Efficient IoT Anomaly Detection via Graph-Based
Neural Architecture Search

Nate Balmain

Lei Jiao

Jun Li

Center for Cyber Security and Privacy Center for Cyber Security and Privacy Center for Cyber Security and Privacy

University of Oregon
Eugene, OR, USA
balmain @uoregon.edu

Abstract—The rapid proliferation of Internet of Things (IoT)
devices has introduced significant challenges in securing net-
work infrastructure, stemming from device heterogeneity, dy-
namic communication patterns, and constrained computational
resources. Traditional approaches to IoT network anomaly de-
tection often rely on deep learning models that are too resource-
intensive for edge deployment, while conventional Neural Ar-
chitecture Search (NAS) techniques remain computationally
prohibitive. To address these limitations, we propose a novel
Graph-based Neural Architecture Search (GNAS) framework for
efficient and adaptable model generation in IoT environments.
By representing the search space as a graph, GNAS enables
subgraph reuse and reduces redundant computation, significantly
lowering training time compared to standard NAS methods.
Models discovered through GNAS can be deployed at the edge,
offering improved scalability and responsiveness. Experimental
results on the NF-TON_IoT dataset demonstrate the effectiveness
of our approach, with the best-performing subgraph model
achieving 97% accuracy, 96% precision, 97% recall, and a 97%
F1-score.

I. INTRODUCTION

The growing presence of Internet of Things (IoT) devices in
residential environments has introduced new levels of conve-
nience and automation—ranging from smart light switches to
programmable thermostats. However, this rapid proliferation,
often outpacing adequate security measures, has made IoT
ecosystems attractive targets for cyberattacks. Malware such as
Mirai has been used to exploit vulnerabilities in these devices,
incorporating them into botnets capable of launching DDoS
attacks, conducting network reconnaissance, or facilitating
lateral movement within home networks.

To address these threats, network-based anomaly detec-
tion has emerged as a promising approach for identifying
compromised [oT devices by monitoring deviations in traffic
patterns or behavior. While machine learning models have
shown strong performance in this domain, their computational
demands often exceed the capabilities of resource-constrained
IoT hardware. Consequently, recent work has explored offload-
ing detection to edge or cloud infrastructure, enabling the use
of more complex models while maintaining scalability and
real-time responsiveness.

This work was supported in part by the U.S. National Science Foundation
under the grant CNS-2225949.

University of Oregon
Eugene, OR, USA
ljiao2 @uoregon.edu

University of Oregon
Eugene, OR, USA
lijun@uoregon.edu

One challenge in IoT network anomaly detection lies in
the heterogeneity of services and device behaviors. Anomalies
in health monitoring systems may differ significantly from
those in environmental sensing or industrial control, often
requiring service-specific detection models. Even within a
single service type, variations across device models, networks,
and geographic regions hinder generalization. Maintaining
separate models for each context quickly becomes impractical
at scale, especially given the computational and memory
constraints of edge devices. While Neural Architecture Search
(NAS) has emerged as a promising solution for automating
efficient model design, conventional NAS methods are typi-
cally resource-intensive—relying on exhaustive search and re-
training—which makes them ill-suited for dynamic, resource-
constrained IoT environments.

A second challenge stems from the sporadic and unpre-
dictable communication patterns of IoT devices. Many operate
intermittently or transmit data with low temporal density,
necessitating anomaly detection models that can be dynam-
ically activated and deactivated in response to device activity.
However, this model management introduces overhead that can
degrade system responsiveness and limit real-time threat de-
tection. To address these challenges, we propose a framework
for IoT anomaly detection that leverages Graph-based Neural
Architecture Search (GNAS). By representing the architecture
space as a graph, GNAS enables efficient exploration and
reuse of shared components, significantly reducing training
time while supporting adaptive, lightweight models suitable
for dynamic edge deployments.

In the remainder of this position paper, we:

« Present background information and review related work
in the domains of IoT network anomaly detection and
neural architecture search (section 2).

o Describe our proposed methodology, including the design
of a graph-based search space, the training procedure, and
the discovery and selection of high-performing subgraph
architectures (section 3).

o Evaluate the performance of our approach through
preliminary experiments, demonstrating improved effi-
ciency over conventional disk-based model switching.
Our framework maintains a low memory overhead, with
the full supernet requiring less than 10 MB in the worst

case. The best-performing discovered subgraph achieves
96% precision, along with 97% accuracy, recall, and F1-
score (section 4).

e Conclude with a discussion of our findings and their
implications for future work (sections 5-6).

