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Task Offloading for UAV-assisted MEC Networks
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Abstract—Unmanned aerial vehicles (UAVs) have emerged as a new and flexible paradigm to offer low-latency and diverse mobile

edge computing (MEC) services for user equipment (UE). To minimize the service delay, caching is introduced in UAV-assisted MEC

networks to bring service contents closer to UEs. However, UAV-assisted MEC is challenged by the heavy communication overhead

introduced by service caching and UAV’s limited energy capacity. In this paper, we propose an online algorithm, OOA, that jointly

optimizes caching and offloading decisions for UAV-assisted MEC networks, to minimize the overall service delay. Specifically, to

improve the caching effectiveness and reduce the caching overhead, OOA employs a greedy algorithm to dynamically make caching

decisions based on UEs’ preferences on services and UAVs’ historical trajectories, with the goal of maximizing the probability of

successful offloading. To realize the rational utilization of energy from a long-term perspective, OOA decomposes the online problem

into a series of single-slot problems by scaling the UAV’s energy constraint into the objective, and iteratively optimizes UAV trajectory

and task offloading at each time slot. Theoretical analysis proves that OOA converges to a suboptimal solution with polynomial time

complexity. Extensive simulations based on real world data further show that OOA can reduce the service delay by up to 33% while

satisfying the UAV’s energy constraint, compared to three state-of-the-art algorithms.

Index Terms—Unmanned aerial vehicles, Mobile edge computing, Service caching, Task offloading.
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1 INTRODUCTION

THe rapid development of 5G promotes the application
of computing-intensive and data-driven smart services,

such as online games and automatic driving [1]. To meet the
computing power and low-latency requirements of smart
services, mobile edge computing (MEC) has been proposed
to transfer the computing tasks of user equipment (UE) to
the network edge for processing [2]. Unfortunately, MEC
servers need to be deployed on fixed infrastructure, such
as base stations (BSs), which incurs high deployment costs.
MEC may not be able to work effectively in rural areas that
lack sufficient infrastructures or urban areas during peak
hours/natural disasters. In recent years, Unmanned Aerial
Vehicles (UAVs) equipped with MEC servers have been
widely discussed in industry and academia [3]. UAVs can
provide low-latency and more flexible computing services
due to their high mobility and flexible deployment. For
example, on July 21, 2021, Mihe town in China was flooded
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due to heavy rainfall. In its communication interruption
area, 255 UAVs form mobile base stations to provide com-
munication signal that covers 50 square kilometers for five
hours [4].

To fully realize UAV-assisted MEC, both service caching
and task offloading are required. On the one hand, it has
been shown that some popular content is repeatedly re-
quested by UEs [5], [6]. By caching some popular content to
UAVs nearby UEs and reusing the stored content, caching is
considered to be an effective approach to reduce the service
delay. In addition, many popular applications are data-
driven and require caching some service content, such as
libraries and machine learning models, on the UAV’s edge
server [7], [8]. On the other hand, offloading computing-
intensive and latency-sensitive tasks to UAVs can solve the
shortcomings of UEs in terms of computation resources and
battery capacities.

However, service caching and task offloading in UAV-
assisted MEC face fundamental challenges. First, how to
dynamically place and update cache contents in UAVs is
challenging. Because one UAV has limited storage space,
only some services can be cached. Furthermore, UE’s lo-
cation and preference for services may change over time,
but the frequent download of service contents from the re-
mote cloud brings heavy communication overhead. Second,
although the mobility of the UAV increases its flexibility,
its flight trajectory significantly affects the number of UEs
that the UAV can serve, and ultimately impacts the service
delay. Therefore, UAV trajectory needs to be optimized to
facilitate the deployment of UAV-assisted MEC. Third, due
to the limited computation/communication resource and
the battery capacity of a UAV, one UAV can only process
a certain number of tasks for a period of time [9], [10].
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Making offloading decisions for all tasks requires long-term
and rational utilization of the resources and the energy.

Existing service caching or offloading in MEC studies
the fixed edge or cellular networks [5], [6], [7], [11], [12],
[13]. Their approaches cannot solve the service caching or
offloading problem in UAV-assisted MEC, since they didn’t
consider UAV trajectory planing. In the related studies of
UAV-assisted MEC, most studies only study service caching
[14], [15], [16] or task offloading [17], [18], [19], [20], [21]
alone, and do not consider both. A few papers consider
both service caching and task offloading. Their solutions
are either in offline scenarios [22], [23], or they only update
the cache according to the task offloaded by UEs at the
current time, ignoring the historical task information. Their
caching decisions are not efficient since users’ location and
preferences may change over time. The caching decision
need to be optimized dynamically from a long-term time
scale. We will discuss it in detail in Sec. 2.

In this paper, we model UAV’s important features (i.e.,
mobility and limited energy), and study the problem of
dynamic service caching and task offloading in energy-
constrained UAV-assisted MEC networks, aiming to min-
imize the service delay. In order to realize the rational
utilization of energy from a long-term perspective, we de-
couple the problem into a series of single-slot problems by
splitting the energy constraint into the objective function.
At the beginning of each time slot, we decide whether to
update the cache according to the hit rate, i.e., the probability
of successful offloading. If the gap between the average
hit rate (calculated based on the offloading decision) and
the expected hit rate (calculated by the caching decision)
reaches the threshold, the cache is updated based on UEs’
preferences on services and UAVs’ historical trajectories
to maximize the expected hit rate. In this way, we im-
prove the caching efficiency by observing both offloading
results and UEs’ preferences. Furthermore, the frequency
of updating the cache can be dynamically adjusted by the
threshold to reduce the communication overhead. We then
propose an iterative algorithm based on first-order Taylor
Expansion and dependent rounding technique to make UAV
trajectories and task offloading decisions. Notice that in
this paper, service caching and task offloading are jointly
optimized within one time slot, not simultaneously. Some of
the previous works [23], [24] make service caching and task
offloading decisions at the same time. However, making
caching decisions and offloading decisions simultaneously
causes these papers to fail to consider the historical task
information. In contrast, this paper dynamically updates
service caching decisions based on historical task informa-
tion, which improves the hit rate and also reduces the cache
update frequency. We highlight our contributions as follows.

• We formulate the user preference oriented ser-
vice caching and task offloading problems in UAV-
assisted MEC. The service caching, UAV trajectory
and task offloading decisions need to be jointly op-
timized and made online under energy and resource
capacity constraints. To minimize the service delay,
the cache is dynamically updated based on the pref-
erences of UEs for services. Both the service caching
problem and the task offloading problem are NP-

hard.
• We propose an online algorithm, OOA, that dy-

namically updates caching decisions and optimizes
UAV trajectory and task offloading. For service
caching, OOA reformulates the caching problem into
a submodular maximization problem and employs a
greedy caching algorithm that places services accord-
ing to the service preferences of UEs. To achieve low
latency in the long-term, we splits the energy con-
sumption constraint into the optimization objective
by using a weighing factor. The task offloading prob-
lem is then decomposed into a series of single-slot
problems. OOA then develops an iterative algorithm
to optimize UAV trajectory and task offloading.

