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AbstractÐLarge language models (LLMs) propel the pros-
perity of interactive AI applications showcased by ChatGPT
that demand timely response of inference services. However,
LLM inference is computation intensive and memory intensive,
and improper parameter configuration at LLM platforms may
exacerbate the inference time. In this paper, we analyze the
impact of LLM output token distribution on the inference
queueing delay, where the max-token clipping and the batched
inference are considered. By formulating an M/G/1 model, we
observe that enforcing a maximum output token limit on a very
small fraction of inference requests can significantly reduce the
queueing delay, and our model facilitates the selection of the
optimal limit. For the batch inference, we model the service
process as a bulk queue in which the batch processing time is
affected by the batch size and the maximum token size inside
this batch jointly. The queueing delays of the batching of all
buffered requests (dynamic batching), the batching of constant
number of requests (fixed batching), and the batching without
intra-batch waiting (elastic batching) are derived. Experimental
results show that our mathematical models coincide with the
event-driven simulations well.

I. INTRODUCTION

A Large Language Model (LLM) is a gigantic neural

network trained on massive amount of text data such as GPT

[1] and LLaMA [2]. It is not only capable of generating

natural language sentences, but also possesses the power of

understanding textual meaning. Nowadays, LLMs have been

comprehensively applied in almost every aspect of content

generation, and rapidly expand to search engine and software

engineering. It is even believed that LLMs even light the way

toward artificial general intelligence. As a generative model,

the way that a LLM creates content is called ªinferenceº.

The LLM resides at one or more computing nodes, and

users submit their inference requests to the LLM platform for

processing. Intuitively, an input or output request with larger

token length demands more time, thus affecting the latency of

LLM inference.

Recently, there have been a lot of efforts to improve LLM

inference latency concerning token length. One approach to

reducing decode latency is to enforce a maximum output

token limit. However, a large token limit can still result in

significant queuing delays when inference requests arrive at
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the LLM platform and are processed on a first-come-first-

serve (FCFS) basis. Conversely, a shorter token limit may

impair inference quality. To alleviate prefill overhead, batch

inference is utilized to compute the KV matrices of multiple

requests simultaneously. Due to the randomness in the batched

requests, their input and output token lengths are usually

misaligned. Consequently, the token lengths of all requests

are padded to match the maximum length of the current

batch before being fed into the self-attention module, causing

that their inference times are uniform. The choice of batch

size affects both the waiting time for requests to be grouped

and the batch inference time. A more sophisticated batching

technique include continuous batching [3]. In summary, the

randomness in token length is a crucial factor in providing low-

latency LLM inference services. However, there is currently

no queuing theoretic analysis on the end-to-end service delay.

In this paper, we first explore how the distribution of token

lengths, particularly the output token length, impacts queueing

delay at both the decode and prefill stage, and what are

potential measures for improving overall LLM service quality.

Observing that the inference latency of an individual request

is proportional to its output token length, we model the service

process as an M/G/1 queue [4] and derive the queuing delay

in closed form. An intuitive finding is that the heavy tail of

output token length in a few requests significantly extends

the average queuing delay. This can cause a considerable

percentage of impatient users to leave the LLM platform

before their requests are processed. We propose configuring an

appropriate maximum output token limit, as a slight reduction

in inference quality for a very small percentage of requests

can significantly decrease the average queuing time.

