equal to the first two terms on
the right, and then we complete the proof. O

5.3.3 Proof for Lemma 3
Proof. After combining Lemma 1 and 2 together, the follow-

ing inequality holds with the probability of at least 1 — 4:

Vj:C; < Opt(é'j) + max {o;,viex}\/2H;In

1

kET; i€Lr 5 ®

By using the power of two choices mentioned in Algo-
rithm 2, the probability of the event in which both of these
two choices breaks previous inequality is at most 4. Then,
the event that 2, holds such inequality is at least 1 —462. Note
that, according to the power of two choices in runData, i.e.,
lines 5 to 6 in Algorithm 2, we have

Vi Q= min{{C; }1, {C;}2}.

Then, we substitute §2 for §, and the following inequality
holds with the probability of at least 1 — ¢:

1
keT ;€L {oi, view} \/ 2H;In %’

Vi Q; < Opt(Cy) +

max

(a) Cost for piggybacking (b) Cost for runData

Fig. 9. Overheads of runData with data re-distribution via piggybacking

whose form is the same as that mentioned in Lemma 3. Such
form implies that the gap on the right grows slowly with the
decrease of J, as mentioned in theoretical analysis. O

5.3.4 Proof for Theorem 1

Proof. We denote by ®; the set of tasks belonging to job-j
whose data are stored in edge-i after the submission of job-j.
Due to the fact that any feasible solution of e D-GeoTS is also
a feasible solution of GeoTS, the maximal task completion
time for current job-j in £ D-GeoTS is naturally larger than
its optimum in GeoTS, as well as its theoretical lower bound
solved from [p-GeoTS. Thus, we have

Vj: Opt(C;) < Opt(C;) < max{o; - [®jil} + mgx{ek}7

because transferring all of the tasks with data re-distribution
regarding all data blocks to the datacenter is also one of the
feasible solution in GeoTS. Therefore, its value is actually no
doubt larger than the optimum of GeoTS. By applying the
previous inequality to Inequality (3), defining

o / 1
Vi:iEj = rrllczzx{ai,%ek} 2H;In %,

and applying the Union Bound [59], we have the fact that
the following inequality holds with the probability of at least
1 — nd. That is, for Zj C;, we have

<Y {maxi{m]?x{ek} + 05 - |®ji]} + max; {e;,E;}}
< GlobalOpt + 37 ; { max;{o; - |®;:|} + max; {¢;,Z;}}.

Since the overall number of data accesses is xkn, the total
number of transferred tasks is no more than xkn. Here, we
define « as the average accesses for a sequence of jobs. That
means we have the following inequality:

> max{|®l} < kn.
j K3

The number of overall data accesses describes the whole
pattern. And more precisely prediction on the transmission
of related data blocks directly shortens such theoretical gap.
After using the definition of ¥ ,, as we mentioned in Section
5.2, we then complete the proof. Note that ¥s ,, describes a
profile of the cloud-edge system. O

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 10

TABLE 3
Improvement by Data Re-distribution via Piggybacking.

Delay™ v.s. Delay Aggreg. T v.s. Aggreg.
Improvement 54.99% 68.16%
via Piggybacking?! | Flutter™ vs. Flutter | LocalOpt™ v.s. LocalOpt
55.98% 25.41%

1. The term T means data re-distribution via piggybacking is used.
2. The term Aggreg. is the abbreviation of Aggregation strategy.

6 IMPLEMENTATION AND TESTBED

Currently, the distributed file system balances the data itself
according to the volume while the data analytics framework
reads/operates the data blocks in a batch manner, e.g., 64KB
for each batch, instead of changing the data distribution. In
our implementation, the Executor within each Spark Worker
keeps in store already transferred data during the execution,
and valid the data as a qualified data block to HDFS.

6.1 Implementation upon Spark

To implement runData, we override some components in
Spark upon HDFS, as shown in Fig. 6. We should mention
here that Spark and HDFS are typical frameworks used in
data analytics. And in this paper, we take Spark and HDFS
as the example to illustrate our implementation. Note that
we also implement similar functionalities upon Hadoop and
HDES. Here, the Driver in Spark is used for scheduling the
tasks in a job, the Worker is used for managing a server, and
the Executors are used to host multiple running tasks in the
Worker. Main functionalities are listed as follows:

Queue Tasks in Slots. Traditionally, the compute slot,
i.e., the Executor in Spark, launches the tasks immediately
when it is idle as well as it receives the requests from the
Spark Driver. As a result, Hadoop and Spark do not support
queuing tasks, although a branch of Yarn [47] has discussed
such functionality. In this paper, we propose to postpone the
scheduling of related tasks for the same purpose. Note that
the scheduling of tasks is conducted by the TaskScheduler in
Spark Driver. runData tracks the status of tasks and assigns
selected slot to a pending task as long as the selected slot is
idle. Otherwise, runData cheats the pending tasks again and
again as if there is no available resource for task execution.