II. BACKGROUND AND RELATED WORK

A variety of techniques have been proposed for anomaly
detection in IoT networks, ranging from classical machine
learning to deep learning methods. Deep neural networks
(DNNs) have shown strong performance in modeling the
complex, high-dimensional patterns in network traffic, while
recurrent architectures—particularly long short-term memory
(LSTM)—further improve detection by capturing temporal
dependencies [1]-[4].

Neural Architecture Search has emerged as a method to au-
tomate model design, but traditional approaches often rely on
brute-force strategies that instantiate, train, and discard a large
number of candidate architectures. This leads to prohibitive
training times and poor scalability, especially in resource-
constrained settings like IoT. The search space typically spans
multiple dimensions—activation functions, layer types, kernel
sizes, and connectivity patterns—causing a combinatorial ex-
plosion in candidate models as parameter complexity grows.
These inefficiencies make naive NAS unsuitable for environ-
ments that require lightweight, rapidly deployable models.

A. Efficient Network Architecture Search

Recent advances in NAS have increasingly focused on
improving efficiency by reducing the need to train a large
number of individual models from scratch. Traditional NAS
approaches—such as those relying on reinforcement learn-
ing (RL) controllers or hypernetworks—often incur signifi-
cant computational costs that are prohibitive for real-time or
resource-constrained deployments. However, Bender et al. [5]
showed that neither an RL controller nor a hypernetwork is
strictly necessary to achieve strong performance, which aligns
well with our design: we avoid the use of auxiliary controllers,
enabling a more lightweight and interpretable search strategy
suitable for cloud-edge deployment scenarios.

A common insight across these works is that training and
discarding full models is inherently inefficient. Any strategy
that enables parameter reuse or shared optimization across
candidate architectures can lead to a more scalable and cost-
effective search process. Notably, Efficient Neural Architec-
ture Search (ENAS) [6] introduced a weight-sharing super-
net framework in which subgraphs are sampled and trained
within a shared network, significantly reducing search time
and computational cost. Our approach extends this principle
to graph-structured supernets in which subgraphs overlap at
varying depths, promoting shared optimization across a broad
architectural space.

Similarly, the Once-for-All (OFA) framework [7] introduces
a progressive shrinking technique and component reuse strat-
egy, enabling architectural flexibility with minimal retraining.
While OFA explicitly incorporates elastic depth—retaining

only the first L layers of deeper networks and bypassing the
rest via residual connections—our framework benefits from a
similar effect implicitly. This emerges as a byproduct of our
design, which encourages overlapping sub-networks of varying
depths. As a result, we achieve implicit weight sharing and
parameter efficiency, with natural skip connections emerging
across the search space.

Our method is particularly suited for cloud-edge inference
scenarios, where memory and latency constraints still exist,
but training and architecture search can be conducted offline
with a higher resource budget. This allows us to balance
search efficiency with the need for flexible, task-specific model
specialization.

B. Graph Network Architecture Search

The Gradient-based Differentiable Architecture Sampling
(GDAS) method [8] models the neural architecture search
space as a directed acyclic graph (DAG), enabling the dis-
covery of both normal and reduction cells that can be
stacked to construct full networks. By leveraging differen-
tiable sampling techniques, GDAS efficiently explores a wide
range of subgraph architectures, significantly reducing search
time—requiring only a few GPU hours on datasets such as
CIFAR-10.

While our approach similarly represents the search space
as a graph, it differs in both scope and objective. Instead of
focusing on convolutional networks, we target the discovery
of hybrid LSTM-DNN architectures. Additionally, rather than
optimizing a single architecture, our framework is designed to
train multiple overlapping sub-networks concurrently, thereby
constructing a parameter-efficient, multi-model supernet.

DySR: Adaptive Super-Resolution via Algorithm and Sys-
tem Co-Design (DySR) [9] served as one source of inspiration
for this work. The authors demonstrated efficient exploration
of neural architecture search spaces by leveraging techniques
such as weight sharing and graph-based search space represen-
tations, significantly reducing training time for image super-
resolution tasks. In addition, they introduced “network mod-
ules”—an individual section or block of a machine learning
model. Our work adopts a similar concept of modular design,
incorporating both DNN and LSTM modules. These modules
are instantiated concurrently and explored efficiently within
the supernet framework.