We next investigate the mathematical model of queuing

delay for batch inference. Our focus is placed on the more

complex dynamic batching [5] where a GPU processes all

buffered requests in one go. In this context, the batch size is

uncertain, and the inference latency of a batch depends not

only on the batch size but also on the largest output token

length among all the requests in the batch. We model this

dynamic batching service process with an unbounded batch

size as an M/G/1 queue, where the service time distribution is

correlated with both the arrival rate and the output token length

distribution. We explicitly derive a tight upper bound for the

average queuing delay. Our observations indicate that when the

output token length follows a heavy-tailed distribution, setting



(a) LLaMA-2 architecture (b) KV catch

Fig. 1. LLM inference basics

an optimal maximum batch size is beneficial, especially in

trading off waiting time for faster batch inference. To find

this optimal value, we derive an alternative model for static

batching [6], where the batch size is constant, and compute the

optimal value as a function of the arrival rate and the output

token length distribution. Applying this optimal maximum

batch size to dynamic batching, we observe a considerable

decrease in the queuing delay for dynamic batching. In the

realm of traditional dynamic batching techniques, there exists

an inherent issue where shorter responses are compelled to

wait for the completion of longer ones. This scenario in-

evitably leads to an increase in queueing delays. To address

this, we model the system that enables replies generating fewer

tokens to be expedited back to users without the need for

padding. This elastic batching ensures a minimized queueing

delay, irrespective of the distribution that the output token size

adheres to.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the inference procedure

of Transformer-based large language models, and show two

factors that affect the LLMs inference latency.

A. LLM Inference Basics

We take LLaMA-2 as an example model for general LLMs.

The key component of LLaMA consists of a stack of blocks

similar to the Transformer decoder blocks, as shown in Fig. 1a.

In a LLaMA block, the attention module distinguishes itself

from a convolutional module. Each input token is derived with

three values: query, key, and value. The model computes the

dot product between the new query and the keys of preceding

tokens to assess the relevance of prior tokens from the perspec-

tive of the current token. Subsequently, it utilizes Softmax on

the dot products to generate weights, and computes the output

as a weighted sum of the values based on these weights.

To generate a new token, the inference process is divided

into two stages, as shown in Fig. 1b [7]. The input consists

of two tokens. Freshly computed tensors are depicted by

blue grids, while reused tensors from the key-value cache are

represented by red grids. In the prefill phase, which processes

all the input tokens within a batch simultaneously, the keys

and values need to be calculated and saved for each block

and the cache will be filled when the first token is output.

The decode phase that generates the second token to the last

one performs the same operations as prefill, but only for the

single token which was generated in the last autoregressive

iteration. In this phase, LLaMA only needs to compute the

query, key, and value of the newly generated token. The key-

value cache is employed and adjusted iteratively to generate

tokens incrementally, so that the inference time to generate the

first token is larger.

The optimization of LLMs inference latency can be broadly

categorized into two types: one involves optimizing inference

on a per-request basis, handling each request sequentially,

while the other involves system-level optimizations for concur-

rent inference of multiple requests, as detailed in the following

discussion.

B. Impact of Tokens on Inference latency

Both input and output tokens must undergo the inference

and computation processes of large language models (LLMs),

impacting the model’s inference latency. We represent the

workload of an inference task as the number of tokens to be

generated, and measure the inference latency with regard to

different numbers of tokens. Consider that a LLaMA-2-7b-chat

model runs on an NVIDIA A100 GPU. Table I shows the

inference latency when the pair of input and output tokens

change. In each experiment, we collect 100 conversation

requests with the LLM, record the generated inference latency,

and compute their average values.

One can observe that the inference latency is gently affected

by the input token size, so we focus on the effect of output

token size on the inference latency. We conduct the curve fit-

ting in Fig. 2a on Instruction-in-Wild [8] dataset. We randomly

sampled 100 instances for each model from those generating

fewer than 512 output tokens and observed a linear relationship

between inference latency and output token size. The observed

experimental phenomenon can be explained by the fact that the

number of input tokens primarily affects the time required to

generate the first output token. When the number of output

tokens is sufficiently large, the impact of input tokens on the

overall inference latency becomes negligible. When generating

the second output token till the last one, LLMs only need to

compute the query, key and value of the newly generated token

in an autoregressive manner and then perform some similar

operations, so that their inference latency are approximatively

identical.

In practical LLMs services, a maximum token limit is

enforced to avoid the demands of overlong output tokens.

However, there lacks of a rigorous analysis on how this

token limit influences the service latency. If the token limit

is too small, it can hinder the generation of high-quality text.

Conversely, if the token limit is too large, it can significantly

increase the user’s waiting time, potentially causing impatient

users to abandon the system.