Re-distribute Data Block via Piggybacking. During the
task execution, as mentioned in previous section, data block
is fetched batch by batch, and would be directly discarded
after being received and used. In this paper, we reserve the
space in terms of a data block with fixed size in the memory,
as illustrated in Fig. 6. After splitting the transferred batch
data for task execution based on pre-defined delimiters, we
keep it in store in memory instead of reusing existing small
buffer, in order to avoid the data discards. After the comple-
tion of a offloaded task with data re-distribution label, the
Executor in Spark would trigger the Block Validator to valid
the data stored in memory to a qualified data block.

Validate Data Block to HDFS. The data block stored in
memory is first flushed to a specific directory of the local
file system. Then, a CMD based thread is used by a script
to delete the meta information of target data block in HDFS.
After that, another CMD based thread is triggered to put the
desired data blocks back into HDEFS, so as to change the data
re-distribution. Note that all of these things are conducted
after the execution of a task, which has less impact on the

B runData
B Hot Data

Aggregation* B Frequency-Based* BN Delay*/Flutter®

N Capacity-Aware*

Bm Delay-Scheduling®* M Capacity-Aware*
= Flutter*

4500

B runData

©
S

3600
2700

1800

) MJ m m

7 10 13 16
Number of Data Accesses

9

=3
3

Transferred Data Blocks (#)

Completion Time (s)

0

100 500 800 1000 2000 3000 5000
Number of Edges

(a) Results under high load, i.e., utilization=80%

N runData
B Hot Data

Aggregation* mm Frequency-Based*
Bm Delay-Scheduling® M Capacity-Aware*
= Flutter* B runData

EEE Delay*/Flutter™
BB Capacity-Aware*

4000

3000

2000

Completion Time (s)

Transferred Data Blocks (#)

il i;JJleJ m

. l.hl...J
1 4 7 16

Number of Data Accesses

0
100 500 800 1000 2000 3000 5000
Number of Edges

(b) Results under middle load, i.e., utilization=50%

= Delay*/Flutter*
W Capacity-Aware*

= runData
B Hot Data

Aggregation* = Frequency-Based"
W Delay-Scheduling® mM Capacity-Aware*
. Flutter* W runData

»
S
3
3

3000

2000

1000

Completion Time (s)

Transferred Data Blocks (#)

e, |I|JJJJJJJJJJJ

7 10 13 16 19
Number of Data Accesses

(c) Results under low load, i.e., utilization=20%

o

0
100 500 800 1000 2000 3000 5000
Number of Edges

Fig. 10. Results to illustrate the effectiveness of runData

task. After the completion of running tasks, the original data
blocks would be cleaned by the balancer of HDFS itself soon.

After that, we illustrate our proposed runData according
to its workflow, overhead and security as follows:

Workflow of runData. As illustrated in Fig. 7(a), the
details of related workflow is shown. After receiving the
runData request along with the cluster message from Spark
Driver, the executor then launches the task according to the
runData flag within the message, which indicates whether
data re-distribution via piggybacking is needed. After re-
ceiving the batch data, runData overrides the LineReader
and TextInputFormat classes, in order to use those kept data
in memory for task execution via <key, value> pairs.

Overhead of runData. As shown in Fig. 7(a), the oper-
ations related to store each batch data in the memory are
actually implemented by just shifting a point, in order to
distinguish those already stored data and those just fetched.
Further shown in Fig. 7(a), although the operations related
to I/O flush are conducted, they are actually triggered after
the execution of the task. As shown in Fig. 7(b), the runData
message is actually a boolean flag to indicate whether the
data re-distribution needs to be conducted.

Security of runData. Although the data re-distribution
is actually conducted by validating flushed data block as if
runData cheats the NameNode of HDFS, all of the commu-
nications with NameNode incurred are conducted by using
available APIs. As a result, the operations only triggered by
those authorized servers are adopted, which are authorized
during the initialization of HDFS by using authorized SSH
keys and the check of HDFS itself. Thus, we assume that the
authorized servers being checked are trustful.

Remark. Unfortunately, the available APIs supported by
the HDFS fail to re-distribute the data blocks directly, since

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 11

TABLE 4
Results under Various Frequencies (Average Job Completion Time)
Threshold 0 1 2 3 4 5
Delay (s) | 22.172 | 23.004 | 24.363 | 25.218 | 27.282 | 30.440
Threshold 6 7 8 9 10 11
Delay (s) 32.649 | 33.943 | 34.874 | 35.366 | 35.385 | 35.530

HDFS supports a logical disk for the users and the users do
not need to consider the locations of related data blocks. As
a result, we propose a mechanism to re-distribute the data
blocks via piggybacking along with the execution of tasks.