• We conduct rigorous theoretical analysis to prove
that OOA converges to a suboptimal solution with
polynomial time complexity. Moreover, we conduct
extensive simulations based on real world data.
Simulations results verify that OOA achieves near-
optimal service delay under strict energy constraint.
Particularly, OOA can reduce the service delay by up
to 33% with 66% energy consumption less than three
benchmark algorithms.

In the rest of the paper, we review related work in Sec. 2.
The system model of UAV-assisted MEC is introduced in
Sec. 3. Our online algorithm, OOA, is proposed in Sec. 4.
The performance of OOA is evaluated in Sec. 5 and Sec. 6
concludes the paper.

2 RELATED WORK

2.1 Service Caching

Xu et al. [7] investigate service caching in MEC network and
develop a game-theoretical mechanism for resource shar-
ing among service providers. In [11] and [12], the authors
focus on the cooperative caching in edge computing via
distributed online learning. Caching contents considering
users’ content preferences is studied in [5], [6], [13]. How-
ever, these studies can’t be applied to UAV-assisted MEC
directly due to the mobility and energy limit of UAVs.
Caching in UAVs has also been studied in recent years.
Gu et al. [14] consider content caching, UAV deployments,
and transmitting power allocation in Satellite-UAV-Vehicle-
Integrated Networks. Zhang et al. [15] use a dynamic UAV
trajectory scheduling algorithm to maximize the caching
duration. Li et al. [16] minimize expected user delay by using
mean field game theory to model caching and trajectory
problems. Most of the above papers either consider caching
a fixed number of services, assume the size of different
services is the same, or fail to give rigorous proof for the
theoretical performance of the caching algorithm. Besides,
these papers only consider caching and can’t make on-
line offloading decisions. Different from these papers, we
propose an online algorithm that jointly optimizes service
caching, UAV trajectory, and task offloading.

2.2 Task Offloading

Wang et al. [17] design an iterative cooperation algorithm to
dynamically determine multiple UAVs’ trajectories, seeking
the maximization of the number of served demands. Ning
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et al. [18] aim to maximize the throughput of UAVs by
optimizing UAV trajectory and task scheduling. Zhu et al.
[19] model the offloading of tasks from a cellular network to
a UAV cloudlet as a Markov decision process to minimize
the average response time. Both Sun et al. [20] and Tang et al.
[21] jointly optimize the UAV trajectory, resource allocation,
and task offloading to minimize the energy consumption of
the UAV. However, the above papers ignore the problem
of service caching. It’s crucial to study the service caching
on UAVs with restricted storage space, since different tasks
may demand different services stored on UAVs.

2.3 Joint Service Caching and Task Offloading

In [22] and [25], the authors estimate content popularity
and deploy UAVs to minimize the request delay. Both Ji
et al. [26] and Zhang et al. [27] consider jointly optimizing
UAV trajectory, caching placement, and transmitting power
to implement content delivery. Nevertheless, these papers
can’t satisfy the energy limit of UAVs. Wu et al. [28] presents
a CNN-based model to make online caching and offloading
decisions, yet fails to consider the communication and com-
putation resource limits of UAVs. Qu et al. [23] optimizes
service caching, UAV trajectory, computation resource al-
location, and task scheduling simultaneously to minimize
energy consumption. However, [23] is designed for offline.
Zhou et al. [24] develop a two-time-scale online service
caching and task offloading algorithm for UAV-assisted
networks. But [24] updates caching decisions periodically
according to tasks received at one time slot, and can’t
strictly satisfy the energy budget of UAVs. In this paper,
we make dynamic service caching, UAV trajectory, and task
offloading decisions under strict energy budget constraints.
Considering the time-varying services preferences and lo-
cations of UEs, we dynamically update caching decisions
according to the preferences of UEs for services. What’s
more, we consider using the energy of UAVs in a reasonable
way to minimize the service delay in the long term.

3 SYSTEM MODEL

3.1 System Overview
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Fig. 1: An illustration of UAV-assisted MEC.

UAV-assisted MEC Scenario. As shown in Fig. 1, we
consider a UAV-assisted MEC system with U rotary-wing
UAVs, a base station (BS) and a remote cloud. The system
provides S types of services for I terrestrial UEs. Let X

denote the integer set {1, 2, . . . , X}. For example, I denotes
{1, 2, . . . , I}. The system time span is divided into T time
slots. UEs may generate tasks requiring services at any
time slot. Each task requires one specific type of service. To
satisfy the delay requirement, all tasks must be processed
at one time slot. However, the BS may be overloaded in
some scenarios. Thus, some tasks need to be offloaded to
the UAVs or the remote cloud. The remote cloud provides
ample computing power for all kinds of services while
resulting in high communication delay. In order to reduce
the delay, services are cached in UAVs in advance. At the
beginning of each time slot, BS decides whether to update
the cached services in UAVs or not. If so, UEs firstly upload
their personal preferences for services to the BS, and then
the BS makes caching decisions according to UEs’ interests.
Next, the BS collects tasks from UEs and decides whether to
offload them to UAVs or to the remote cloud.

Offloading Requirement. Tasks from UEs can be offload
to UAVs only if following two conditions are satisfied:
i) the UAV has enough communication and computation
resources to process the task; ii) the service that the UE’s
task requires is cached in the UAV. Otherwise tasks will be
offloaded to the remote cloud.

3.2 Service Caching

Caching Strategy. In order to reduce the computation delay,
services are pre-cached on UAVs. Let Wu be the storage
capacity of UAV u, and the storage space required by service
s is denoted by cs. Due to the preferences of UEs are time-
varying, the cache decisions should be dynamic updated.

UE Preference. The intuition in designing efficient
caching strategy is to cache services according to the pref-
erence of UEs. Let Pi,s ∈ [0, 1] be the probability of UE
i generating a task requiring service s. Since one UE can
generate multiple tasks at the same time, the expectation of
the number of tasks generated by UE i is

∑

i Pi,s. At first,
Pi,s is uploaded by UEs. As the BS processes more tasks
from UEs, the BS will update Pi,s based on the historical
information of tasks.

Decision Variables and Hit Ratio. The BS decides which
services to cache. Let xu,s denote whether service s is cached
in UAV u (xu,s = 1) or not (xu,s = 0). Similar to [5], [29],
[30], the hit ratio is used to measure the performance of a
caching strategy. The hit ratio of UE i is the probability that
tasks generated by UE i can be offloaded to UAVs:

Hi,avg =

∑

s Pi,s

(

1−
∏U

u=1 (1− ωi,uxu,s)

)

∑

s Pi,s
,

where ωi,u is the probability that UE i is within the covering
radius of UAV u. ωi,u is calculated according to the UAVs’
historical trajectories.