TABLE I
THE INFERENCE TIME WITH REGARD TO DIFFERENT NUMBERS OF TOKENS

Input/Output Tokens Time (s) Input/Output Tokens Time (s)

(128, 128) 2.91 (64, 512) 12.18
(128, 256) 5.88 (128, 512) 12.63
(128, 512) 12.63 (256, 512) 12.96

(128, 1024) 23.47 (512, 512) 13.19

(a) (b)

Fig. 2. Inference latency and throughput measurement on NVIDIA A100

C. Impact of Batching Inference

Batch processing is an important feature of GPU inference.

When processing a single inference request each time, the

bottleneck that throttles the inference speed is the data load-

ing instead of its computation. Therefore, multiple inference

requests can be processed simultaneously so that the total I/O

latency is amortized, and the GPU computational capacity is

better utilized. Meanwhile, the decode phase is memory-bound

due to the KV-cache footprint per request. For instance, we can

only fit a maximum batch size of 49 requests at a sequence

length of 1280 (the input token size is 256 and the output

token size is 1024) for the LLaMA-2-7b-chat on an A100

GPU. Within the feasible batch size range, the top half of Fig.

2b illustrates the throughput of the inference stage for various

batch sizes (B), with an input token size of 256 and an output

token size of 1024. We observe that the throughput increases

as the batch size grows.

We illustrate the token generation times of LLMs with

regard to the batch size when fix the input token size (64)

in the bottom half of Fig. 2b. The generation times of all

the tokens increase linearly with the batch size, where those

of the first token are more sensitive to the batch size. The

reason is that when generating the first token, all the key-value

tensors of the input tokens are computed and cached, which

increases the inference latency. LLMs input a vector whose

size is input dimension times the batch size, and compute the

output through a predefined sequence of operations, so that the

generation times of the first token increases linearly with the

batch size. When generating the second output token, LLMs

only need to compute the query, key, and value of the newly

generated token and then perform some similar operations,

which also leads to a vector whose size depends on the batch

size. For the production of additional tokens, the inference

latency is similar to the second one within a feasible range of

batch sizes.

However, the number of output tokens obtained per request

varies greatly, resulting in different distributions. As a result,

different batching strategies are required to minimize inference

latency effectively.

III. QUEUING ANALYSIS OF MAX-LIMIT CLIPPING

In this section, we formulate a probabilistic model to

understand the impact of the maximum token limit on the

inference service delay, and explore the optimal token limit.

A. M/G/1 Model

Our goal is to obtain an explicit expression of the LLM

inference delay. Without loss of generality, we model the

LLM service process as a M/G/1 queue, where M indicates

that the requests arriving at the server follow the Poisson

distribution, G indicates that the service time of the server

is generally distributed and 1 indicates a single server. The

inference requests are processed according to the first-come-

first-served (FCFS) principle. Suppose that λ is the mean

arrival rate of requests and µ is the mean service rate of the

server. Let S denote the random variable for the serving time

of an inference request, and let ρ := λ
µ

. Denote by W the

queueing delay. When ρ < 1, the queue is deemed as stable.

According to [4], the mean queueing delay of a request is

given by:

E[W ] =
λE[S2]

2(1− ρ)
. (1)

Each user has distinct requirements for the number of output

tokens in their response. We denote by nreq the number of

output tokens that takes the value n (n ≥ 1) with probability

pn. When the LLM service provider sets up the maximum

token limit nmax, users who require a greater number of output

tokens will receive only up to nmax tokens. Consequently, the

expected mean of the output token numbers can be calculated

as follows:

E[nreq] =
∑nmax−1

n=1
npn + nmax · (1−

∑nmax−1

n=1
pn), (2)

where the service time S is affected by the token limit.

According to our experimental observation in Fig. 2a, the

inference latency of a single request is approximated by

S = an+ c with a and c as constants. By basic probabilistic

analyses, we obtain the following expressions:

E[n2
req] =

∑nmax−1

n=1
n2pn+n2

max(1−
∑nmax−1

n=1
pn),(3)

E[S] = aE[nreq] + c, (4)

E[S2] = E2[S] + a2(E[n2
req]− E2[nreq]). (5)

Substituting Eq. (5) into Eq. (1) yields the explicit expres-

sion of the queueing delay with respect to the max token limit.