Differentiable Architecture Search (DARTS) [10] models
each cell as a DAG with edges representing candidate oper-
ations. It relaxes the discrete search space into a continuous
one by assigning learnable mixture weights to all operations,
enabling gradient-based optimization of connectivity patterns.
In contrast, our method samples and trains complete architec-
tures with shared parameters, preserving architectural diversity
without continuous relaxation.

III. METHODOLOGY

To support efficient exploration of neural architectures,
we implement a systematic subgraph generation strategy for
constructing modular neural network components tailored to

different configurations. The method dynamically constructs
sub-networks composed of shared DNN and LSTM blocks
based on specified hyperparameters:

o N: The number of hidden DNN layers
e I: The Input size of each DNN layer

e O: The Output size of each DNN layer
e L: The number of LSTM Layers

All modules use ReLU as the activation function. Addi-
tionally, a dropout rate of 0.2 is applied to both the output
of the model and the LSTM-to-DNN interface to encourage
regularization and prevent overfitting.

The resulting modules are assembled sequentially to form
a distinct subnetwork, which is then stored using a unique
identifier derived from its parameter configuration. This design
allows for modular instantiation, where each subgraph can be
independently reconstructed or selected based on its parameter
set. The modular architecture promotes scalable architecture
search by enabling systematic variation of key structural
parameters while reusing shared components across multiple
subgraphs.

Figure 1 illustrates the supernet construction process using
a simplified configuration, where the hyperparameters are
defined as N € {1,2} I = O, and L € {1,2}. For clarity,
the fourth generated subgraph (comprising 2 LSTM modules
and 1 DNN module) is omitted from the figure. Because
I = O, no structural variations in the DNN layer dimensions
are introduced in this example.

LSTM Module l

LSTM }— LSTM }—»

= LsTM

Middle DNN Modules l Output Module

Input Module l
w

Subgraph
Model 1

Subgraph | "

Model 2

Subgraph |

Model 3
Input

M
w m
> Lstm LsTM
m
Supergraph comprising

all subgraph models - 1 o s Jour

Input out

L]

LSTM DNN out

2
:
3

z

v

Fig. 1. The supergraph (bottom) is the combination of the subgraph models
M1, M2, and M3 (above). Colored lines show the path of data through the
model

Each subgraph corresponds to a distinct architecture instan-
tiated by the Generator from the specified hyperparameters.
When a subgraph is selected for training or inference, data is
routed exclusively through its associated layers. For instance,
if subgraph M3 is selected, the input passes through its LSTM
module and the associated DNN module (a single layer in this
case), and is then forwarded to the classification output.

Importantly, this architecture naturally incorporates skip
connections, enabling efficient training. Nodes and connec-
tions not utilized by the active subgraph are bypassed, and
their weights remain unchanged during backpropagation. Con-
versely, any node involved in the forward pass contributes to

gradient updates and, by extension, to the partial training of
all subgraphs that share those components.

During training, a single subgraph is sampled uniformly at
random from the set of candidate architectures defined within
the supernet. The selected subgraph is instantiated and trained
on a batch of data using standard backpropagation. Crucially,
only the parameters associated with the active subgraph are
updated during each iteration, enabling efficient weight sharing
across the larger architecture space. Conceptually, this can be
viewed as “switching on” the selected subgraph in memory
while “switching off” the others.

This parameterization serves as a means to constrain the size
of the supernet, reducing the number of models to train and,
consequently, the computational cost during the training phase.
While this approach shares similarities with traditional Neural
Architecture Search, it introduces a trade-off: fewer models
are trained, resulting in a smaller pool of candidate models
for deployment. The primary objective of this work is not to
exhaustively explore every possible model configuration or to
evaluate all their performances—an infeasible task—but rather
to demonstrate the feasibility of this approach for network
edge applications.

One of the known limitations of weight-sharing supernet
training is that poorly performing subgraphs may override
shared parameters that are critical to better-performing models,
potentially degrading overall performance [S] [11]. While this
is a valid concern, in our experiments we found that it did
not significantly impact final model quality—Ilikely due to the
relatively low number of searched models and the regularizing
nature of parameter reuse across the subgraph space.