Caching Problem Formulation. We aim to maximize the
sum of the hit ratio of UEs. The caching problem can be
formulated as:

(P1) max
∑

i→I Hi,avg
∑

s→S csxu,s ≤Wu, ∀u, (1a)

xu,s ∈ {0, 1}, ∀u, ∀s. (1b)
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Constraint (1a) represents the storage constraint of UAV u.
Challenges. (P1) is a special case of multi-dimension

knapsack problems, which is known to be NP-hard [31].
Moreover, according to [32], it’s hard to find an efficient
polynomial time approximation scheme (EPTAS)1.

3.3 Task Offloading

Task Information. Let dti,s be the size of task requiring
service s generated by UE i at slot t, and µs be the workload
(in terms of CPU cycles) of service s per unit data.

UAV Properties. We consider a 3-D Cartesian coordinate
system, in which the horizontal coordinate of UAV u at
time slot t is denoted as Gt

u = (Xt
u, Y

t
u) (we assume that

UAV u flies at a fixed altitude Zu). The horizontal distance
between UE i and UAV u at time slot t is calculated as:
Dt

i,u =
√

(Xt
i −Xt

u)2 + (Y t
i − Y t

u)2, where Gt
i = (Xt

i , Y
t
i ) is

the horizontal coordinate of UE i at time slot t. Following
[33], the uplink data rate of UE i with UAV u at time slot t
is calculated as:

rtu,i = B log2

(

1 +
δpu

(

Dt
i,u

)2
+ Z2

u

)

,

where B is the bandwidth, δ is SNR, and pu is the trans-
mission power of UAV u. Tasks from UE i can be offloaded
to UAV u only when UE i is within the UAV’s maximum
horizontal covering radius Rmax

u . Meanwhile, suppose that
the UAV flies at a constant speed, therefore the maximum
flight distance of UAV u between two time slots is limited,
denoted as Dmax

u . Due to the communication and compu-
tation resource limits of UAVs, UAV u can only process at
most Nmax

u tasks at one time slot.
Decision Variables. Suppose that each task can be of-

floaded to at most one UAV or the remote cloud. Following
decisions need to be made jointly by the BS at each time
slot: i) at ∈ {0, 1}, denotes whether the services cached in
UAVs will be updated at time slot t; ii) yt

i,u,s(y
t
i,0,s) ∈ {0, 1},

represents whether the task from UE i requiring service s
is offloaded to UAV u (the remote cloud) at time slot t; iii)
Gt

u = (Xt
u, Y

t
u), the horizontal coordinate of UAV u at time

slot t.
Service Delay. The delay experienced by UEs when of-

floading tasks consists of two parts: i) Communication Delay:
The communication delay includes the delay to upload the
task and the delay to return the computation result. Since
the size of the computation result is generally much smaller
than the task’s input size, the delay to return the computa-
tion result is ignored here. Thus the communication delay

can be calculated as: Lt
i,comm =

∑

s(
dti,sy

t
i,0,s

r0
+
∑

u

dti,sy
t
i,u,s

rt
u,i

),

where r0 is the average uplink data rate of UE with the
remote cloud. ii) Computation Delay: The remote cloud is
assumed to have sufficient computing power, hence the
computation delay of the remote cloud can be neglected.
Let fu denote the computing capacity (in terms of CPU
cycles) of UAV u for each task. Therefore the computa-
tion delay of UE i at time slot t can be calculated as:

Lt
i,comp =

∑

s

∑

u

dti,sµsy
t
i,u,s

fu
. The overall delay of UE i at

time slot t is calculated as:

1. An EPTAS is a polynomial time (1 − ε)-approximation scheme
whose running time is f( 1ε )|I|

O(1) for some function f and any input
I .

Lt
i = Lt

i,comm + Lt
i,comp.

Energy Consumption of UAVs. The battery capacity for
UAV u is limited, denoted as Emax

u . We consider four types
of energy consumption for UAV u at time slot t. i) Communi-
cation Energy Consumption: The communication energy con-
sumption is proportional to the communication delay, thus

can be calculated as: Et
u,comm =

∑

i

∑

s pu
dti,sy

t
i,u,s

rt
u,i

. ii) Com-

putation Energy Consumption: The unit energy consumption
per time of UAV u when executing tasks is denoted as γu.
Thus the computation energy consumption of UAV u at time

slot t can be calculated as: Et
u,comp = γu

∑

i

∑

s

dti,sµsy
t
i,u,s

fu
. iii)

Flight Energy Consumption: Let ωu denote the unit flying en-
ergy consumption of UAV u. The flight energy consumption
can be calculated as: Et

u,fly = ωu

∥

∥Gt
u −Gt−1

u

∥

∥ . iv) Caching
Energy Consumption: The caching energy consumption is
caused by storing services. Let η denote the unit energy
consumption per data for storing. The caching services set of
UAV u at time slot t is represented by St

u. The caching energy
consumption can be calculated as Et

u,cach =
∑

s→St
u/St−1

u
ηcs.

The overall energy consumption of UAV u at time slot t is
calculated as:

Et
u = Et

u,comm + Et
u,comp + Et

u,fly + atEt
u,cach.

Important notations are listed in Table I for easy reference.
TABLE 1. Notations

U/U number/set of UAVs
I/I number/set of UEs
S/S number of types/set of services
T/T number/set of time slots

(Xt
u, Y

t
u) horizontal coordinate of UAV u at time slot t

Rmax
u maximum coverage radius of UAV u

Dt
i,u distance between UE i and UAV u

rtu,i uplink date rate between UE i and UAV u at time t
Nmax

u number of tasks UAV u can process at one time slot
Wu storage capacity of UAV u
cs storage space required by service s
Pi,s probability of UE i generating a task requiring service s
dti,s size of task generated by UE i at time t for service s
xu,s whether the service s is cached at UAV u
yt
i,u,s whether UE i’s task requiring service s is offloaded

to UAV u at time slot t

Offloading Problem Formulation. The task offloading
problem is formulated as:

(P2) min
∑

t→T

∑

i→I Lt
i

yt
i,u,s

(

Dt
i,u

)2
≤ (Rmax

u )2 , ∀i, ∀u, ∀s, ∀t (2a)

yt
i,u,s ≤ xu,s, ∀i, ∀u, ∀s, ∀t, (2b)
∑

i→I

∑

s→S yt
i,u,s ≤ Nmax

u , ∀u, ∀t, (2c)
∑U

u=0 y
t
i,u,s = 1, ∀i, ∀s, ∀t, (2d)

∑

t→T Et
u ≤ Emax

u , ∀u, (2e)
∥

∥Gt+1
u −Gt

u

∥

∥ ≤ Dmax
u , ∀u, ∀t, (2f)

at ∈ {0, 1}, yt
i,0,s ∈ {0, 1}, yt

i,u,s ∈ {0, 1}, ∀u, ∀s, ∀t. (2g)

Constraint (2a) and (2b) ensure that the task can be offload
only if the UE is within the coverage radius of UAV and the
UAV has cached the corresponding service. Constraint (2c)
limits the maximum number of tasks offloading to UAV u at
one time slot. Constraint (2d) ensures that tasks generated
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at time slot t must be offloaded at the current time slot.
Constraint (2e) is UAV u’s energy constraint, where Emax

u is
the battery capacity of UAV u. Constraint (2f) captures the
maximum fly distance of UAV between two time slots (‖·‖
is the L2-norm).