B. Queuing Analysis with User Impatience

Patience is often a scarce commodity among users when

it comes to waiting for LLM inference services. After a

certain period of waiting, users may decide to abandon the

system. To delve deeper into the impact of the maximum token

limit on the average inference delay, especially considering

the impatience of users, we introduce a model for analysis.

For the sake of mathematical simplicity, we assume that

each incoming user is prepared to wait in the queue for a

maximum of τ seconds before their request is processed. Users

who choose to exit the inference system without having their

requests processed are referred to as lost users.

Denote by π(τ) the fraction of the lost users in the long-run.

Let E[Wq] be the average queuing delay experienced by all the

served and lost users, and let E[Wqs] be the average queueing

delay of the served users. Their approximate formulas have

been studied in [9] and are expressed as:

π(τ) = (1− ζ2)πdet(τ) + ζ2πexp(τ), (6)

E[Wq] = (1− ζ2)E[W det
q ] + ζ2E[W exp

q ], (7)

ζ2 =
E[S2]− E2[S]

E2[S]
. (8)

This approximation requires ζ2 to satisfy 0 ≤ ζ2 ≤ 1.

E[Wqs] can be determined using π(τ) and E[Wq]. It is not

hard to understand that each lost user spends a time τ in the

queue so that it follows:

E[Wq] = τπ(τ) + E[Wqs](1− π(τ)). (9)

πexp(τ) and E[W exp
q ] represent the corresponding results

with the exponentially distributed number of requested tokens.

πdet(τ) and E[W det
q ] represent the results in the special

case of deterministic service requirements. Their calculation

formulas are listed in [9] and will not be repeated here.

Similarly, using Eq.(5), we obtain the expression of the

mean queueing delay as a function of the max token limit.

Intuitively, the larger token limit will lead to the higher service

delay and more lost users. However, the number of requested

tokens of user is intrinsic to his evaluation of LLM service.

Configuring a median or even small token limit will decrease

the user perceived content quality. Our model facilitates the

choice of an optimal token limit that balances the generated

content quality and the service delay.

C. Optmization Model

We formulate an optimization problem to find the optimal

tradeoff between LLMs service quality and its queueing delay.

The utility of the LLM service for a user is defined as a

general function u(nreq), where u(nreq) := 1 if nreq ≤ nmax

and u(nreq) := 1 −
nreq−nmax

nreq
if nreq > nmax. Denote by

V (nmax) the objective function of the LLM service provider.

When all the users are assumed to be sufficiently patient,

V1(nmax) is modeled as:

V1(nmax) = θE[u|nmax]− (1− θ)E[W (nmax)], (10)

where E[u|nmax]=
∑nmax

n=1 pn+
∑

∞

n=nmax+1(1−
n−nmax

n
)pn

and θ is the weighting factor. When the user impatience is

considered, the LLM service provider incurs a fixed cost on

each lost user. Here, we define ℓ as this cost. Then, the

objective function V2(nmax) is given by:

V2(nmax)=θE[u|nmax]+(1−θ)E[W (nmax)]−π(nmax) · ℓ.
(11)

Our optimization problem is summarized as:

max V (nmax) (12)

s.t. nmax ≥ 1. (13)

Here, Eq. (12) is intended to optimize the LLM service level

and users experience. To ensure rationality, Eq. (13) imposes

constraints on the max output token limit.

IV. IMPACT OF DYNAMIC BATCHING

In this section, we rigorously analyze the service delay for

different batching methods including dynamic batching, fixed

batching and elastic batching.

A. Basic Stochastic Model

For GPU-based batching inference, Inoue [5] models a

single server dynamic batching service with infinite batch size.

The requests arriving at the server follow the Poisson distri-

bution with rate λ and they can be processed simultaneously

in a batch. The inference time of a batch depends on the

batch size b, which is defined as H [b] (b = 1, 2, · · · ). For

non-AIGC DNN inference, a model inputs a vector whose

size is the product of the fixed input dimension and the batch

size. It computes the output through a predefined sequence of

operations so that the inference time increases linearly with

the batch size:

H [b] = αb+ β. (14)

Let µ[b] (b = 1, 2, · · · ) denote the inference speed in a batch

with size b, so that µ[b] = b
E[H[b]]

.