A more prominent issue arises from the imbalance in
training frequency across layers: early layers, which are shared
across many subgraphs, receive substantially more updates
than later layers that are only present in deeper or more
complex architectures. As a result, smaller models with greater
layer overlap tend to converge more quickly, while larger
or sparsely overlapping models train more slowly and may
underperform without intervention.

To further mitigate this imbalance, the following strategies
can be employed: 1: Oversampling larger models during
training to increase the update frequency of deeper layers,
and 2: Biased subgraph training toward higher-performing
subgraphs, ensuring that well-performing components receive
proportionally more updates. These techniques help balance
the learning dynamics across the supernet and reduce conver-
gence disparities between simple and complex architectures.

A. Model Selection

Loading the full supernet into memory can be prohibitively
resource-intensive, even on capable edge servers. This is due to
the cumulative size of the network and the presence of many
overlapping subgraphs that offer marginal improvements in
detection performance or computational efficiency. To mitigate
this, we adopt a sample-and-bin strategy, inspired by DySR
[9], aimed at reducing both the memory and runtime overhead
of the final deployed supernet.

In this approach, each distinct subgraph is evaluated and
categorized into bins based on three criteria: (1) overall
classification accuracy, (2) its F1 score on specific attack
types, and (3) memory footprint, measured by model size. This
evaluation yields three primary subgraph categories: general-
purpose models with strong overall accuracy, specialized mod-
els optimized for detecting specific threats, and high-capacity
models that offer superior performance but may exceed edge
deployment constraints.

Subgraph selection is then guided by deployment-specific
priorities. For instance, a high-accuracy generalist model can
serve as a gatekeeper to direct inference requests, or be de-
ployed standalone if its performance meets operational thresh-
olds. Depending on available hardware or the need to prioritize
certain threat classes, the final supernet can be constructed by
selecting top-performing subgraphs from each bin. Because
each subgraph is defined within a parameterized search space,
selected architectures can be easily re-instantiated or fine-
tuned as needed.

In our implementation, we construct a reduced supernet by
selecting the best subgraph for each attack class based on
Fl-score, as well as the top 10 subgraphs ranked by overall
accuracy. The architectural parameters (N,I,O, L) of these
subgraphs are passed to the Generator, which instantiates only
these specific configurations—excluding all other candidates
from the original supernet.

The degree of parameter sharing in the reduced supernet de-
pends on structural overlap among selected subgraphs. Greater
overlap leads to more efficient weight sharing, while more
disjoint architectures reduce this benefit. The reduced supernet
is trained from scratch, with each subgraph receiving dedicated
training until convergence.

This selective strategy results in a compact, efficient super-
net that maintains strong detection performance while reducing
computational overhead. The final model is well-suited for de-
ployment in resource-constrained edge environments, offering
a practical balance between performance and efficiency.

B. Model Switching and Deployment

Retaining the full supernet in memory enables the system
to leverage the specialized strengths of individual subgraphs,
each tailored to detect specific types of network anomalies.
However, realizing this benefit requires an effective mecha-
nism to dynamically activate the most appropriate subgraph
based on input context. We propose two such model-switching
strategies: one that relies on a traditional Network Intrusion
Detection System (NIDS), and another that uses a lightweight,
learned model-selection policy.

In the NIDS-based switching strategy, an external system
such as Sunblock [12] monitors traffic between IoT devices
and the central server. While capable of independent threat
detection, the NIDS also serves as a gatekeeper that forwards
ambiguous or uncertain traffic to the supernet. Based on traffic
characteristics—such as packet frequency, payload size, or
protocol distribution—it can route inputs to the subgraph most
suited for the suspected threat class (e.g., DDoS, MitM, or

injection attacks). This hybrid model combines the speed and
precision of signature-based detection with the adaptability
of machine learning-based anomaly detection. Optionally, the
supernet—or a subset of subgraphs—may be embedded within
the NIDS as an auxiliary module.

Alternatively, a model-based switching mechanism deploys
a lightweight controller alongside the supernet. This controller
is not optimized for accuracy but rather for efficiency and
class discrimination. When its confidence exceeds a predefined
threshold, it triggers the subgraph most appropriate for the
predicted anomaly class. This approach allows the system
to specialize inference dynamically, executing only the rel-
evant subgraph, thus minimizing overhead while maintaining
responsiveness.