Challenges. i) The offloading requests arrive online, and
the BS has to make offloading decisions on the fly. ii) (P2) is
a mixed-integer nonlinear programming (MINLP). Even in
the offline setting, (P2) is NP-hard (With fixed UAV trajec-
tories, the problem is a multi-dimension knapsack problem,
which is NP-hard [31]). iii) Constraint (2e) in (P2) involves
all time slots while other constraints refer to one time slot,
which further poses challenges in the algorithm design. iv)
The solution of (P1) will affect (P2). The coupling between
(P1) and (P2) makes the difficulty of the problem further
escalated.

4 ONLINE ALGORITHM DESIGN

4.1 Algorithm Idea and Overall Algorithm

In this section, we design an online algorithm, OOA, that
dynamically updates services caching and determines task
offloading at each time slot to minimize the overall service
delay. Fig. 2 shows the main idea.

     Cache         Offloading

     One-round Problem

Dependent 
Rounding

IAU

Reformulate

      Cache with     
Preference

approxi-
mate ratio

covergence 

Decouple

Fix Y Fix G

OOA

Approxima-
tion

GCA

Fig. 2: Main Idea of OOA.

i. At the beginning of each time slot, OOA decides
whether to update services cached in UAVs based on
the gap between the average hit ratio of previous of-
floaded tasks and the expected hit ratio calculated by
the caching decision. If so, OOA solves P1 by a greedy
algorithm GCA according to UEs’ preferences for ser-
vices and UAVs’ historical trajectories. Then, by scaling
the energy consumption into the objective function
using an energy weighting factor, P2 is decomposed
into one-slot problems Pt. Next, OOA solves Pt by
an iterative algorithm IAU to obtain task offloading
decisions for time slot t.

ii. For caching problem P1, we first reformulate the origin
problem by replacing the objective function with an
equivalent submodular function H . Then, the algorithm
GCA greedily makes caching decisions to maximize
the sum of the hit ratio. The theoretical performance
of the algorithm GCA is guaranteed, owning to the
submodularity of H .

iii. For one-slot task offloading problem Pt, we propose
an iterative algorithm IAU that alternately optimizes
UAV trajectory and task offloading. First, IAU fixes
task offloading decsions Y to obtain subproblem Pt1 ,
which is non-convex. To solve Pt1 , Pt1 is converted to

a simplified problem P
′
t1

by replacing the non-convex
part in the objective function with an upper bound. P′

t1

is a convex problem and can be solved by standard
convex solver CVX [34]. Second, with the fixed UAV
trajectory, IAU obtains subproblem Pt2 , which is a 0-1
integer linear programming problem. We first relax the
variables in Pt2 to fractional and get the fractional solu-
tion by interior point method. Then we use a dependent
rounding algorithm DR to round the fractional solution
into the integer solution.

Overall Algorithm Details. We summarize our algo-
rithm OOA in Alg. 1. Caching decisions and the expected
hit ratio He =

∑
i Hi,avg

I are initialized according to Alg. 2
before offloading tasks (line 2). At the beginning of each
time slot t > 1, if the average hit ratio Ĥt−1

avg is significantly
smaller than He, the cached services in UAVs, as well as the
expected hit ratio, will be updated (lines 5-8)2. Then UAV
trajectory and task offloading decisions are made according
to Alg. 4 (line 12). At the end of the time slot, the energy
weighting factor and the average hit ratio Ĥt are updated
(lines 13-14).

Algorithm 1 Overall Online Algorithm (OOA).

Input: Hit ratio tolerance κ, energy weighting factor α
Output: Service caching Xt, UAV trajectory G

t and task
offloading Y

t, ∀t ∈ T
1: Initialize λt

u = 0, at = 0, ta = 1, ∀t, ∀u;
2: Initialize caching decisions X0 and the expected hit ratio

He according to Alg. 2;
3: for t = 1 : T do
4: if t &= 1 and He − Ĥt−1

avg > κ then
5: Set at = 1, ta = t;
6: Update Pi,s according to Eq. (3)
7: Update Xt according to Alg. 2;
8: Update He based on Xt;
9: else

10: Update Xt = Xt−1;
11: end if
12: Obtain G

t,Yt according to Alg. 4;
13: Update λt

u according to Eq. (6);
14: Update Ĥt

avg according to Eq. (4);
15: end for

Let qi,s,t be the number of tasks requiring service s
generated by UE i until slot t, and P ∗

i,s be the task pref-
erence uploaded by UE i. Considering both the historical
information of tasks and task preference uploaded by UEs,
Pi,s after time slot t can be calculated as:

Pi,s =
t
T

·
qi,s,t
T

+ (1−
t
T
)P ∗

i,s. (3)

Let Υt = {(i, s)|dti,s > 0, ∀i ∈ I, ∀s ∈ S} be the task set at
time slot t, Υt

0 = {(i, s)|dti,s > 0 ∧ yt
i,0,s = 1, ∀i ∈ I, ∀s ∈ S} be

the task set that is offloaded to the remote cloud at time slot
t, and ta be the time slot when the caching was last updated.
Then, Ĥt

avg are calculated as:

Ĥt
avg = 1−

∑t−1
t′=ta

|Υt′
0 |

∑t−1
t′=ta

|Υt′ |
. (4)

4.2 Caching Algorithm

Reformulation. Let Q = U × S denote the caching ground
set, where (u, s) ∈ Q indicates that UAV u caches service s.
We define a set function H on subsets Ψ of Q:

2. The value of the hit ratio tolerance κ can be adjusted to fit different
scenarios.
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H(Ψ) =
∑

i→I

∑

s→S

Pi,s

(

1−
∏

u→Ψ(s)

(1− ωi,u)
)

/(
∑

i

Pi,s),

where Ψ(s) = {u|(u, s) ∈ Ψ}. Denote Ψ[u] = {s|(u, s) ∈ Ψ},
then problem P1 can be reformulated as:

(P1′) max
Ψ⊆Q

H(Ψ)
∑

s→Ψ[u] cs ≤Wu, ∀u ∈ U . (5a)

Lemma 1. Function H is a monotone non-increasing submodu-
lar function.

Proof. We first proof that H is monotone non-
increasing. Define H(X|Ψ) = H(Ψ ∪ X) − H(Ψ). For
Ψ ⊆ Q and (u0, s0) ∈ Q\Ψ, we have H

(

(u0, s0)|Ψ
)

=
∑

i→I Pi,s0

(

ωi,u0
xu0,s0

∏

u→Ψ(s0)
(1 − ωi,uxu,s)

)

≥ 0.