In this system, when the server becomes idle, all the pending

requests in the queue are processed together in a batch. If the

queue is empty, the server will wait until a request arrives. The

size of the ith batch processed is defined as Bi (i = 1, 2, · · · )
and the number of requests arriving in the processing time of

the ith batch is defined as Ai (i = 0, 1, · · · ). Then there exists:

Bi+1 = Ai + I(Ai=0), i = 0, 1, · · · , (15)

where I(·) denotes an indicator function. By mathematical

derivations, the mean queuing delay E[W ] is bounded above

by:

E[W ] ≤
λ(α+ β)2

2(1− λ2α2)
=: ϕ0(λ, α, β),

E[W ] ≤
λαβ + λα2 + β

2(1− λ2α2)
=: ϕ1(λ, α, β).

ϕ(λ, α, β) := min(ϕ0(λ, α, β), ϕ1(λ, α, β)).

(16)



B. LLMs Dynamic Batching

Distinguished from traditional non-AIGC models, the infer-

ence time of a LLM request is not deterministic, but depending

on the numbers of input and output tokens. Within a batch,

different requests may have varying numbers of input (and

output) tokens, necessitating padding to align with the longest

input (and output). Consequently, the inference time of a

batch is influenced not only by the batch size but also by the

maximum input and output token sizes. For requests involving

long text inputs, such as article translation and summarization,

users are typically less sensitive to queuing delays. Therefore,

our focus here is primarily on short text inputs. We suppose

the number of input tokens follows the uniform distribution

from 0 to m1 (m1 ≥ 0). For a batch b, the CDF of the max

input token size Dmax is given by:

Pr(Dmax ≤ x|B = b) = (
x

m1
)b, 0 ≤ x ≤ m1, (17)

then we can obtain the expectation of Dmax is m1b
b+1 .

Taking its upper bound, we can obtain a fixed value m1, so

that we can use the results in Fig. 2b. The time to generate

the first token is k1b + k2 and the time to generate others is

(k3b+ k4)l. l denotes the max output token size in the batch,

which contains the second output token to the last one. The

inference time H [b,l] of the batch is given by:

H [b,l] = k1b+ k2 + k3bl + k4l, (18)

for some k1 > 0, k2 ≥ 0, k3 ≥ 0, k4 ≥ 0.

Then, we consider the different distributions of the number

of output tokens, such as the uniform distribution, Gaussian

distribution and so on.

1) Uniform Distribution of Output Tokens: we suppose

that the number of output tokens N follows the uniform

distribution from 0 to m2 (m2 ≥ 0).

Let L be a generic random variable of the max output token

size in the batch, so that E[L] = m2b
b+1 . For a batch with size

b, the mean inference time is given by:

H [b] = k1b+ k2 + k3m2
b2

b+ 1
+ k4m2

b

b+ 1
. (19)

Taking its upper bound, we can obtain,

H [b] ≤ (k1 + k3m2)b+ k2 + k4m2

= α1b+ β1.
(20)

Eqs. (20) and (14) are the same in their forms, so that we can

obtain the mean queuing delay according to Eq. (16).

2) Truncated Gaussian Distribution of Output Tokens: we

suppose the number of output tokens follows the truncated

Gaussian distribution from 0 to ∞, where the mean is u and

the standard deviation is σ.

The PDF and CDF of the truncated output token size Ntr

(Ntr ≥ 0) is given by:

fNtr
(x) =

ϕ(x−u
σ

)

σ(1− Φ(−u
σ
))
, x ≥ 0, (21)

FNtr
(x) =

∫ x

0

ϕ( t−u
σ

)

σ(1− Φ(−u
σ
))
dt, x ≥ 0, (22)

(a) (b)

Fig. 3. The relationship between E[L] (resp. H[b], µ[b]) and b.

where ϕ(x) and Φ(x) are the PDF and CDF of the standard

Gaussian distribution. Here, L is the maximum order statistic

regarding Ntr, and its expectation is given by:

E[L] =

∫
∞

0

bfNtr
(x)(FNtr

(x))b−1dx. (23)

We illustrate E[L] and H [b] with regard to the batch size

under the truncated standard Gaussian distribution in Fig. 3a.