6.2 Testbed Results

The testbed is built upon Spark 1.3.1, Hadoop 2.2.0, within
11 VMs deployed over four racks over Inspur SN5160M4,
Dell PowerEdge R730 and R740, and Dell C6320, as shown
in Fig. 8. One of the VM is responsible for both Spark Master
(standalone mode) and HDFS NameNode. The default size
of a data block in HDFS is 128MB. All of the VMs are used
for both data storage and in-memory computation, whose
settings range from 3 to 15 CPU cores, 8 to 20 GB memory
and 15Mbps links by using Linux Traffic Control [60], [61].
The data randomly chosen from novels for WordCount is
1.2GB. Particularly, 15 CPU cores and 20GB memory are
allocated to the master VM hosted in Inspur SN5150M4, to
mimic the datacenter; The average CPU cores and memory
allocated to Slavel - Slave3 are 6 and 10GB, respectively, to
mimic those edges with strong computing capability; And
the CPU cores and the memory allocated to Slave4 - Slavel0
are 3 and 8GB, respectively. All of the slaves connect to the
master VM with authorized SSH keys mentioned before.

Algorithms. We compare proposed runData with other
four typical algorithms used in the testbed. 1) Locality [9]
runs tasks directly to the server, in which their required data
is stored; 2) Aggregation [13] aggregates all required data to
the server hosting the scheduler for execution; 3) Delay [62]
assigns tasks to idle servers near to the related data blocks
within acceptable time lag; 4) LocalOpt schedules the tasks
by using the results from Ip-GeoTS as probabilities. Note
that Delay scheduling is the default strategy in Spark.

Improvements. As shown in Table 2, runData gains 15%
reduction on average for a sequence of jobs. Initially, all of
the data blocks are generated within the slaves randomly
over four racks to mimic the scenario, where all of the data
are often generated within edges. During the submission in
term of a sequence of jobs with multiple trials, those hot
data blocks are transferred by runData and kept within the
master as early as possible. For a majority of scenarios, all
of the hot data blocks are transferred within the lifecycle of
10 jobs. Although LocalOpt actually offloads the tasks to the
master, it ignores to re-distribute the data blocks due to the
limitation of those data analytics frameworks.

For the scenarios, where the data blocks are generated
and crowded within a few slaves, multiple accesses by a
sequence of jobs easily result in heavy workloads. Although
Delay Scheduling also offloads the tasks, it has to wait for
several seconds and fails to re-distribute the data. runData
gains at least 27% reduction under low load scenario with
200Mbps bandwidth because runData has much more op-
portunities for data re-distribution within extra time lag, i.e.,
€ = 2 according to the theorem. rundata also gains at least

-
o

62| mmm Locality
Aggregation
5, | WM Capacity-Aware
N runData

B Optimale EEM Chosen &

"
IS

H
9
Completion Time (s)

Completion Time (s)

10
0.85 090 095 1.00 105 110 115
Skew Parameter of Zipf Distribution for Data

09 095 1
Zipf Skewness Parameter

105 11 115 12

(a) Comparison between
chosen ¢ and optimal e.

(b) Results under
various data distributions

W Delay-Scheduling* M Capacity-Aware* 0 —=— runData

T15
Aggregation* W runData >
%1 | m Flutter S 14
213
3

20 25 30 35 40 45 50
Average Bandwidth (MB/s)

o —=— runData
>13

9

2

g12

©

S

0 50

Completion Time (s)

0
20 25 30 35 40 45 50 15 20 25 30 35 4
Average Bandwidth (MB/s) Average Number of Slots

(c) Scalability on bandwidth (d) Details on scalability
for runData for runData
Fig. 11. Results for validating the scalability of runData

8.5% reduction under high load scenario. Aggregation as-
signs the tasks to the master, leading to long transmissions.

As shown in Fig. 9(a), runData only costs several million
seconds for each batch data, including shifting the pointer in
memory and other related operations, which nearly does no
harm to the execution of a task. Here, the overall duration of
a task under middle load is about 10 seconds. That means,
the lag between two consecutive timestamps in Fig. 9(a) is
about 0.1 second. As shown in Fig. 9(b), runData spends at
most 150 million seconds to conduct [p-GeoTS.

7 EXPERIMENTAL STUDY
7.1 Methodology

The average job completion time is defined as the average
elapsed durations for jobs, which start from jobs’ arrival
time and end at the moment that all their tasks completed.
Workloads. We use the synthetic workloads in our ex-
periments with trace-driven distributions in terms of the job
sizes, i.e., the number of tasks within a job, obtained from
Facebook [16], [63] as well as Google production cluster [24],
[64]. In order to make these two workloads consistent, we
define the average percentage here regarding the occupied
compute slots as the system utilization in our experiments.
Algorithms. Apart from four algorithms mentioned in
the testbed, we further evaluate two more strategies com-
monly used: 1) Frequency-Based offloads hot data according
to their accesses and a pre-defined threshold, e.g., 5; and 2)
Flutter [15] offloads the tasks, considering the idle compute
slots for optimized job completion time. Furthermore, for
all of the strategies, their extended versions with data re-
distribution via piggybacking are also considered and eval-
uated. The notation used for the extended algorithm is .
Setups. We adjust the number of edges ranging from 100
to 5000, in order to mimic various realistic scenarios [65].
The number of the compute slots and the WAN bandwidth
are set based on the real performance analysis in terms of
Amazon EC2 and previous studies [66], [67]. To evaluate the
unbalanced data distribution, Zipf Distribution is used to
model the skewness, which is adjusted by the Zipf’s skew

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 12

TABLE 5
Traces Used in Experiments

Traces Derived Distribution of Tasks (Ratio)
from Clusters 1-150 Tasks | 150-500 Tasks | >500 Tasks
Google [24], [64] 96% 2% 2%
Facebook [16], [63] 89% 8% 3%

parameter [17]. The task durations are modeled by Pareto
distribution with § = 1.259 based on the Facebook work-
load described in [26]. The jobs” inter-arrival timestamps are
based on Poisson Process mentioned in previous work [16].