Next we proof the submodularity of H . For
Ψ1 ⊆ Ψ2,Ψ2 ⊆ Q, and (u0, s0) ∈ Q\Ψ2, we have

H
(

(u0, s0)|Ψ1

)

−H
(

(u0, s0)|Ψ2

)

=
∑

i→I Pi,s0

(

ωi,u0
xu0,s0

(

1−

∏

u→Ψ2(s0)\Ψ1(s0)
(1− ωi,uxu,s)

)

×
∏

u→Ψ1(s0)
(1− ωi,uxu,s)

)

≥

0, which concludes the lemma. !

Based on the submodularity of H , we present a greedy
algorithm GCA to solve problem P1′ with theoretical per-
formance guarantee. The key idea is to progressively select
UAV-service pair that brings the highest marginal increase
in the sum of the hit ratio while satisfying the storage
constraints.

Algorithm 2 Greedy Caching Algorithm Design (GCA)

Input: cs,Wu, ωi,u, Pi,s, ∀i ∈ I, ∀u ∈ U , ∀s ∈ S
Output: xu,s, ∀u ∈ U , ∀s ∈ S

1: Initialize Ψ = ∅, V = {(u, s)|u ∈ U , s ∈ S}, xu,s = 0,W ′
u =

Wu, ∀u ∈ U , ∀s ∈ S;
2: while |V | > 0 do
3: (û, ŝ) = argmax(u,s)→V

H(Ψ∪(u,s))−H(Ψ)
cs

;
4: Ψ = Ψ ∪ (û, ŝ);
5: V = V \(û, ŝ);
6: xû,ŝ = 1,W ′

û = W ′
û − cŝ;

7: for (û, s) ∈ V do
8: if cs > W ′

û then
9: V = V \(û, s);

10: end if
11: end for
12: end while

Caching Algorithm Details. The algorithm GCA is de-
scribed in Alg. 2. First, GCA initializes the greedy solution
set Ψ, available UAV-service pair set V and remaining
storage space W ′

u for each UAV (line 1). Then, in each loop,
GCA successively selects (u, s) pair in V with the highest
increment for the objective function H per unit storage cost
(line 3). The pair chosen in line 3 is added into Ψ and
removed from V (lines 4-5). The remaining storage space
of the UAV is updated in line 6. After adding a pair into Ψ,
pairs that do not satisfy the storage constraint are removed
from V (lines 7-11).

Now we analyze the theoretical performance of Alg. 2.
Previous works about service caching also apply greedy
algorithm to solve submodular function maximization prob-
lems [5]. However, the proofs of their algorithms are valid
only when the size of different services is the same. We

consider different size of the cached services and give proof
of the approximation ratio in this case. The approximation
ratio of Alg. 2 is given in Theorem. 1.

Theorem 1. Let k = minu Wu

maxs cs
, ε = k

k−1
, Alg. 2 is (1 − e−ε)-

approximate algorithm to problem P1.

Proof. Let Xi denote the i-th element picked by Line 3
in Alg. 2. Let Ψi = (X1, X2, ....Xi) denote the greedy
solution set after i-th picking. The greedy solution is defined
as Ψl = (X1, X2, ....Xl) (the greedy algorithm picked l
elements before it stops). c() is the storage cost function.
Let OPT denote the optimal solution of problem P1. Let
B =

∑
u
Wu, base on the definition of greedy rule and k,

we have
∑l

i=1 c(Xi) >= (1− 1
k )B,L ≤ B. Using Lemma 3 in

[35], we have

H(Gl) ≥

(

1−
l
∏

k=1

(

1−
c (Xk)

L

)

)

H(OPT )

≥

(

1−
l
∏

k=1

(

1−
c (Xk)
B

)

)

H(OPT )

≥

(

1−
l
∏

k=1

(

1−

∑l
i=1 c (Xi)

Bl

))

H(OPT )

≥

(

1−
l
∏

k=1

(

1−
(1− 1

k )B

Bl

)

)

H(OPT )

=

(

1−
(

1−
ε
l

)l
)

H(OPT ) ≥ (1− e−ε)H(OPT )

The first inequality is the Lemma 3 in [35]. The second
inequality is trivial since L ≤ B. The third inequality holds
because the inequality of arithmetic and geometric means.
The fourth inequality is due to

∑l
i=1 c(Xi) ≥ (1 − 1

k )B. The
last inequality is true since g(x) = 1 − (1 − ε

x )
x, ε > 0 is

monotone decreasing in (0,+∞) and limx→+∞ g(x) = 1 −
e−ε. !

4.3 Offloading Algorithm

One-slot Offloading Problem. To eliminate the coupling
of energy consumption in constraint (2e), for each UAV
u, we design an energy weighting factor λt

u to decompose
problem P2 into one-slot problems. How the energy budget
of UAVs is spent will significantly affect the total service
delay in the entire period. Running out of the energy budget
of UAVs too soon will limit the future decision space for task
offloading. The BS has to select UAVs with higher delay
in the later stage, which further increases the service delay
in the whole time span. Based on the analysis above, the
energy weighting factor should increase as the remaining
energy of the UAV decreases. Besides, the factor should
have lower and upper bounds, which represent two extreme
cases, i.e., no energy usage and energy exhaustion. Accord-
ing to these characteristics, we design λt

u which satisfies
forementioned requirements as follows:

λt
u =

L̄t∑t−1
t′=1 E

t′
u

(Emax
u )2

, ∀t ∈ T , (6)

where L̄t =
∑t−1

t′=1

∑
i∈I Lt′

i
∑t−1

t′=1
|Υt′ |

is the average service delay of

tasks before time slot t. The initial value of λt
u is zero.

λt
u increases when the remaining energy of the UAV goes

down, and reaches the maximum value when the UAV
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has no energy. Then the one-slot task offloading problem
is formulated as:

(Pt) min
∑

i→I Lt
i +
∑

u→U λt
uE

t
u

yt
i,u,s

(

Dt
i,u

)2
≤ (Rmax

u )2 , ∀i, ∀u, ∀s (7a)

yt
i,u,s ≤ xu,s, ∀i, ∀u, ∀s (7b)
∑

i→I

∑

s→S yt
i,u,s ≤ Nmax

u , ∀u, (7c)
∑U

u=0 y
t
i,u,s = 1, ∀i, ∀s, (7d)

Et
u ≤ Et

u,r, ∀u, (7e)
∥

∥Gt+1
u −Gt

u

∥

∥ ≤ Dmax
u , ∀u, (7f)

yt
i,0,s ∈ {0, 1}, yt

i,u,s ∈ {0, 1}, ∀u, ∀s. (7g)

where Et
u,r = Emax

u −
∑t−1

t′=1 E
t′
u is the remaining energy of

UAV u at the beginning of time slot t.
We further decompose problem Pt into two subprob-

lems, i.e., UAV trajectory and task offloading.

4.3.1 UAV Trajectory

With the fixed task offloading decisions, the UAV trajectory
subproblem is formulated as:

(Pt1) min
∑

i→I Lt
i,comm +

∑

u→U λt
u(E

t
u,comm + Et

u,fly)

s.t. (7a), (7e), (7f).