Here E[L] monotonically increases with the batch size and

the rate of rise becomes smaller and smaller, which becomes

a fixed value quickly. Therefore, H [b] increases approximately

linearly with the batch size, so that we can also obtain the

mean queuing delay according to Eq. (16). For other Gaussian

distributions with small standard deviation, the results are

similar.

C. LLMs Fixed Batching

In all distributions of the number of output tokens, it is not

universally true that larger batch sizes lead to higher inference

speeds, as depicted in Fig. 3b. The figure contains the uniform

distribution from 0 to 2000, the truncated Gaussian distribution

with mean 800 and standard deviation 20 and the logarithmic

normal distribution with log mean 7 and log standard deviation

0.7. The inference speed of a fixed batch size is given by:

µ[b] = b/(k1b+ k2 + k3bE[L] + k4E[L]). (24)

We note that for a light-tailed distribution, µ[b] increases

with the batch size b. However, with a heavy-tailed distribu-

tion, there exists an optimal batch size that maximizes the

inference rate.

This understanding is straightforward: for a light-tailed

distribution, E[L] quickly reaches its maximum as the batch

size increases, leading to a monotonically increasing function

of µ[b] with b. Conversely, with a heavy-tailed distribution,

E[L] progressively increases with the batch size. Initially,

when the batch size is small, E[L] and its impact on inference

time are minimal, resulting in an increase in the inference rate.

However, as the batch size grows, E[L] becomes significantly

larger and continues to increase, necessitating the padding of

numerous tokens for many responses. This phenomenon slows

down the inference rate.



Therefore, for the heavy-tailed distribution, we model the

customer queuing delay under a fixed batch size. We model

the system as an M/Db/1 queuing system, where Db in-

dicates deterministic bulk service with a fixed batch size b.
If the specified number of users, denoted as b, is present,

a single server serves them simultaneously; otherwise, the

server remains idle and waits until a total of b users has

accumulated before providing service. The batch inference

time is a fixed number that contingent upon the batch size,

where H [b] = k1b+k2+k3bE[L]+k4E[L]. According to [6],

the mean queueing delay is shown as follows.

E[W ] =
1

λ
(
b− (b− λH [b])2

2(b− λH [b])
+

b−1∑
k=1

1

1− Zk

),

Zk =

20∑
m=1

cmwm
k , k = 1, 2, · · · , b− 1,

cm = exp(
−λH [b]m

b
)
(λH [b]m)(m−1)

b(m−1)m!
,

wk = exp(
2πk

b
i).

(25)

Using MATLAB, we can determine the optimal batch size

b∗ that minimizes E[W ]. This approach allows servers to

efficiently handle high arrival rates of requests. However, when

the arrival rate λ is low, users may experience delays until b∗

users are in the queue, resulting in wasted time. Therefore,

dynamic batching with a maximum batch size bmax becomes

essential, where bmax can be set to b∗.

D. LLMs Elastic Batching

Traditional batch processing of LLMs suffers from ineffi-

ciencies where shorter sequences are delayed by longer ones to

ensure uniform token outputs, leading to computational waste.

Yu and Joo et al. [3] first proposed iteration-level scheduling,

where each generated token is returned to the user immediately

without waiting for all responses to complete.

For modeling simplicity, we consider the case that when the

batch of requests is completed can the next round of service

be carried out. For a batch of requests, we let the replies

that generate fewer tokens be returned to the customers in

advance without padding. This also reduces the inference time

for customers who need more output tokens, because as more

and more replies are returned to the customers, the remaining

batch size gets smaller and smaller.

Assume a batch of requests with batch size b, the number of

tokens generated from small to large is n1, n2, · · · , nb, where

ni (i = 1, 2, · · · b) only contains the second output token to

the last one. The latency to complete this batch of requests is

the latency to complete the request which generates nb tokens.

After k1b+k2+(k3b+k4)n1 inference time, the reply which

generates n1 + 1 tokens is returned to the customer. At this

time, the request which needs n2+1 tokens only has n2−n1

tokens not generated. Then another (k3(b− 1)+k4)(n2−n1)

inference time, the reply can be returned to the customer. And

so on, the batch processing time can be expressed as follows.