An additional variant integrates the controller directly into
the supernet. A general-purpose anomaly detector first screens
incoming data, and if an anomaly is detected, the input is
routed through the most appropriate subgraph using a simple
rule—e.g., if the probability of class X exceeds threshold
T, activate subgraph Y. This enables selective specialization
while maintaining overall detection robustness, making it
particularly effective in time-sensitive or resource-constrained
environments.

Deployment of the compact supernet is intended at the
cloud edge, which provides a vantage point for observing
traffic between IoT devices and central servers. This place-
ment supports real-time detection while minimizing latency.
However, edge devices typically operate under tight resource
constraints. We target a baseline deployment environment with
modest specifications—2 GB RAM, dual-core CPU, and 128
GB storage—comparable to a low-end laptop. The framework
remains scalable: in settings with more powerful hardware,
multiple subgraphs can be run in parallel to further enhance
detection throughput and coverage.

1V. EVALUATION

All model training and evaluation were conducted on
Google Colab [13], utilizing the following hardware con-
figuration: a CPU with 4 cores and 8 threads, 51 GB of
RAM, and an Nvidia Tesla T4 GPU with 15 GB of VRAM.
During testing, the GPU usage never exceeded 1 GB, likely
due to the relatively small search space. A single epoch
of primary supernet training took approximately 3 minutes
and 30 seconds, whereas training the deployment supernet
took approximately 1 minute 30 seconds—primarily due to
the lower number of subgraphs which need to be trained
for deployment. Although this hardware exceeds the target
specifications, the compact supernet remains deployable on
the intended platform.

Testing and inferrence was performed on the NF-TON_IoT
dataset [14], an enhanced version of the widely used TON_IoT
benchmark [15], designed for IoT network intrusion detection.
Data preprocessing involved scaling numerical features using
standard scaling and organizing flow-level records into time-
series sequences of length 50. The records were sorted by
the flow start timestamp and grouped by the IPv4 source

address. Each flow was defined by a 5-tuple: source and
destination IP addresses, source and destination ports, and
protocol (TCP/UDP). The predominant attack type (mode), if
present, was used as the training label, with no attack assigned
in the absence of an attack.

For model optimization, the ADAM optimizer was em-
ployed with a learning rate of 0.0001, using cross-entropy loss
as the objective function. This configuration was selected for
its proven effectiveness in classification tasks involving deep
learning. Additionally, to address the issue of class imbal-
ance—particularly the dominance of DDoS-related flows—the
number of flow samples per class was capped to 200,000.
This balancing strategy was employed to mitigate model bias
toward the majority class and to ensure that the classifier
maintained sensitivity to less frequent but equally critical types
of anomalous behavior.

In order to evaluate model performance, the standard ML
metrics of Accuracy, Precision, F1-Score, and Recall results
are shown in Table 1 where all subgraph models were trained
for 15 epochs each, for a total supernet training epoch length
of 210 (15 epochs * 14 subgraphs). In order to achieve a fair
comparison, two state of the art (SOTA) models, SOTA1 from
[1] and SOTA2 from [2], were trained for 210 epochs each.
These models are used to assess how deep neural networks
without LSTM components perform under limited training
budgets and when applied to time series data. Further, we in-
cluded traditional machine learning classifiers such as Random
Forest (RF), Support Vector Machine (SVM), Naive Bayes
(NB), and Logistic Regression (LR). Our subgraph models
are characterized by their structure in the format N_I_O_L,
where: N = Number of DNN layers, I/ = DNN input size,
O = DNN output size, L = Number of LSTM layers respec-
tively.

A. Results

Table 1 compares the evaluation of several classification
models and individual supernet subgraph models. The best-
performing configuration, 1_128_128_1, which consists of a
single DNN layer with input and output size 128 and one
LSTM layer, achieved the highest accuracy (0.9723) and F1-
score (0.9701), demonstrating strong temporal and structural
modeling with a relatively simple architecture.