Problem Pt1 is non-convex in Gt
u due to the logarithmic

part. We try to find an approximation for the non-convex
part in problem Pt1 so that the complexity is decreased.
It’s easy to verify that function f(x) = 1

ln(1+ 1

x
)
, ∀x > 0 is a

concave function, thus we have:

1
rt
u,i

≤ ln 2
B

(

f ′(ζ)
‖Gt

u−Gt
i‖

2
+Z2

u

δpu
− ζ) + f(ζ)

)

.

where ζ =
Z2

u

δpu
. Then the simplified UAV trajectory subprob-

lem is given as:

(P′
t1) min

∑

i

∑

u

∑

s f
′(ζ) ln 2

(

(1+λt
upu)dti,sy

t
i,u,s‖Gt

u−Gt
i‖

2

Bδpu

)

+
∑

u λt
uωu

∥

∥Gt
u −Gt−1

u

∥

∥

s.t. (7a), (7f),
∑

i

∑

s pud
t
i,sy

t
i,u,s

ln 2
B

(

f ′(ζ)(
‖Gt

u−Gt
i‖

2
+Z2

u

δpu
− ζ) + f(ζ)

)

+ωu

∥

∥Gt
u −Gt−1

u

∥

∥ ≤ Et
u,r − (Et

u,comp + atEt
u,cach), ∀u.

Problem P
′
t1 is convex on Gt

u and can be solved by CVX.
In this way, the UAV trajectory subproblem is solved.

4.3.2 Suboptimal Task Offloading

With fixed UAV trajectory, we merge constraint (7a) and
constraint (7b) into one constraint, then the task offloading
problem is rewritten as:

(Pt2) min
∑

i→I

∑

s→S

∑

u→U

(

1+λt
upu

rt
u,i

+
(1+λt

uγu)µs

fu

− 1
r0

)

dti,sy
t
i,u,s

yt
i,u,s ≤ ≥1

(

min(
(Rmax

u )2

(Dt
i,u

)2
, xu,s)

)

, ∀i, ∀u, ∀s (11a)

∑

i→I

∑

s→S yt
i,u,s ≤ Nmax

u , ∀u, (11b)
∑

u→U yt
i,u,s ≤ 1, ∀i, ∀s, (11c)

∑

i

∑

s(
pu
rt
u,i

+ γuµs

fu
)dti,sy

t
i,u,s ≤ Et

u,r − Et
u,fly − atE

t
u,cach, ∀u,

(11d)

yt
i,u,s ∈ {0, 1}, ∀i, ∀u, ∀s, (11e)

where (x) = 1 if x ≥ 1, otherwise (x) = 0. By relaxing all
integral decision variables to fractional, problem Pt2 then
becomes a continuous linear program P′

t2
.

We first use interior point method [36] to obtain a frac-
tional solution of problem P′

t2. Then we introduce a depen-
dent rounding algorithm (DR) in Alg. 3 that converts the
fractional solution into the integer solution with theoretical
performance guarantee. For preparation of the rounding
procedure, DR first constructs a bipartite graph (A,B,E)
based on fractional solution Y ∗. The steps to construct
bipartite graph are as follows: i) Let A = {ais|∀i ∈ I, ∀s ∈ S}.
The node ais in A denotes the task requiring service s from
UE i. ii) Let B = {bu|∀u ∈ U}. The node bu in B denotes the
UAV u. iii) For ais ∈ A and bu ∈ B, put the edge (ais, bu) into
E with weight eis,u = yt∗

i,s,u.

Algorithm 3 Dependent Rounding Algorithm (DR), ∀t

Input: Fractional solution Y
∗

Output: Integer solution Ȳ

1: Construct bipartite graph (A,B,E) based on Y
∗;

2: while E &= ∅ do
3: Remove edges in E such that eis,u ∈ {0, 1};
4: while there exists a cycle or longest path Γ do
5: Divide Γ into two matchings M1 and M2;

6: η1
def
= min{η : (∃(ais, bu) ∈ M1 : eis,u + η =

1)
∨

(∃(ais, bu) ∈M2 : eis,u − η = 0)}.

7: η2
def
= min{η : (∃(ais, bu) ∈ M1 : eis,u − η =

0)
∨

(∃(ais, bu) ∈M2 : eis,u + η = 1)}.
8: With the probability η2

η1+η2
,

Set eis,u = eis,u + η1, ∀(ais, bu) ∈ M1 and eis,u =
eis,u − η1, ∀(ais, bu) ∈M2;

9: With the probability η1
η1+η2

,
Set eis,u = eis,u − η2, ∀(ais, bu) ∈ M1 and eis,u =

eis,u + η2, ∀(ais, bu) ∈M2;
10: end while
11: end while
12: Set ȳt

i,u,s = eis,u, ∀i, ∀u, ∀s;
13: Set ȳt

i,0,s = 1−
∑

u→U ȳt
i,u,s, ∀i, ∀s;

14: Return Ȳ

Rounding Algorithm Details. In Alg. 3, DR first elim-
inates edges with integral weights in line 3. Lines 4-10
provide the rounding process. In each iteration, DR finds a
cycle or longest path and splits it into two matchings (line 5).
Then, with carefully designed probability, weights of edges
in one matching will increase while weights of edges in the
other matching are decreased (lines 6-9). Finally, the integer
solution is updated in lines 12-13.

Now we study the theoretical performance of Alg. 3 and
whether the integer solution returned by Alg. 3 satisfies
constraints of problem Pt2 .
Lemma 2. Let Pt2 be the objective function of problem Pt2 .
Given the fractional solution Y ∗ of Pt2 and the corresponding
integer solution Ȳ returned by Alg. 3, we have:

E(Pt2(Ȳ )) = E(Pt2(Y
∗)).

Proof. We first proof that E(ȳt
i,u,s) = yt∗

i,u,s. Suppose Alg. 3
stops after J iterations. Let ejis,u denote the weight of edge
(ais, bu) after j iterations. As a result, we have e0is,u = yt∗

i,u,s

and eJis,u = ȳt
i,u,s. Now Consider iteration j + 1.

Case 1: The edge is not part of the cycle or the longest
path, then its weight remains intact.
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Case 2: The weight of the edge has been modified after
iteration j + 1, according to lines 8-9 in Alg. 3 we have

E(ej+1
is,u) =

η2
η1 + η2

(E(ejis,u) + η1) +
η1

η1 + η2
(E(ejis,u)− η2)

=
η1

η1 + η2
E(ejis,u) +

η2
η1 + η2

E(ejis,u) = E(ejis,u).

In both cases E(ej+1
is,u) = E(ejis,u) holds. Thus we

have E(ȳt
i,u,s) = E(eJis,u) = · · · = E(e0is,u) =

yt∗
i,u,s. Notice that problem Pt2 can be reformulated as

minY
∑

i∈I

∑
s∈S

∑
u∈U mt

i,u,sy
t
i,u,s, where mt

i,u,s = (
1+λt

upu
rt
u,i

+

(1+λt
uγu)µs

fu
− 1

r0
)dti,s, ∀i, u, s, t. Using E(ȳt

i,u,s) = yt∗
i,u,s, we

obtain E(Pt2(Ȳ )) = E(Pt2(Y
∗)). !