H [b,nb]=k1b+k2+(k3b+k4)n1+(k3(b−1)+k4)(n2−n1)

+ · · ·+(k31(b−(b−1))+k4)(nb−nb−1)

=k1b+k2+k3bE[N ]+k4nb.
(26)

The inference delay of Eq. (26) is much smaller than that of

Eq. (18). Similarly, the mean queuing delay can be calculated

according to Eq. (16).

V. EXPERIMENTAL STUDIES

A. Experiment Setup

In this section, we analyze the inference latency curve

based on output token size and batch size using a real LLM-

based inference server on NVIDIA A100. Subsequently, we

validate the practicality of our derived mathematical expres-

sions through numerical experiments conducted using MAT-

LAB’s event-driven simulation. The base language models can

only perform text continuation, i.e., generating the following

text when given the preceding context, which cannot en-

gage in conversational interaction. In contrast, an instruction-

finetuned language models can understand user requests and

provide appropriate responses. Therefore, three types of open-

source instruction-finetuned language models are used in

this experiment: LLaMA-2-7b-chat, Chinese-Alpaca-2-7b, and

ChatGLM3-6b. For experimental data, we simulate virtual sce-

narios with output token sizes following various distributions.

B. Impact of Token Limit

We assume that the output token size follows a logarithmic

normal distribution with log mean 7 and log standard deviation

0.7. Fig.4a, Fig.4b and Fig.4c show the mean queuing delay

E[W ], E[Wqs] and loss fraction π(τ) with regard to the max

token limit nmax. Among them, the red, blue, and black lines

represent the numerical results obtained through mathematical

equations, while the red triangles, blue squares, and black

circles correspond to the simulation results. We randomly set

the arrival rate such that ρ < 1. The arrival rate λ is 1/40

in Fig. 4a and λ is 1/25 and τ is 60 in Fig. 4b and Fig.4c.

We observed that each curve is accurately described by the

provided expressions. When assuming all users are sufficiently

patient, the mean queuing delay tends to increase with the

maximum token limit. This is because a significant number of

users requiring long responses enter the system, significantly

slowing down LLMs inference. However, when considering

user impatience, the mean queuing delay gradually stabilizes.

This occurs because more users leave the system without being

served, reducing the overall load over time.

In order to provide better service, the optimal tradeoff on

LLaMA-2-7b-chat is given in Fig. 4d. Here, θ is 119/120

for the objective function V1(nmax) and θ is 0.95 and ℓ
is 4 for V2(nmax). When all the users are assumed to be

sufficiently patient, the optimal max token limit is 1600. The

mean queuing delay is only 23s, which decreases by 58.93%



(a) The mean queueing delay with pa-
tient users.

(b) The mean queueing delay with impa-
tient users.

(c) The fraction of the lost users be-
cause of impatience.

(d) Tradeoff.

Fig. 4. The queueing results of max-limit clipping on A100 GPU.

(a) LLaMA-2-7b-chat (b) Chinese-Alpaca-2-7b (c) ChatGLM3-6b

Fig. 5. The mean queueing delay using dynamic batching and elastic batching on A100 GPU.

when nmax is 3000. When the user impatience is considered,

the optimal max token limit is 1300. Although the mean

queuing delay does not decrease significantly, the fraction

of the lost users is only 0.12, which decreases by 56.36%

when nmax is 3000. This shows that more and more users

can accept the service, which can bring greater profits to the

LLMs platform. Among users, 70.53% have an output token

size less than 1600, while 59% have an output token size less

than 1300. This indicates that enforcing a maximum output

token limit on a small fraction of inference requests can better

serve users.

C. Impact of Batching Strategies

Fig. 5 illustrates simulation results for the mean queueing

delay and its upper bound under traditional dynamic batch-

ing and elastic batching. We assume the output token size

follows a uniform distribution ranging from 0 to 1000. The

upper bound closely approximates the exact curve of the

mean queueing delay. Specifically, elastic batching exhibits

lower mean queueing delays compared to traditional dynamic

batching, and this advantage increases with the arrival rate.

Intuitively, as the arrival rate increases, more customers enter

the LLMs system, leading to larger batch sizes. This results in

larger maximum output token sizes within the batch, causing

numerous short responses to be padded with many tokens

and thereby significantly increasing the mean queueing delay.