7.2 Experimental Results

Except for the common metric, i.e., the average job comple-
tion time, we also evaluate the uploaded data.
Improvement of Piggybacking. Table 3 shows the re-
duction on the average job completion time for a sequence of
jobs, by using the data re-distribution via piggybacking over
multiple strategies. All of these four typical strategies with
data re-distribution via piggybacking gain at least 25.41%
improvement compared with their original versions, under
the scenario, where the system is under middle load, i.e.,
50% compute slots are occupied. Furthermore, other three
strategies improve much more than that of LocalOpt. The
reason is that LocalOpt has already taken the computing-
intensive tasks as well as the resources at edges into consid-
eration, and is willing to offload proper tasks to the data-
center. As a result, LocalOpt has the lowest job completion
time compared with other three strategies without data re-
distribution. Hence, LocalOpt has opportunities to transfer
extra valuable data to the datacenter based on LocalOpt
itself. In overall, data re-distribution via piggybacking ac-
tually reduces the average job completion time.
Characteristics of Uploaded Data. Except for the overall
completion time for a sequence of jobs considered, we also
analyze the uploaded data according to their accesses. Note
that Capacity-Aware is the same as LocalOpt, since both of
them show the preference on the compute slots. As shown in
Fig. 10(a) to Fig. 10(c), when the average system utilization
is high, i.e., 80%, runData uploads more hot data, which is
transferred by Frequency-Based with data re-distribution via
piggybacking. The results by using various threshold values
for Frequency-Based are shown in Table 4. With the growth of
threshold value, data blocks are more likely to be crowded
within edges until their accesses reach to such threshold. As
a result, the overall completion time increases correspond-
ingly. runData uploads nearly 40% data whose accesses are
higher than 5. Although runData uploads more data than
Flutter and Delay Scheduling, most of the data transferred
by them would not be frequently used by incoming jobs.
We should mention here that when the datacenter has
adequate compute slots, Flutter uploads nearly the same
volume of data compared with Delay Scheduling, because
both of them prefer to assign tasks to idle slots. Moreover,
nearly 90% data blocks are transferred via runData when
their accesses are less than 4, which means runData actually
offloads hot data candidates as early as possible by using
data re-distribution via piggybacking and e-bounded task
scheduling. When the system utilization is low, runData
uploads fewer data blocks, but it has already tried its best
to offload more hot data than other strategies. Furthermore,

1
W Delay-Scheduling® M Flutter*

Aggregation*® M Capacity-Aware* 60

W Delay-Scheduling® M Flutter*
Aggregation* W Capacity-Aware*
M Frequency-Based* M runData

W Frequency-Based* M runData

Completion Time (s)
Completion Time (s)

10
30%4 20% ! 10%4 Default 10%1 20% 1 30% 1 10 50

Lag between Two Consecutive Jobs

100 200 300 500 1000
Number of Jobs

(a) Results under
various interval lags

(b) Results under
various numbers of jobs

4 1.00 e
01 m Delay-Scheduling* M Flutter* ﬁ;g,—»
_ Aggregation* W Capacity-Aware* 0.95 X
L W Frequency-Based* M runData f:
o
£ 0.90 ;_,("
= .
w S
= -
52 Sos8s A f
3 X
o T
g 0.80
o .
0.751 f Rounding Once
————— Power of Two Choices
O G0% 4 50% 4 40% 4 30%: 20%1 10%% Defaut 0.79