Lemma 3. Under the solution Ȳ returned by Alg. 3, constraint
(11a), (11b) and (11c) must be satisfied, while constraint (11d) are
in expectation satisfied.

Proof. It’s easy to verify that constraint (11a) must be sat-
isfied since (x) ∈ {0, 1}. As for the constraint (11b) and
(11c). Consider a vertex v in the bipartite graph constructed
in Alg. 3. At any iteration, it’s trivial that (11b) and (11c)
hold If v has at most one edge incident on it. Now consider
v has at least two edges incident on it. For cycle or longest
path Γ and two matchings M1,M2, v must have exactly two
edges in Γ, and one of them is in M1 while the other is
in M2. Thus the modification of weights in Alg. 3 won’t
affect

∑

u eis,u and
∑

i,s eis,u, i.e.,
∑

u ȳt
i,u,s and

∑

i,s ȳ
t
i,u,s,

hence (11b) and (11c) hold. Finally, we proof that con-
straint (11e) is satisfied. Constraint (11e) can be rewritten
as
∑

i→I

∑

s→S nt
i,u,sy

t
i,u,s ≤ Et

u,r − Et
u,fly − atE

t
u,cach, where

nt
i,u,s =

pudti,s
rt
u,i

+
γudti,s

fu
. The following proof is similar to the

proof of Theorem. 2 since E(ȳt
i,u,s) = yt∗

i,u,s. !

Lemma 4. Alg. 3 converges in polynomial time.

Proof. Since at least one edge is removed from E per iter-
ation, the while loop in lines 2-11 of Alg. 3 terminates in
O(|E|) = O(IUS) iterations. For each iteration, a cycle or
longest path can be found in O(|A ∪ B|) = O(IS + U) steps
via Depth First Search(DFS). Lines 8-9, 12-13 in Alg. 3 also
take O(IUS) steps. Therefore the running time of Alg. 3 is
O((IS + U)IUS). !

4.3.3 Iterative Algorithm Design

Algorithm 4 Iterative Algorithm For UAV Trajectory and
Task Offloading (IAU).

Input: Tolerance φ, maximum iterations Imax = 100
Output: Solution {G,Y}

1: Initialize a feasible solution {G0,Y0}, and iteration index
i = 1;

2: while i ≤ Imax do
3: With fixed Y

i−1, obtain G
i by solving P

′
t1;

4: Fix G
i, obtain fractional solution Y

i∗ by solving P
′
t2;

5: obtain integer solution Y
i according to Alg. 3;

6: if
∣

∣Pt(G
i,Yi)− Pt(G

i−1,Yi−1)
∣

∣ ≤ φ then
7: Break;
8: else
9: Set i← i+ 1.

10: end if
11: end while
12: Return {Gi,Yi}

To obtain a suboptimal solution to problem Pt, we
develop an alternating optimization-based algorithm (IAU)

in Alg. 4 that iteratively solves two subproblems. In Alg.
4, IAU iteratively optimizes UAV trajectory (line 3) and
task offloading (lines 4-5). The complexity and convergence
analysis of Alg. 4 is given as follows:

Lemma 5. Alg. 4 converges with polynomial complexity.

Proof. For the convergence, we first prove that the objec-
tive function Pt(G,Y) keeps non-increasing when updat-
ing {G,Y}. According to lines 3-5 in Alg. 4, we have
Pt(G

i−1,Yi−1) ≥ Pt(G
i,Yi−1) ≥ Pt(G

i,Yi), where the
first inequality is due to the sub-optimality of UAV trajec-
tory G

i. The second inequality holds because of the sub-
optimality of Y

i by dependent rounding. In addition, the
objective function Pt(G,Y) is always non-negative. There-
fore, the objective function keeps non-increasing after every
iteration, which is also finitely lower-bounded by zero. For
the complexity, in line 4 of Alg. 4, problem P

′
t2

is solved
by interior point method, whose computation complexity is
O((IUS)3). Following Lemma 4, the running time of Alg. 3
is O((IS + U)IUS). To summarize, the complexity of Alg. 4
is O(Imax((IUS)3)+ (IS+U)IUS) = O(Imax(IUS)3)) where
Imax is the maximum iteration times of Alg. 4, which is
polynomial, and this concludes the lemma. !

The overall performance of OOA is given by the follow-
ing theorem.
Theorem 2. OOA converges in polynomial time.

Proof. First, it’s easy to verify that the complexity of Alg.
2 is O((US)2) , since the while loop in lines 2-12 of Alg. 2
terminates in O(|V |) = O(US) iterations. Therefore, the com-
plexity of Alg. 1 is O((US)2 + T ∗ ((US)2 + Imax(IUS)3))) =
O(TImax(IUS)3). Since the convergence of Alg. 4 is proofed
in Lemma. 5, we obtain that OOA converges in polynomial
time. !

5 PERFORMANCE EVALUATION

5.1 Evaluation Setup

Parameter Settings. We simulate a UAV-assisted MEC net-
work running for T = 100 time slots (a time slot is 20
seconds), with U ∈ [2, 10] UAVs and I ∈ [12, 48] UEs. UAVs
are randomly scattered in a square area of 200× 200 m2. For
the coordinates of UEs, we use the EUA dataset [37], which
contains locations of 125 base stations and 816 mobile users
in Melbourne central business district area. We choose a base
station whose coverage radius is 200 m, and then randomly
choose I users in the coverage of the base station as the
UEs in our simulation. The network provides S = 20 types
of services for UEs. The storage capacity of each UAV is
Wu = 3, while the storage capacity required by service s cs is
within [0.5, 1]. Following [15], [28], we use Zipf distribution
with exponent value 0.6 as the population of services, and
the preferences of UEs Pi,s is derived from the population
of services with a deviation range from [−0.1, 0.1]. The size
of each task is dti,s ∈ [100, 1000] KB. The workload of task
requiring service s is µs = [106, 107] cycles (per bytes). Fol-
lowing the similar setting in [23], [24], [33], the parameters
of UAVs are set as follows: the computation capacity of
UAV for each task fu = 1 GHz, the maximum number
of tasks UAV can process at one time slot Nmax

u ∈ [5, 10],
the maximum flying distance at one slot Dmax

u = 50 m,
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the maximum covering radius of UAV Rmax
u = 200 m, the

fixed altitude Zu = 100 m, the spectrum bandwidth of each
communication channel is B = 1 MHz. As for energy budget
and consumption, according to the properties of DJI Mavic
2 Pro [38], the energy budget of UAV is Emax

u = 4 Wh3. The
transmission power of each UAV is set to pu = 0.1 w. The
unit flying energy consumption is ωu = 6 J/m.

Baselines. We compare OOA with three algorithms.

• RANDOM. Service caching and UAV trajectories are
made randomly, and UEs will offload as many tasks
as possible to UAVs as long as all the constrains are
satisfied.