Model 1_128_128_1 RF 1.32.32_1 SVM NB
Accuracy 0.9723 0.96 0.7518 0.7 0.6
Precision 0.9684 0.96 0.7489 0.64 0.55
Recall 0.9723 0.95 0.7518 0.6 0.51
F1-Score 0.9701 0.95 0.7494 0.6 0.57
Model 1.32_128_5 LR | 20_64_128_5 | SOTA2 | SOTAI
Accuracy 0.2405 0.12 0.2443 0.1235 | 0.1235
Precision 0.1764 0.1 0.0597 0.0152 | 0.0152
Recall 0.2405 0.02 0.2443 0.1235 | 0.1235
F1-Score 0.1116 0.09 0.096 0.0271 0.0271
TABLE I

Performance metrics for SuperNet subgraphs, traditional ML models, and
SOTA baselines after 210 training epochs. Subgraphs with overlapping DNN
input/output dimensions perform well, while those with sparse overlap or
higher complexity underperform under limited training.

Among traditional models, Random Forest performed com-
petitively (F1 = 0.95), while SVM and the simpler DNN-
LSTM subgraph 1_32_32_1 showed moderate effectiveness
(F1 = 0.75). In contrast, deeper or wider architectures such
as 1_32_256_1 and 20_64_128_5 suffered from reduced per-
formance (F1 < 0.25), likely due to overfitting and limited
parameter updates under shared training.

State-of-the-art baselines (SOTA1 and SOTA2) underper-
formed significantly (F1 ~ 0.027), highlighting the impor-
tance of temporal modeling and architectural simplicity in
constrained training scenarios typical of edge-oriented IoT en-
vironments. Overall, our results suggest that lightweight DNN-
LSTM subgraphs with balanced design offer a strong trade-
off between performance and deployability for IoT anomaly
detection.

Memory efficiency is a critical factor in this work, as
any performance advantage from using multiple subgraphs
could be undermined by excessive model size at deployment.
Figure 2 illustrates the relative memory cost of loading the
supernet under four configurations: using the smallest, final
selected subgraphs, average, and largest subgraphs. Notably,
even in the most memory-intensive case—where the supernet
includes the largest subgraphs—the total memory footprint
remains modest at approximately 10 MB. By contrast, a
reduced subnet comprising 10 average-sized subgraphs incurs
a memory cost of just over 5 MB. Although the final deployed
model is 2.45MB large, this is only slightly larger than the
memory footprint of the two state-of-the-art models combined
(1.49MB). However, the final deployed supernet offers sig-
nificantly greater flexibility, allowing adaptive inference and
selective specialization without requiring full model reloading.

Comparison of Model Sizes

10 9.70M8.

size of model (MB)

soTA 1 sota2

Lowest 10 Deployed Graph Average 10

Worst 10

Fig. 2. Bar chart illustrating the relationship between in-memory size and
subgraph characteristics, including the two state of the art DNN approaches
SOTALI [1] SOTA2 [2], the smallest in-memory subgraphs, the size of the final
deployed metagraph, the average size of 10 subgraphs, and the 10 largest in-
memory subgraphs.

Model-switching latency is another critical performance
consideration, particularly for real-time or resource-
constrained deployments. Figure 3 presents the average
time (in milliseconds) required to switch between models
under three scenarios: (1) full model swapping from disk,
(2) full model switching from memory, and (3) subgraph
switching within the supernet. Each measurement was
repeated 10,000 times to provide statistically robust results.
The bars represent mean switching times, and error bars
indicate standard deviation. As expected, loading models

from disk incurs the highest latency and presents a significant
bottleneck to responsiveness. In contrast, switching between
preloaded models in memory incurs minimal overhead
and has a relatively small impact on system performance.
Swapping between subgraphs within the supernet achieves
a favorable trade-off, with switching times that are lower
than disk-based loading but slightly higher than in-memory
full model swaps. However, this approach also exhibits a
higher standard deviation in latency (0.0830 %+ 0.0542 ms),
reflecting variability introduced by subgraph complexity and
shared component reuse. Overall, these results highlight
the efficiency and adaptability of the supernet approach:
while slightly more variable, it avoids the substantial cost of
disk-based swapping and enables dynamic specialization at
runtime with minimal delay.

Cost of Model Switching

0.6ms

0.5302 + 0.0221ms

0.5ms

0.4ms

0.3ms

Time in Milliseconds (ms)

0.2ms
0.0830 + 0.0542ms

0.1ms

0.0052 + 0.0007ms.