15 020 025 030 035 040 045
Normalized Job Completion Time

(d) Comparison between
rounding once and twice

Number of Tasks

(c) Results under
various numbers of tasks

Fig. 12. Further results on the scalability of runData

runData uploads more data related to computing-intensive
tasks to the datacenter, whose average completion time is at
least 7% longer than the data transferred by other strategies.
Choices of . We also evaluate the choice of ¢ in order to
show the effectiveness of the proposed theorem, as shown
in Fig. 11(a). Under the scenario where the utilization is
moderate, i.e., 50% compute slots are occupied, the results of
runData regarding the average job completion time is very
closer to the results by using optimal €. The gap between
these two results is at most 0.5s by using both estimated
and optimal ¢, under various scenarios with different skew
parameters. € actually relies on the skewness of data distri-
bution, i.e., € increases when the data distribution is much
skewed within few edges. A large value of € means it is
necessary to re-distribute more data to the datacenter, but it
would also defer current job while a small value of € means
runData has less opportunities on data re-distribution.
Scalability of runData. With the growth of Zipf skew
parameter, as illustrated in Fig. 11(b), those data blocks are
more likely to be crowded within a few edges. Although the
completion time of jobs increases, runData always performs
the best. As illustrated in Fig. 11(c), the average bandwidth
ranges from 20MB/s to 50MB/s. With the increase of the
bandwidth, data re-distribution via piggybacking has more
opportunities to offload those hot data as early as possible.
Thus, the gap between runData and other strategies with
data re-distribution via piggybacking actually decreases, but
also gain at least 9.1% reduction. Aggregation™ decreases
much when the bandwidth is high since the whole dataset
is transferred, which is highly influenced by the bandwidth.
Both Capacity-Aware™ and runData decrease less than
that of any other strategies because they would also queue
adequate tasks within the edges for optimizing the comple-
tion time for current job. Similar results also shown in terms
of the compute slots. As shown in Fig. 11(d), the details
regarding the results of runData are illustrated. With the
increase of both bandwidth and the average number of slots,
the average job completion time decreases accordingly.
Table 5 shows the details of the traces used in large scale

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 13

of evaluations. More specifically, 96% jobs generated in the
trace of Google have 1-150 tasks while 8% jobs generated in
the trace of Facebook have 150-500 tasks. In order to make
these two workloads consistent, as mentioned before, we
use the synthetic workloads with these two traces together
such that the average percentage of occupied compute slots
is middle for evaluations, i.e., the system utilization is 50%.

As illustrated in Fig. 12(a) regarding further results on
the scalability, we vary the values of interval lags for two
consecutive jobs. With the decrease of such interval lag
for two consecutive jobs, more tasks are more likely to be
crowded within the edges for a short time. runData balances
proper tasks queued at the edges and those tasks transferred
to the datacenter with data re-distribution. As a result, the
reduction on the average completion time increases.

As illustrated in Fig. 12(b) and Fig. 12(c), we vary both
the number of jobs and the number of tasks in a job for
evaluations. When the number of jobs is large, Aggregation™
performs better than runData in terms of the average job
completion time, since almost all data blocks are transferred
to the datacenter and the forthcoming jobs are benefit from
those transferred data blocks. However, the completion time
for those jobs submitted at the very beginning is extremely
large, which is unsuitable for timely data analytics. runData,
instead, re-distributes the data along with the execution of
tasks as well as along with the execution of jobs. Then, for
any job submitted, the completion time is almost acceptable.
With the decrease of the number of tasks, the reduction on
the job completion time incurred by runData also decreases,
since the re-distribution of data is conducted along with the
tasks. Then, the decreasing number of tasks refers to less
opportunity to re-distribute the data blocks.

At last, Fig. 12(d) shows the effect of the power of two
choices used in Algorithm 2, which is the illustration of
CDF. By using the power of two choices, the bad event in
terms of the long completion time for each job is more likely
to be avoided. As a result, given fixed job completion time,
the proportion of jobs by using the power of two choices is
large than that of rounding the results from Ip-GeoTS once.

8 CONCLUSION

Due to the throwaway feature of the data fetcher in data
analytics frameworks, and multiple accessed datasets gener-
ated within edges, re-distributing the data via piggybacking
would benefit forthcoming jobs. To further pursue the global
optimum for a sequence of jobs as well as to guarantee the
completion time for current job and WAN usage, we design
an online data-driven mechanism runData, which offloads
the tasks with probabilities and can be proved concentrated
on its optimum. We implement runData upon Spark and
HDFS and deploy our prototype within 11 VMs over 4 racks.
The results show that runData achieves 37% reduction com-
pared with those state-of-the-art task scheduling schemas,
covering a wide range of realistic settings.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China (2017YFB1001801), the National Science
Foundation of China (61832005, 61872175), the Ripple Fac-
ulty Fellowship, the Natural Science Foundation of Jiangsu

Province (BK20181252), the Collaborative Innovation Center
of Novel Software Technology and Industrialization, and
the Nanjing University Innovation and Creative Program
for PhD (CXCY19-25). This research was also supported by
the funding from Hong Kong RGC Research Impact Fund
(RIF) with the Project No. R5060-19 and R5034-18, Gen-
eral Research Fund (GRF) with the Project No. 152221/19E
and 15220320/20E, Collaborative Research Fund (CRF) with
the Project No. C5026-18G, the National Natural Science
Foundation of China (61872310), and Shenzhen Science and
Technology Innovation Commission (R2020A045).

REFERENCES

[1] Y. Li, Y. Jin, H. Chen, W. Xi, M. Ji, S. Zhang, Z. Qian, and S. Lu,
“Run data run! re-distributing data via piggybacking for geo-
distributed data analytics,” in IEEE ISPA, 2019, pp. 356-363.

[2] “Google Datacenters,” http://www.google.com/about/datacente
rs/, 2020.