• DELAY. DELAY makes all the decisions to minimize
the delay just like OOA, without considering saving
energy for the future (i.e., λt

u = 0, ∀u, ∀t).
• TJSO [24]. In TJSO, caching decisions, UAV trajecto-

ries and task offloading are jointly optimized period-
ically. TJSO does not consider strictly satisfying the
energy constraint.

5.2 Evaluation Results

4 5 6 7 8

Number of Types of Services

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xp

e
ct

e
d
 H

it 
R

a
tio

RANDOM

GCA

OPTIMAL

Fig. 3: Expected hit ratio
under different numbers of
types of services.
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Fig. 4: Average hit ratio of
each time slot.

Hit Ratio. Fig. 3 shows the expected hit ratio achieved
by different caching algorithms under different numbers
of types of services. The expected hit ratio decreases with
the increase in the number of types of services because
tasks generated by UEs are more diverse while the storage
space of UAV remains the same. The RANDOM algorithm
randomly caches services in UAVs and performs worst on
the expected hit ratio. The OPTIMAL algorithm gives the
optimal solution to the caching problem (P1), however,
it runs for dozens of minutes. Compared with these two
algorithms, GCA achieves a near-optimal expected hit ratio
within one second. Fig. 4 shows the average hit ratio Ĥt

avg

achieved by OOA and corresponding expected hit ratio He,
where the hit ratio tolerance κ is set to 0.05. It’s seen that the
gap between Ĥt

avg and He is within the tolerance in most
of the time slots. Once He − Ĥt−1

avg > κ, caching decisions is
updated. Fig. 5 shows the expected hit ratio achieved by dif-
ferent caching algorithms under different storage space. The
expected hit ratio increases with the increase in the storage
space since larger storage space allows UAVs to cache more
services. Similar to Fig. 3, among three algorithms, GCA can
always achieve a near-optimal solution, and compared with
the running time of the OPTIMAL algorithm, which takes
several hours, GCA only takes less than 1 second.

3. The battery capacity of DJI Mavic 2 Pro is 59.29 Wh, most of which
is used for hovering.
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Fig. 5: Expected hit ratio with
different storage space Wu.
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Fig. 7: Cumulative energy
consumption.
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Service Delay/Energy Consumption. Fig. 6 and Fig. 7
show the service delay of each time slot and UAVs’ cu-
mulative energy consumption, respectively. Compared with
other three algorithms, OOA achieves the lowest service
delay under strict energy constraints. The service delay of
TJSO is 8% higher than that of OOA in the first 80 time
slots, and lower than that of OOA in the last 20 time slots.
However, TJSO ignores the energy constraint and causes
the highest energy consumption among four algorithms.
DELAY algorithm achieves the lowest service delay at first.
Nevertheless, due to the abuse of energy, most of the energy
budget is used in the first 60 time slots, causing the service
delay of DELAY significantly increases in the last 40 time
slots. The RANDOM algorithm performs worst in service
delay, which is 33% higher than that of OOA. In the last 10
time slots, because OOA strictly follows the energy budget
constraint, and the remaining energy budgets of most UAVs
currently are in short supply, OOA no longer changes the
positions of UAVs. Since the flight energy consumption
occupies much of the previous energy consumption, and
many tasks are offloaded to the remote cloud, the energy
consumption of OOA hardly increases at this time.

Effect of Service Types. Fig. 8 shows the total service
delay under different numbers of types of services after
100 time slots. We can see that OOA always achieves the
lowest service delay with different numbers of service types.
The service delay increases as the number of service types
increases, since a larger number of types of service makes
it difficult for UAVs to cache the services corresponding to
user tasks. In addition, when the number of service types
is small, the service delay achieved by TJSO is close to that
of OOA. As the number of service types increases, the gap
between OOA and TJSO gradually widens, which shows
that it is for TJSO’s caching strategy to adapt to the diverse
service types.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3536319

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



10

150 200 250 300 350

The Coverage Radius

4

6

8

10

12

T
o
ta

l S
e
rv

ic
e
 D

e
la

y 
(s

e
co

n
d
)

103

OOA

TJSO

DELAY

RANDOM

Fig. 9: Service delay with dif-
ferent coverage radius Ru.
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Effect of UAV’s Coverage Radius. Fig. 9 and Fig. 10
show the total service delay and energy consumption under
different coverage radius of UAV after 100 time slots. It can
be observed that the service delay decreases as the coverage
radius of UAV increases, since a larger coverage radius of
UAVs means UAVs are more likely to receive offloaded tasks
from UEs. The service delay of OOA hardly decreases when
the coverage radius is larger than 250 m because a coverage
radius of 250 m is enough for UAVs to cover most of the
UEs in our simulation.
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Fig. 11: Service delay with
different storage space Wu.
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Fig. 12: Energy consumption
with different storage space
Wu.

Effect of UAV’s Storage Space. Fig. 11 and Fig. 12
show the total service delay and energy consumption under
different storage space of UAV after 100 time slots. It can
be observed that the service delay decreases as the storage
space of UAV increases because a larger storage space of
UAV means UAVs are more likely to have the services that
UEs require. As the storage space increases, the gap between
the delay of OOA and TJSO becomes larger. That’s because
a larger storage space will amplify the benefit of OOA’s
dynamic caching algorithm.

Fig. 13: Service delay with
different numbers of UAVs
and UEs.
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Effect of the Number of UAVs and UEs. Fig. 13 show
the total service delay under different numbers of UAV and
UEs after 100 time slots. With a fixed number of UEs, the
increase in the number of UAVs leads to the decrease in the
service delay because more tasks can be offloaded to the
UAVs. Notice that when the number of UEs is small, the
increase in the number of UAVs can only slightly reduce
the service delay, indicating that two UAVs have processed
most of the tasks from UEs on this occasion.

Effect of UAV’s Energy Budget and computing capacity.
Fig. 14 show the total service delay under different energy
budgets Emax

u and maximum served tasks Nmax
u of UAVs

after 100 time slots. As shown in the figure, the service delay
decreases with the increase of UAV’s energy budget and
maximum served tasks, since more tasks can be processed
by UAVs. The service delay of different energy budgets is
similar when Nmax

u is small. This is because in this case,
the bottleneck of the delay is the computing capacity of the
UAV.

6 CONCLUSION

In this paper, we study the joint service caching and task
offloading problem for UAV-assisted MEC Networks. Dif-
ferent from existing work, we consider a practical scenario
where the caching decision is updated dynamically accord-
ing to UE’s preference on services. We further consider the
limited energy capacity of UAVs, and jointly optimize UAV
trajectory and task offloading based on the caching decision.
We propose an online algorithm, OOA, that dynamically
updates services caching and determines task offloading
at each time slot to minimize the overall service delay.
OOA employs a greedy algorithm to greedily make caching
decisions to maximize the sum of the hit ratio, and an
iterative algorithm to alternately determine UAV trajectory
and task offloading. Both the theoretical analysis and large-
scale simulations verify the performance of OOA. Simula-
tion results show that OOA can reduce the service delay by
up to 33%, compared with three benchmarks.
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