0.0ms -

SOTA from Disk SOTA from RAM

Model Switching Method

Supernet model Switching

Fig. 3. The cost of swapping distinct models from Disk, distinct models from
RAM, and swapping subgraph models

V. DISCUSSION AND FUTURE WORK

One important observation from our experiments is that
the training process disproportionately favors subgraphs with
high structural overlap, particularly in the early layers. These
frequently reused components receive more updates, leading
to faster convergence and better overall performance for the
most commonly selected subgraphs. Interestingly, we found
that the issue of inferior models overwriting shared weights
had minimal adverse impact on the final performance of well-
performing subgraphs. This suggests that parameter sharing,
even across suboptimal architectures, can be both efficient and
robust when managed within a constrained design space.

A major strength of our approach lies in its efficiency during
training: within a limited number of epochs, our method is able
to identify several high-performing candidate architectures.
Compared to training each candidate model individually, the
supernet not only discovers the best-fitting architectures, but
also trains them more effectively due to the cumulative benefit
of weight sharing across overlapping subgraphs.

Future work will focus on adaptive sampling strategies
to better balance training across underrepresented or struc-
turally unique subgraphs. Additionally, further exploration into
dynamic weight partitioning, controller-based switching, and
activation sparsity could enhance model specialization without
compromising efficiency. Extending the current framework to

support multi-objective search, such as balancing accuracy,
memory usage, and inference time, is also a promising di-
rection for deployment on resource-constrained IoT devices.

VI. CONCLUSION

In this work, we addressed the challenges of anomaly
detection in IoT networks by proposing a novel approach
based on Graph-based Neural Architecture Search (GNAS).
IoT environments present unique difficulties due to the hetero-
geneity of device behaviors, dynamic communication patterns,
and resource constraints at the network edge. Traditional NAS
methods, while powerful, are often too computationally inten-
sive to be practical in these settings. Our GNAS framework
offers a more efficient solution by modeling the architecture
search space as a graph, reducing redundant computation and
enabling the reuse of overlapping subgraphs.

Our GNAS approach mitigates this limitation by represent-
ing the architecture search space as a graph, enabling efficient
reuse of overlapping subgraphs and significantly reducing
redundant computation.

REFERENCES

[1] N. Prazeres, R. L. de C. Costa, L. Santos, and C. Rabadio, “Engineering
the application of machine learning in an ids based on iot traffic flow,”
Intelligent Systems with Applications, vol. 17, p. 200189, 2023.

[2] S. Sriram, R. Vinayakumar, M. Alazab, and S. KP, “Network flow based
iot botnet attack detection using deep learning,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 189-194, 2020.

[3] I Ullah and Q. H. Mahmoud, “Design and development of rnn anomaly
detection model for iot networks,” IEEE Access, vol. 10, pp. 62722—
62750, 2022.

[4] M. Kumar, C. Kim, Y. Son, S. K. Singh, and S. Kim, “Empowering cy-
berattack identification in ioht networks with neighborhood-component-
based improvised long short-term memory,” IEEE Internet of Things
Journal, vol. 11, no. 9, pp. 16638-16646, 2024.

[5] G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in Proceedings
of the 35th International Conference on Machine Learning (J. Dy and
A. Krause, eds.), vol. 80 of Proceedings of Machine Learning Research,
pp. 550-559, PMLR, 10-15 Jul 2018.

[6] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” 2018.

[71 H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” 2020.

[8] X. Dong and Y. Yang, “Searching for a robust neural architecture in four
gpu hours,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[9] S.Zawad, C. Li, Z. Yao, E. Zheng, Y. He, and F. Yan, “DySR: Adaptive

super-resolution via algorithm and system co-design,” in The Eleventh

International Conference on Learning Representations, 2023.

H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture

search,” in International Conference on Learning Representations, 2019.

K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the

search phase of neural architecture search,” in International Conference

on Learning Representations, 2020.

V. Safronov, A. M. Mandalari, D. J. Dubois, D. Choffnes, and H. Had-

dadi, “Sunblock: Cloudless protection for iot systems,” 2024.

Google, “Colaboratory.” https://research.google.com/colaboratory/,

2025. Accessed: 2025-05-30.

M. Luay, S. Layeghy, S. Hosseininoorbin, M. Sarhan, N. Moustafa,

and M. Portmann, “Temporal analysis of netflow datasets for network

intrusion detection systems,” 2025.

T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T.

H. d. Hartog, “Ton_iot: The role of heterogeneity and the need for

standardization of features and attack types in iot network intrusion data

sets,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 485-496, 2022.

[10]

[11]

[12]
[13]

[14]

[15]