[3] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett,]. Heidemann, and
R. Govindan, “Mapping the expansion of google’s serving infras-
tructure,” in ACM IMC, 2013, pp. 313-326.

[4] “Google Company,” http://www.google.com/, 2020.

[5] “Microsoft Datacenters: Azure,” https:/ /azure.microsoft.com/en-
us/global-infrastructure/, 2020.

[6] “Alibaba Cloud Computing,” http://www.aliyun.com/, 2020.

[71 K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends,
and prospects in edge technologies: Fog, cloudlet, mobile edge,
and micro data centers,” Elsevier CN, vol. 130, pp. 94-120, 2018.

[8] W. Ouyang, X. Zhang, L. Li, H. Zou, X. Xing, Z. Liu, and Y. Du,
“Deep spatio-temporal neural networks for click-through rate
prediction,” in ACM SIGKDD, 2019, pp. 2078-2086.

[9] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese, “Global analytics in the face of bandwidth and
regulatory constraints,” in USENIX NSDI, 2015, pp. 323-336.

[10] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in USENIX NSDI, 2017, pp. 377-392.

[11] “Google AdWords,” https:/ /adwords.google.com/, 2020.

[12] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
in ACM SIGCOMM, 2015, pp. 421-434.

[13] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M.]. Freedman,
“Aggregation and degradation in jetstream: streaming analytics
in the wide area,” in USENIX NSDI, 2014, pp. 275-288.

[14] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar, “Network-aware scheduling for data-parallel jobs: Plan
when you can,” in ACM SIGCOMM, 2015, pp. 407-420.

[15] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling tasks closer to data
across geo-distributed datacenters,” in IEEE INFOCOM, 2016.

[16] C. C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across
geo-distributed datacenters,” in ACM SoCC, 2015, pp. 111-124.

[17] Y. Jin, Z. Qian, S. Guo, S. Zhang, X. Wang, and S. Lu, “Ran-GJS:
Orchestrating data analytics for heterogeneous geo-distributed
edges,” in ACM ICPP, 2018, pp. 1-10.

[18] C. C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and
M. Zhang, “Wide-area analytics with multiple resources,” in ACM
EuroSys, 2018, pp. 1-16.

[19] “Facebook Workloads,” https://github.com/SWIMProjectUCB/S
WIM/, 2014.

[20] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, and E. Harris, “Scarlett: coping with skewed
content popularity in mapreduce clusters,” in ACM EuroSys, 2011,
pp- 287-300.

[21] “Apache Spark,” http://spark.apache.org, 2020.

[22] “Netflix Outage,” https:/ /istheservicedown.com/problems/centu
rylink/, 2018.

[23] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“Graphene: Packing and dependency-aware scheduling for data-
parallel clusters,” in USENIX OSDI, 2016, pp. 81-97.

[24] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effec-
tive straggler mitigation: Attack of the clones.” in USENIX NSDI,
2013, pp. 185-198.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021 14

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

(49]

[50]

G. Ananthanarayanan, S. Kandula, A. G. Greenberg, 1. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in USENIX OSDI, 2010, pp. 265-
278.

G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wier-
man, and M. Yu, “Grass: trimming stragglers in approximation
analytics,” in USENIX NSDI, 2014, pp. 289-302.

J. Wang, J. Yin, J. Zhou, X. Zhang, and R. Wang, “Datanet: A data
distribution-aware method for sub-dataset analysis on distributed
file systems,” in IEEE IPDPS, 2016, pp. 504-513.

E. Coppa and I. Finocchi, “On data skewness, stragglers, and
mapreduce progress indicators,” in ACM SoCC, 2015, pp. 139-152.
Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune
in action: mitigating skew in mapreduce applications,” VLDB
Endowment, vol. 5, no. 12, pp. 1934-1937, 2012.

J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, “A
parallel random forest algorithm for big data in a spark cloud
computing environment,” IEEE TPDS, vol. 28, no. 4, pp. 919-933,
2017.

F. Zhang, J. Cao, W. Tan, S. U. Khan, K. Li, and A. Y. Zomaya,
“Evolutionary scheduling of dynamic multitasking workloads for
big-data analytics in elastic cloud,” IEEE TETC, vol. 2, no. 3, pp.
338-351, 2014.

L. D. Briceno, H. J. Siegel, A. A. Maciejewski, M. Oltikar, J. Brate-
man, J. White, J. R. Martin, and K. Knapp, “Heuristics for robust
resource allocation of satellite weather data processing on a het-
erogeneous parallel system,” IEEE TPDS, vol. 22, no. 11, pp. 1780-
1787, 2011.

H. Karau and R. Warren, High performance Spark: best practices for
scaling and optimizing Apache Spark. O’Reilly Media, Inc., 2017.

J. S. Rojas, A. R. Gallén, and J. C. Corrales, “Personalized service
degradation policies on ott applications based on the consumption
behavior of users,” in Springer ICCSA, 2018, pp. 543-557.