However, elastic batching effectively mitigates this issue.

If the number of output tokens follows a heavy-tailed

distribution, the relationship between batch size and queueing

delay is not straightforwardly that larger batch sizes lead

to reduced queueing delays, as discussed earlier. Therefore,

traditional dynamic batching, which processes all requests in

the queue together, may not be suitable. Instead, it becomes

crucial to determine the optimal batch size. Fig. 6a presents

simulation results of the mean queueing delay, alongside its

mathematical formulas given in Eq. (25). The number of

output tokens follows a logarithmic normal distribution with a

log mean of 7 and a log standard deviation of 0.7. Furthermore,

based on calculations, the queueing delay under Eq. (16) is

estimated to be 125 seconds when the request arrival rate is

0.43. This delay is significantly higher than that observed with

an optimal batch size of 8.

When the arrival rate of requests is large, the mean queueing

delay of optimal batch size is less than traditional dynamic

batching. However, when λ is small, the arriving users can

not be immediately served until b∗ users in the queue, so that

the mean queueing delay is large than traditional dynamic

batching. Therefore, dynamic batching with max batch size

bmax is necessary, which is given in Fig. 6b. The output token

distribution is the same as in Fig. 6a. When λ is small, as

long as bmax is larger than the average number of requests in

the queue, we can obtain the same low queuing delay. When

λ is large, we find that the mean queuing delay of dynamic

batching with bmax = 8 is much less than infinite batch size.

Therefore, the system of dynamic batching with bmax = b∗

can provide better service. At the same time, we observe that

elastic batching is better than traditional dynamic batching

even for heavy-tailed distribution, as shown in Fig. 6b.



(a) λ = 0.43 (b) Dynamic batching with max batch
size and elastic batching

Fig. 6. The mean queueing delay of different batching inference for LLaMA-
2-7b-chat on A100 GPU.

VI. RELATED WORK

Due to high latency for LLMs, numerous techniques have

been proposed to reduce inference time. Liu and Wang et al.

[10] show that contextual sparsity exists, which uses the cur-

rent input to dynamically select part of the network parameters

for inference instead of using all of them. In [11], Zheng and

Ren et al. accurately perceive and predict the response length,

so that queries with similar response length can be gathers

into micro-batches. Xiao and Lin et al. [12] propose an INT8

quantization of both weights and activations for all the matrix

multiplications in LLMs. However, they do not improve the

service of LLMs from the queueing theoretic perspective. In

[13], Li and Zheng et al. only analyze the queuing theory

of LLMs from the perspective of parallelization. The impact

of parameter configuration on the inference performance has

been studied, such as the prompt in [14], [15] and temperature

in [16]. However, there is no detailed mathematical derivation

of how to choose the optimal max token limit.

There has been many works analyzing the batch-service

queues. Works in [17]±[20] assume that the processing time

has nothing to do with the batch size. Inoue [5] assumes the

batch processing time linearly increases with the batch size so

that derives a closed-form upper bound of the mean queuing

delay. However, the batch inference time of LLMs is related

to not only the batch size, but also the maximum input and

output token sizes in this batch.

VII. CONCLUSION

This paper models the LLM inference delay from the

perspective of queueing theory, and concentrates on the dis-

tribution of the size of output tokens. For the separated task

inference, we formulate M/G/1 models to derive the queue-

ing delay, showing that under the heavy-tailed output token

distribution, a very small fraction of tasks with large output

token size significantly increase the queueing delay, and even

drive a number of impatient users to leave the system. Our

model shows that enforcing the max-token limit can reduce

the queueing delay and the user loss rate simultaneously. For

different batch processing methods, we develop a suit of bulk

queue models, and derive the upper bounds of the queueing

delay. We observe that when the output toke size conforms to

light-tailed distributions, dynamic batching without the batch

size limit outperforms the fixed batching. Conversely, when

dealing with heavy-tailed distributions, dynamic batching with

a finite batch size is more effective. Regardless of which

distribution the output token size obeys, the elastic batching

without intra-batch waiting has a minimum queueing delay.
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