B. Yu and J. Pan, “Location-aware associated data placement for
geo-distributed data-intensive applications,” in IEEE INFOCOM,
2015, pp. 603-611.

J. Chen, K. Li, Q. Deng, K. Li, and S. Y. Philip, “Distributed deep
learning model for intelligent video surveillance systems with
edge computing,” IEEE Transactions on Industrial Informatics, 2019.
G. Ananthanarayanan, V. Bahl, L. Cox, A. Crown, S. Nogbahi, and
Y. Shu, “Video analytics-killer app for edge computing,” in ACM
MobiSys, 2019, pp. 695-696.

C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn
surgery for inference acceleration on the edge,” in IEEE INFO-
COM, 2019, pp. 1423-1431.

H. Jeong, H. Lee, C. H. Shin, and S. Moon, “IONN: incremental
offloading of neural network computations from mobile devices
to edge servers,” in ACM SoCC, 2018, pp. 401-411.

M. Li, Q. Zhang, and F. Liu, “Finedge: A dynamic cost-
efficient edge resource management platform for nfv network,”
in IEEE/ACM IWQoS, 2020, pp. 1-10.

L. Zhao, J. Wang, J. Liu, and N. Kato, “Optimal edge resource
allocation in iot-based smart cities,” IEEE Network, vol. 33, no. 2,
pp- 30-35, 2019.

“HDEFS in Apache Hadoop,” https:/ /hadoop.apache.org/docs/sta
ble /hadoop-project-dist/hadoop-hdfs /HdfsDesign.html, 2019.
“Hadoop mapreduce,” http:/ /hadoop.apache.org, 2020.

Y. Jin, L. Jiao, Z. Qian, S. Zhang, N. Chen, S. Lu, and X. Wang,
“Provisioning edge inference as a service via online learning,” in
IEEE SECON, 2020, pp. 1-9.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha, “Real-time video analytics:
The killer app for edge computing,” IEEE Computer, vol. 50, no. 10,
pp. 58-67, 2017.

K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Mono-
tasks: Architecting for performance clarity in data analytics frame-
works,” in ACM SOSP, 2017, pp. 184-200.

“Queuing the Container Requests in the NM,” https://issues.
apache.org/jira/browse/YARN-2883, 2017.

T. Wang, Z. Qian, L. Jiao, X. Li, and S. Lu, “Geoclone: Online task
replication and scheduling for geo-distributed analytics under
uncertainties,” in IEEE/ACM IWQoS, 2020, pp. 1-10.

“AWS Optimizing CPU Options,” https://docs.aws.amazon.com
/AWSEC2/latest/UserGuide/instance-optimize-cpu.html, 2019.
S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle,

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

i,
A\é/L

as TPDS, TON, TC, and TMC, and in conferences such as INFOCOM,

S. Stuart, and A. Vahdat, “B4: experience with a globally-deployed
software defined wan,” in ACM SIGCOMM, 2013, pp. 3-14.

Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang,
“Dependency-aware task scheduling in vehicular edge comput-
ing,” IEEE IoTJ, vol. 7, no. 6, pp. 4961-4971, 2020.

T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling
in deadline-aware mobile edge computing systems,” IEEE IoT],
vol. 6, no. 3, pp. 48544866, 2018.

S. Josilo and G. Déan, “Decentralized algorithm for randomized
task allocation in fog computing systems,” IEEE/ACM ToN, vol. 27,
no. 1, pp. 85-97, 2018.

S. Jogilo and G. Dén, “Wireless and computing resource allocation
for selfish computation offloading in edge computing,” in IEEE
INFOCOM, 2019, pp. 2467-2475.

T. Chen, Q. Ling, and G. B. Giannakis, “An online convex opti-
mization approach to proactive network resource allocation,” IEEE
TSP, vol. 65, no. 24, pp. 6350-6364, 2017.

“Interior Point Method,” https://en.wikipedia.org/wiki/Linear_
programming, 2020.

R. Mansuy and R. Sverdlove, “The origins of the word 'mar-
tingale’,” Electronic Journal for History of Probability and Statistics,
vol. 5, no. 1, pp. 1-10, 2009.

K. Azuma, “Weighted sums of certain dependent random vari-
ables,” Tohoku Mathematical Journal, Second Series, vol. 19, no. 3, pp.
357-367, 1967.

J. Katz Samuels, L. Jain, Z. Karnin, and K. Jamieson, “An empirical
process approach to the union bound: Practical algorithms for
combinatorial and linear bandits,” arXiv:2006.11685, 2020.

“Linux Traffic Control,” http://lartc.org/manpages/tc.txt, 2001.
X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s
escape: Breaking the resource rein of linux control groups,” in
ACM SIGSAC, 2019, pp. 1073-1086.

M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in ACM EuroSys, 2010,
pp- 265-278.

C.J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at
facebook: Understanding inference at the edge,” in IEEE HPCA,
2019, pp. 331-344.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in ACM SoCC, 2012, pp. 1-13.

“Akamai Platform Architecture,” https://www.netmanias.com
/en/?m=viewé&id=oneshot&no= 5951, 2017.

D. Jiang, G. Pierre, and C. H. Chi, “Ec2 performance analysis for
resource provisioning of service-oriented applications,” in Springer
Service-oriented Computing Icsoc/servicewave Workshops-international
Workshops, 2009, pp. 197-207.

J. Schad, J. Dittrich, and J. A. Quiané Ruiz, “Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance,”
VLDB Endowment, vol. 3, no. 1-2, pp. 460—-471, 2010.

Yibo Jin received the BS degree from the De-
partment of Computer Science and Technology,
Nanjing University in 2017, where he is currently
pursuing the PhD degree under the supervision
of Professor Sanglu Lu. He was a visiting student
with the Hong Kong Polytechnic University, Hong
Kong in 2017. His research interests include big
data analytics and edge computing. He is a stu-
dent member of the IEEE.

Zhuzhong Qian is a professor at the Depart-
ment of Computer Science and Technology, and
member of National Key Laboratory for Novel
Software Technology, Nanjing University, P. R.
China. He received his PhD. Degree in computer
science in 2007. Currently, his research inter-
ests include cloud computing, edge computing,
and distributed machine learning. He is the chief
member of several national research projects
on cloud computing and edge computing. His
research has been published in journals such

ICDCS, SECON, and IPDPS. He received best paper awards from IMIS

2013, ICA3PP 2014 and APNet 2018.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, 2021

Song Guo is a Full Professor in the Department
of Computing at The Hong Kong Polytechnic
University. He also holds a Changjiang Chair
Professorship awarded by the Ministry of Educa-
tion of China. His research interests are mainly
in the areas of big data, edge Al, mobile com-
puting, and distributed systems. With many im-
pactful papers published in top venues in these
areas, he has been recognized as a Highly Cited
Researcher (Web of Science) and received over
12 Best Paper Awards from IEEE/ACM confer-
ences, journals and technical committees. Prof. Guo is the Editor-in-
Chief of IEEE Open Journal of the Computer Society. He has served
on IEEE Communications Society Board of Governors, IEEE Computer
Society Fellow Evaluation Committee, and editorial board of a number
of prestigious international journals like IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Cloud Computing, IEEE
Internet of Things Journal, etc. He has also served as chair of organizing
and technical committees of many international conferences. Prof. Guo
is an IEEE Fellow and an ACM Distinguished Member.

Sheng Zhang is an associate professor at the

Department of Computer Science and Technol-

ogy, Nanjing University. He is also a member

n of the State Key Lab. for Novel Software Tech-
e nology. He received the BS and PhD degrees

— from Nanjing University in 2008 and 2014, re-

\/f spectively. His research interests include cloud
computing and edge computing. To date, he has

published more than 80 papers, including those

appeared in TMC, TON, TPDS, TC, MobiHoc,

ICDCS, INFOCOM, SECON, IWQoS and ICPP.

He received the Best Paper Award of IEEE ICCCN 2020 and the Best
Paper Runner-Up Award of IEEE MASS 2012. He is the recipient of

the 2015 ACM China Doctoral Dissertation Nomination Award. He is a
member of the IEEE and a senior member of the CCF.

Lei Jiao received the Ph.D. degree in computer

science from the University of Goéttingen, Ger-
many. He is currently an assistant professor at
the Department of Computer and Information
Science, University of Oregon, USA. Previously
e he worked as a member of technical staff at
Alcatel-Lucent/Nokia Bell Labs in Dublin, Ireland
and also as a researcher at IBM Research in
Beijing, China. He is interested in the mathemat-
ics of optimization, control, learning, and mech-

anism design, applied to computer and telecom-
munication systems, networks, and services. He publishes papers in
journals such as IEEE/ACM Transactions on Networking, IEEE Transac-
tions on Parallel and Distributed Systems, |IEEE Transactions on Mobile
Computing, and IEEE Journal on Selected Areas in Communications,
and in conferences such as INFOCOM, MOBIHOC, ICNP, and ICDCS.
He is a recipient of the NSF CAREER Award. He also received the Best
Paper Awards of IEEE LANMAN 2013 and IEEE CNS 2019, and the
2016 Alcatel-Lucent Bell Labs UK and Ireland Recognition Award. He
served as a guest editor for IEEE JSAC. He was on the program com-
mittees of many conferences including INFOCOM, MOBIHOC, ICDCS,
and IWQoS, and was also the program chair of multiple workshops with
INFOCOM and ICDCS.

Sanglu Lu received her BS, MS and PhD de-
grees from Nanjing University in 1992, 1995,
and 1997, respectively, all in computer science.
She is currently a professor in the Department
of Computer Science and Technology and the
State Key Laboratory for Novel Software Tech-
nology. Her research interests include distributed
computing, wireless networks, and pervasive
computing. She has published over 80 papers in
referred journals and conferences in the above
areas. She is a member of IEEE.

15

